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Abstract

We study the nonlinear process of second harmonic generation in photonic time-crystals, materials with refractive index
that varies abruptly and periodically in time, and obtain the phase matching condition for this process. We find conditions
for which the second harmonic generation is highly enhanced even in the absence of phase matching, governed by the
exponential growth of the modes residing in the momentum gap of the photonic time crystal. Additionally, under these
conditions, a cascade of higher-order harmonics is generated at growing exponential rates. The process is robust, with no
requirement for phase-matching, the presence of a resonance or a threshold, drawing energy from the modulation.

Introduction

The exploration of epsilon-near-zero materials presents
new opportunities to create time-interfaces with large and
abrupt changes in the refractive index'™''. The recent
advancements in theory and experiments have drawn
increasing attention to photonic time-crystals (PTCs)'*>".
PTCs are materials with a refractive index that undergoes
substantial periodic variations on the time scales of a single
optical cycle. They exhibit dispersion relation displaying
momentum bands, separated by momentum gaps wherein
the electromagnetic (EM) modes are exponentially growing
(or decaying) in time'>'*"*!, The study of PTCs, and gen-
erally of time-varying media, is introducing new avenues for
shaping light-matter interactions, relevant both for lasing
technologies, as well as for quantum technologies, offering
new sources of entangled states'*>*>7>**’, The special dis-
persion relation in PTCs arises from interference between
multiple time-reflected and time-refracted EM waves which
are generated from the abrupt variations to the refractive
index®>*"**=3% The exponentially growing modes associated
with the momentum gap are possible because the time-
symmetry is broken by the modulation of the refractive
index. Namely, the growing modes extract energy from the
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index modulation, while the decaying modes transfer energy
to it. Importantly, this energy exchange between the gap
modes and the index modulation is non-resonant, hence it
can support numerous visionary ideas such as lasers that do
not rely on any atomic resonance’, non-resonant creation
of pairs of entangled photonszs, etc. Recently, studies of the
nonlinear phenomenon of solitons in nonlinear PTCs have
demonstrated the unique properties of the momentum gaps
in PTCs and predicted the existence of superluminal k-gap
solitons™.

The unusual dispersion relation in PTCs was thus far not
utilized in the context of nonlinear frequency conversion—a
core concept in nonlinear optics and in fact the first non-
linear optical phenomenon to be discovered*’. Nonlinear
frequency conversion is strongly affected by phase-matching.
Generally, phase matching depends on the dispersion in the
medium and often does not occur naturally. Over the years,
many methods for phase-matching have been explored, the
most important ones being birefringence phase-matching
and quasi-phase-matching. The most basic and commonly
used nonlinear frequency conversion process is second
harmonic generation (SHG), where due to the non-
centrosymmetric structure of certain materials, a propagat-
ing wave with frequency w excites the spatially asymmetric
dipoles in the medium, which, in turn, emits radiation at
frequency 2w.
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Here, we explore SHG in photonic time crystals and find
that SHG can be exponentially enhanced when the
momentum gap modes are involved. We find the phase
matching conditions for the Floquet modes associated with
the momentum bands and the momentum gaps of the PTC.
We show how the momentum bandgaps in PTCs can enable
exponentially amplified SHG even without phase matching,
extracting energy from the modulation of the refractive
index. The amplification in the gaps is non-resonant, and
without any threshold requirements. Moreover, we observe
a dramatic cascading effect of the emergence of higher order
harmonics with wavenumbers nk,, where k, is the wave-
number of the fundamental mode (that resides within the
momentum gap of the PTC), and # is an integer. Each
harmonic is growing exponentially, with no saturation effect,
drawing the energy from the modulation of the PTC. Finally,
we discuss how the exponential amplification of the SHG
process can pave the way towards designing momentum
bandgaps at multiple wavelengths simultaneously by
employing cascaded y(® processes, and envision new phy-
sical mechanisms for high-harmonic generation in solids
and exploiting them for ultrashort laser pulses.

Results

For simplicity, we consider a nonlinear coefficient y*) that
is constant in time and does not depend on frequency, as is
the case far from atomic resonances or bandgaps in solids.
For clarity, we define the frequency and momentum of the
original wave as w( and k, respectively, and the frequency
and momentum of the generated wave as wgy and kgy. It is
important to note that the true frequency of each of the
waves is well-defined only when the medium is stationary in
time, because the frequency varies during the modulation.

In the conventional SHG process, we consider a finite
nonlinear medium, breaking homogeneity in space (at the
entrance and exit planes) but time-translation symmetry
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is conserved, hence the modes are defined by their fre-
quencies. Thus, the solution to the SHG process is a time-
harmonic wave with a well-defined single frequency
wsy = 20. The generated wave has a spatially varying
envelope, that changes as the second harmonic (SH)
mode draws energy from the fundamental mode (pump).
The phase-matching condition ensures efficient transfer
of energy from the fundamental mode to the SH mode, in
which case its spatial envelope grows in the medium. If
the phase-matching condition is not met, energy is
transferred back and forth between the fundamental and
SH modes, and the spatial envelope oscillates in space.

The logic in the SHG process in time-varying media is
different. In a time-varying medium, it is natural to work
with spatially homogeneous initial conditions with no
spatial boundaries, which implies that the modes are
defined by their wavenumbers. Hence, the solution for the
nonlinear process is a spatially harmonic wave with a well-
defined wavenumber kg = 2ko. The generated SH wave
now has a time-varying envelope (in analogy to conven-
tional SHG in stationary media). Here, phase-matching
conditions will depend on the temporal frequencies of the
fundamental and SH modes, as we show below for PTCs.
For additional discussion on boundary conditions in time-
varying media, see Supplementary Material.

For this reason, throughout this work, we consider
spatially homogeneous initial conditions with no spatial
boundaries. The medium is stationary until the moment
t =0, then a PTC is established by modulating the
refractive index periodically in time, n(t) = ny + n;(¢),
with a temporal period T, such that n(¢) = m(t+ 7).
The modulation stops after N cycles, at t = NT, such that
N is large (at least N = 20), as sketched in Fig. 1a. Due to
our spatially homogeneous boundary conditions, we refer
to the fundamental and SH modes by their well-defined
wavenumbers: k, 2k.

-
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Fig. 1 Harmonic generation in a nonlinear PTC. a Sketch of the system. A wave with wavenumber k enters a nonlinear spatially—homogeneous
PTC. The nonlinearity generates a second harmonic wave, with wavenumber 2k. b Band structure of a linear PTC. In blue is the real component of the
Floquet frequency we(k), and in red is the imaginary component. The regions with a gray background in b are the momentum gaps. The stars with
different colors represent different choices of momentum for the fundamental and second harmonic signal: Orange—phase-matched process
between band modes. Green—phase-mismatched process between band modes. Purple—phase-mismatched process with the fundamental in a
band and the second harmonic in the gap. Yellow—phase-mismatched process with the fundamental in the gap and the second harmonic in
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Following the modulation defining the PTC, the EM
waves in a linear medium have the form of Floquet
solutions (See Supplementary Material for full derivation):

= u(t)e @ik . Ey (7, £) = y(t)el@r(2R=2k)

(1)

Ek(Z, t)

The solutions are plane waves, multiplied by periodic
functions with the periodicity of the modulation, 7, i.e.,
v(t) =v(t+ T),u(t) = u(t + T). The frequencies wr(k),
wr(2k) are the Floquet frequencies, determined from the
band structure of the PTC (Fig. 1b) similar to the
momentum vector of Bloch modes in spatial crystals. The
Floquet frequencies differ from the true frequencies of a
time-harmonic mode in a stationary medium that are
derived from the static refractive index of the material. In
the absence of nonlinearity, u(¢) and v(¢) are decoupled
from each other.

For the nonlinear case of SHG, the electric field must
satisfy the nonlinear wave equation

o%e(t) ’E  _0e(t)oE ?
2r _ gL o 9 (1,22
V*E /4( 32 E+s(t)at2+2 o at)Jr/,tatz()( E?)

(2)

Under the non-depleted pump approximation for the
fundamental mode with wavenumber &, the amplitude of
the fundamental mode, A, does not depend on time,
hence the solution is of the following form:

= Au(t)erRR) ¢ e En(z,t) = B(t)v(t)e@rR2k) ¢ e

(3)

Ek(Z, l)

Next, we substitute Eq. 3 into Eq. 2 and employ the
slowly time-varying envelope approximation |B| <
|wrB|, |VB|. We also keep only spatially synchronized
terms containing the wavenumber 2k. Thus, we obtain the
following result, where we introduce a new function f ()
and the constant Aw, representing the phase mismatch:

o Ui+ i — 203 (k)u? + diop (k)uil

B=—a%f (t)e™; f()% eV + o (2K)V) + &v

(4)

Aw 2 0p(2k) — 20p(k)

Since f(¢) is composed of functions with time periodi-
city T, we expand it into a Fourier series. Defining Q= 21,
f@)=>",c7 ane™™, we obtain the amplitude of the
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second harmonic as a function of time ¢
2.2) l(QI’l Aot _ 1
B(t) = —2iA%y 5
0=20% (S5 ) O

The solution for the SH field is as follows:

2 (2) (On-bolt 1 (2k)t-2k
Eqy(t) = —2iA%y Z‘l” <W> V() erCRE=2k) oL g o

(6)

|B(¢)|* is related to the amount of energy transferred
from the fundamental field (pump) to the SH field. In the
conventional SHG derivation in stationary nonlinear
media, the efficient SHG requires phase-matching Ak =
2k(w) — k(2w) = 0. In that case, the relative phase
between the fundamental and the harmonic field is con-
stant 7, which is the optimal phase for the transfer of
energy, and therefore energy is constantly transferred
from the fundamental to the harmonic. In our case, if
Re(Aw) = Re(wr(2k) — 2wp(k)) = nQ for some integer #,
we obtain the analogous phase matching condition in the
PTC, where the oscillations &(¢) enable this Floquet phase
matching condition.

We note that phase matching in a PTC depends on the
Floquet frequency, and not on the true frequency w(k)
derived from the refractive index in a stationary medium.
The Floquet frequency can be controlled by changing the
modulation and through the corresponding band struc-
ture of the PTC that can be engineered to phase-match a
selected second harmonic (see Fig. 1b for several choices
of fundamental and second harmonic momentums for a
given PTC’s band structure).

More exotic cases arise when one or both momenta &,
2k are within the momentum gap of the PTC and the
Floquet frequencies have an imaginary part. The linear
PTC modes in the momentum gap have two branches—
one with exponentially growing modes (Im(wr) >0), and
another with exponentially decaying modes (Im(wr) < 0).
When we examine the form B(¢), we see that the envelope
grows exponentially in time, if Im(Aw) < 0, and decreases,
if Im(Aw) >0. In those cases, even if Re(Aw) = 0,i.e, we
have phase mismatch, the dominance of the exponential
growth overpowers any oscillations caused by the phase
mismatch, and the SH process becomes efficient. Hen-
ceforth we consider four generic cases.

Case |

Both the fundamental and the SH modes are within the
band and their Floquet frequencies are real. In this case, the
outcome is analogous to the conventional case of SHG in a
stationary medium. If phase matching is fulfilled, the
envelope of the SH field is linearly growing in time and the
intensity is growing parabolically (Fig. 2a). If they are not
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Fig. 2 Generic cases of SHG in a PTC. a, b Case I: intensity of the SH as a function of time, with both k and 2k in the band, with (a) and without (b)
phase-matching, respectively. When the process is phase-matched (a) the SH intensity grows parabolically with time, whereas for a phase-mismatched
process (b) the SH intensity oscillates in time. ¢ Case II: phase-mismatched SHG with the SH in the momentum gap: The SH grows exponentially
despite the phase mismatch. The vertical axis is logarithmic. d Case IlI: phase mismatched SHG with the fundamental in the gap: both the fundamental
and second harmonics grow exponentially, despite the phase mismatch. The second harmonic grows with an exponential rate twice as large as the
first harmonic, even though its mode belongs to the band. e, f Case IV: phase mismatched SHG with both fundamental and SH in the gap, where the
dominant exponent is the exponent of the fundamental mode (e) and where the dominant exponent is the exponent of the SH mode (f)

phase-matched, the intensity of the SH oscillates periodically
with periodicity 27/Aw, and the power is periodically
transferred to and from the pump to the SH (Fig. 2b).

Case Il

The wavenumber of the fundamental mode, &, is within
the band while the SH wavenumber 2k is in the
momentum gap. Since the PTC’s band structure allows
for modes with either negative or positive complex Flo-
quet frequencies, this case has modes with Im(Aw <0 or
Im(Aw) >0. Consider first the mode with Im(Aw)<0
which implies Im(wp(2k)) < 0, giving rise to exponentially
growing B(t). In this case, despite the growth in B()
representing energy transfer from the pump to the SH,
the process is also coupled to the exponentially decreasing
mode in the momentum gap, and overall, this mode does
not experience exponential growth and does not become
a dominant mode. In the other case, where the process
begins with the mode with Im(wp(2k)) >0, with decaying
power transfer from the fundamental to B(t), the process
is coupled to the growing gap mode of the PTC. In reality,
one cannot generate a case when only the decaying mode
exists, because the interaction with the fundamental wave
will always mix the two states. Therefore, the SH mode
always has the seed it needs to exponentially grow, and

the long-term dynamics are dominated by the exponen-
tially growing mode of the SH residing in the momentum
gap of the PTC (Fig. 2c).

Case lll

This case is the opposite of Case II. Here, the wave-
number k of the fundamental mode is in the gap while the
SH’s wavenumber 2k is in the band. When Im(wp(k)) >0,
B(t) grows exponentially, which implies that the power
transfer from the exponentially growing k mode to the SH
field grows exponentially, with an exponent twice the
exponent of the fundamental mode (Fig. 2d).

Case IV

This last case occurs when both the pump and the SH
are in the momentum gap. In this case, the dominant
exponent is either e/”(?¢r(K) or m(@r(2K) depending on
which one is larger as shown in Eq. (6) (Fig. 2e, f).

Importantly, just like the exponential amplification of
gapped modes in PTCs, the exponential amplification of
the SH signal is not affected by the phase mismatch
because the exponential amplification associated with gap
modes overcomes the phase mismatch. This is seemingly
similar to OPAs, which can also support amplification
without phase-matching. However, this similarity is
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misleading, because in OPAs the amplification without
phase-matching occurs only above a threshold (when the
magnitude of the gain coefficient is larger than the phase
mismatch), whereas here the amplification always occurs,
without any threshold, even for large phase-mismatch.
Moreover, the process here is non-resonant, and it takes
place for every fundamental signal that is in the band gap.

Appearance of higher harmonics

Next, we ask what happens when the second harmonic
signal becomes strong due to the exponential amplification.
We focus on the case where the wavenumber of the fun-
damental (k) is in the gap and the SH (2k) is in the band,
hence the SH is growing at a faster rate than the funda-
mental (Case II). In the conventional SHG process, the
fundamental is depleted when a non-negligible fraction of
its power is transferred to the SH. However, unlike the
conventional SHG, which is a parametric process and its
energy is conserved and the pump is always depleted when
the SH becomes stronger, here, the PTC modulation keeps
driving energy into the system. Consequently, as the SH
gets stronger, we observe a dominant cascading effect:
higher-order harmonics emerge, and they also grow at
exponential rates. For example, a signal with a wavenumber
3k is generated by a sum-frequency process of the funda-
mental and SH. Likewise, a signal with wavenumber 4k is
generated by the sum frequency of the SH signal with itself,
and so on, until we observe high-order harmonics with
wavenumber #nk,, where n is an integer. As an example,
consider the generation of the 4™ harmonic with wave-
number 4k, generated by cascading SHG, where the SH
(2k) arising from SHG of the fundamental and wave-
number k serves as the fundamental for the new y'* pro-
cess. Consequentially, the fundamental signal for the new
process is displaying the same exponential growth as a
gapped mode. Therefore, we expect that the new nonlinear
signal (with wavenumber 4k) will grow with an exponential
rate that is twice the exponent of the generating signal, i.e.,
with exponent e”(4»r(*0)) Qverall, each signal with wave-
number nky is expected to grow at an exponential rate
elmnor(ko)) | even though only the fundamental signal k is in
the momentum bandgap of the PTC as shown in Fig. 3. We
emphasize that the power of all the different harmonics
may become comparable to the power in the fundamental,
yet still—the power carried by the harmonics keeps
growing exponentially without any saturation, drawing
energy from the modulation of the refractive index as long
as the transfer of energy rate to the higher modes is lower
than the rate of the growth of the fundamental harmonic.

The nonlinear cascade of harmonics exemplifies how
the band structure of the PTC changes dramatically when
we introduce nonlinearities. Considering for example a
PTC with one bandgap around &, and a nonlinear coef-
ficient y® 20, in the presence of an EM mode k, we
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expect now all modes with wavenumber nk, to behave as
gapped modes that grow exponentially. This could have
many applications. For example, it could pave the way for
introducing momentum bandgaps at optical frequencies,
by utilizing nonlinear y® or x{® processes, which have
not yet been accessed experimentally, by exploiting non-
linear x* or/and y®) processes.

Discussion

In this work, we studied the generation of a second
harmonic wave in a photonic time crystal and found that
the phase-matching condition depends on the Floquet
frequencies in the band structure of the photonic time
crystal. Recalling that the band structure of a PTC is
shaped by the temporal modulation of the refractive
index, this exemplifies the potential of dispersion engi-
neering in time-varying materials, specifically in shaping
nonlinear processes. Moreover, when one of the inter-
acting waves is associated with a momentum bandgap, we
observe exponential amplification of the second harmo-
nic, followed by a cascade of higher harmonics growing at
a faster exponential rate. The process does not require
phase-matching or a resonance of any kind, and it does
not have any threshold. In fact, in the process of nonlinear
frequency conversion in PTCs, the nonlinearity acts as a
mediator, facilitating energy flow from the modulation of
the refractive index to the various harmonics, effectively
changing the band structure. The cascading effect can
pave the way for new experimental methods to achieve a
momentum bandgap in the optical regime of EM waves.
Moreover, the creation of an exponentially growing fre-
quency comb in this process implies that a nonlinear PTC
can be used to generate ultrashort laser pulses. Physically,
the order of the harmonics generated in this cascading
process can be high and limited only by the material
response (via the value of y(*)) and by the rate of the
modulation of the refractive index. As such, it is possible,
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Fig. 3 Cascaded harmonics generation: intensity of modes with

different wave numbers as a function of time, sampled at the

end of every PTC period. The cascading of the harmonics grows

exponentially, at increasing exponential rates, with no depletion or

saturation, drawing their energy from the modulation that creates the PTC
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in principle, that this could serve as a new process for
High Harmonic Generation in solids.

The concepts presented here examined SHG, but
obviously, they apply to all y® processes, and higher-
order processes (y(*) and higher) can be formulated in the
same way. In the broad context of nonlinear frequency
conversion in time-varying media, several general intri-
guing questions arise. For example, thus far we considered
a fixed value for the nonlinear coefficient y®, but when
the modulation is very strong, the atomic potential is
likely to be affected, and therefore the nonlinearities will
also present time-periodic dependence.

To observe the phenomena predicted here in experiments,
one must first create a PTC at optical frequencies. The main
challenge is that the experimental system should support
exceptionally strong (on the order of unity) modulation of
the refractive index within the timescale of a single optical
cycle, to form a wide enough momentum band gap. Most
known methods for changing the refractive index (such as
the optical Kerr effect, nonlinearities in liquid crystals, or
thermal nonlinearities) are either too weak or too slow.
Nevertheless, the search for mechanisms that can enable fast
and strong changes in the refractive index has recently been
making real progress. A promising avenue in this pursuit
relies on transparent conductive oxides (TCOs). In TCOs,
the refractive index can be changed by order of unity at
specific wavelengths, by optically exciting electrons to higher
energetic states in the conduction band'™'™'7. A recent
experiment demonstrated a refractive index change of
approximately 0.5 in the single-cycle time frame in TCO
samples, with no material damage®. As mentioned, realizing
a PTC requires periodic modulation, with the period of the
order of a single cycle. Thus, the ultrafast change in the
refractive index must be followed by ultrafast fast relaxation,
and the process should be repeated at least 3-5 times to
form a band structure. This requirement, in itself, creates a
problem, because the relaxation process in semiconductors
typically relies on interaction with phonons (a relatively slow
process of ~200 femtoseconds). However, recent work has
presented evidence for an ultrafast relaxation mechanism
(~10 femtoseconds) in TCOs® that can enable periodic
modulation of the refractive index on the few-femtosecond
timescale. Thus, using TCOs or similar mechanisms is a
promising route to facilitate the creation of optical PTCs.
Furthermore, TCOs have been shown to display strong
nonlinearities>>>*"*2, From there, in order to observe the
nonlinear interaction in the materials with the second-order
nonlinearity, one could conduct the experiments suggested
here. For centrosymmetric materials, one can focus on the
dynamics of third-order nonlinear processes (third harmonic
generation), which can be analyzed in a similar fashion.

The recent experimental works have also looked at
nonlinear processes in TCOs, when the sample is modu-
lated with a single modulation®*™*°, In those experiments,

Page 6 of 9

either second harmonic or third harmonic generation was
measured in different TCO materials and in various
experimental configurations. Also, these works explored
different effects of the time modulation on the properties of
the nonlinear processes, such as the enhancement (or
suppression) of the second harmonic (or third harmonic)
wave, the dependence of the harmonic intensity on the
intensity of the fundamental wave, etc. The most surprising
experimental results have to do with the latter. Namely, the
experiments revealed that the intensity of the higher har-
monic wave scales with the intensity of the fundamental
wave in a totally unexpected fashion. This result presented
in several studies with different materials and configura-
tions™~*, is not yet understood. One thing is clear: mod-
ulating the TCO strongly affects the nonlinear frequency
conversion process. This raises some additional ideas and
questions: is it possible to induce large changes in nonlinear
coefficients of solid materials (such as TCOs) on the single-
optical-cycle timescale? Would it be possible to induce large
ultrafast changes in the crystalline dipole of solids?

Materials and methods
Transfer-matrix method for nonlinear time-varying media
In order to simulate the SHG process in the PTC, we
develop a variation of the transfer matrix method (TMM)
for time-dependent media. The linear time-dependent
TMM was previously used to describe a medium whose
refractive index is being varied at discrete time steps. At
the time-step of the change, the EM waves experience a
time-interface in which part of the wave is reflected back
in space, experiencing time-reflection, and part of the
wave keeps propagating forward (time-refracted), but
experiencing a phase shift from the time-interface.
Working with discrete time steps, we denote E} .,
the amplitude of the mode of wavenumber k/2k, propa-
gating in the direction 4/ — z in the nth time step. The
electric field in the nth time-step is:

e—i2l<z)

(7)

E'(2) = Re(Ef e +Ef_e ™ + B} e P+ By

Considering EM waves with wavenumbers k, 2k propa-
gating in this time-varying medium, we work with the basis:

;- (8)

At the actual time-interface, we may neglect nonlinear
interactions, since the interface is instantaneous. Hence,
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the transfer matrix is:

m _om
1+;72 1 n; 0
1m —m Lt
T(ny,my) =5— ’ ’ w1 _m
2 . 1+m 1-m
1-2 1+

©)

Where n,, n, are the refractive indices before and after the
time-interface The coupling between the forward and
backward propagating modes results from the time-
reflection and time-refraction from the time-interface.

Between two time-interfaces, the waves are propagating
in a nonlinear medium with a constant refractive index.
The waves accumulate phase from the propagation in the
medium, and are coupled to one another via the nonlinear
interaction.

For a static, homogenous, nonlinear medium, we can find
the coupling between the k, 2k modes by solving the non-
linear wave equations, with the non-depleted pump
approximation. The solution for the SH wave, assuming no
material dispersion (resulting in perfect phase matching) is:

iy

En(t) = el2elt=0)=2py, (1) — AR

T (Exlt0)) (¢ — gg)eele 072

(10)

>
Q
~

P Sl
n

x® is the nonlinear susceptibility in the medium, and #
is the refractive index in the medium. ¢, is some fixed time
at which the electric field is given.

Assuming the fundamental mode k only accumulates
phase, the 2k mode is coupled to the kK mode propagating
in the same direction.

Thus, between two time-interfaces, we propagate the
SH modes in the nonlinear manner:

Ej, =Ee™™ (11)

iv(2)9
ix\"2w
A (12)

Egki _ Eé;lieiiZ(uAt _ (E2;1)2Ate¢i2wm

When At is the length of the time step.

The complete algorithm, given #;, the modulated
refractive index sampled at discrete time steps of length
At, goes as follows:

For every time step i, updating the electrical field vector
defined in Eq. 8:

1. Nonlinear propagation according to Egs. 11 and 12.

2. Updating the vector after the time-interface using

the transfer matrix defined in Eq. 9.
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Overall, the complete propagation from timestep i to
timestep i 4 1 is:

Eit Ei _emiont

£ Ei e .
kot ; .. aC

g = T(ni,nit1) i ottt _ 20 (EL Yateon |95
ok 2%~ 2 - i
; o P20 2

Ey . Elz,(_+e‘2"A’ _ U(nz ° (B, )’ A 20l

;

The TMM is an efficient tool that can be extended to
study other frequency-generation processes in PTCs, such
as third harmonic generation. However, using the TMM
approach, the user must decide in advance what will be
the modes in the system (what will be their wave-
numbers), and the method is efficient for the small
number of modes. Therefore, to simulate wave packets, or
cascading effects that include many different spatial
modes, we turn to the finite-difference time-domain
(FDTD) method, which we discuss in the next section.

FDTD simulations of nonlinear, time-varying media

Before proceeding to the FDTD simulations, we note that
both the analytic part (described in the Results section of the
main text) and the calculations based on the transfer matrix
method (described in the “Transfer-matrix method for
nonlinear time-varying media” section of the “Methods”), use
the non-depleted pump approximation, which is standard in
nonlinear optics. However, in the current section—where we
simulate the nonlinear frequency conversion process using
EDTD, we solve the full coupled equations, namely, we also
account for the depletion of the pump (the wave at the
fundamental frequency). The results of the simulation are
presented in Fig. 3 in the main text and discussed there.

For simulating the cascading effect, we develop a new
the FDTD method. Consider EM waves propagating in
the £z direction, with their electric ﬁel_d} in the x girection
and magnetic field in the y direction: E = E.%, H = H,j.
Working with the staggered grid method, for our sampled
field, the notation is:

Et=n At,z=k Az)2E, (14)

H,(t= (n + %) Atz = <k + %) Az)&H, 10 (15)
From Maxwell equations:

aai - = *M% (16)

aa—hz{y =— %D(t) (17)
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And the relation:

D(t) = e E(t) + yDE? (18)

We update the electric and magnetic fields in the fol-
lowing manner:

At 1
Hypigpery = Hygpony =50 e (Eng+1 — Eng) (19)
0
At 1
Ensrk =Enk =5 E( witkrs —Hypn) o (20)
n,

To simulate a time-varying and nonlinear medium, we
use &, that varies in time and space:

sn,k - 85,5”9” +X(2)En,k (21)

The first term, /"¢, is a time-dependent function, for
example g + cos(Qt), representing the PTC modulation
of the linear refractive index. The second term, )(Q)E,,,k
represents the nonlinearity of the susceptibility, which is
affected by the electrical field.
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