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Abstract

Light-field imaging has wide applications in various domains, including microscale life science imaging, mesoscale
neuroimaging, and macroscale fluid dynamics imaging. The development of deep learning-based reconstruction
methods has greatly facilitated high-resolution light-field image processing, however, current deep learning-based light-
field reconstruction methods have predominantly concentrated on the microscale. Considering the multiscale imaging
capacity of light-field technique, a network that can work over variant scales of light-field image reconstruction will
significantly benefit the development of volumetric imaging. Unfortunately, to our knowledge, no one has reported a
universal high-resolution light-field image reconstruction algorithm that is compatible with microscale, mesoscale, and
macroscale. To fill this gap, we present a real-time and universal network (RTU-Net) to reconstruct high-resolution light-
field images at any scale. RTU-Net, as the first network that works over multiscale light-field image reconstruction,
employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong
generalization capability. We comprehensively assessed the performance of RTU-Net through the reconstruction of
multiscale light-field images, including microscale tubulin and mitochondrion dataset, mesoscale synthetic mouse neuro
dataset, and macroscale light-field particle imaging velocimetry dataset. The results indicated that RTU-Net has achieved
real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300 um x 300 um X 12 pm
to 25 mm x 25 mm x 25 mm, and demonstrated higher resolution when compared with recently reported light-field
reconstruction networks. The high-resolution, strong robustness, high efficiency, and especially the general applicability
of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging.

Introduction

Owing to the snapshot volumetric acquisition, light-
field imaging technique has successfully advanced the
development of three-dimensional measurement, ranging
from microscale’ to macroscale light-field imaging®.
These light-field imaging systems have shown the ability
to capture detailed and comprehensive images of struc-
tures and functions?®, including neuroimaging in the bio-
logical domain® and flow dynamics imaging in the
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mechanical domain®. In particular, high-resolution volu-
metric imaging of fluorescent protein-labeled neurons of
zebrafish larvae and worms has been demonstrated by
light-field microscopy®. In addition, the combination of
light-field camera and particle imaging velocimetry (PIV)
technique has enabled flow speed calculation for complex
flows in three dimensions, such as vortex ring®, and
shock-boundary interaction flow’. Although light-field
imaging systems have been effective in these applications,
the limited spatial resolution hinders its widespread
adoption at the desired level of accuracy.

Multiple methods have been proposed to improve the
spatial resolution of light-field modality through hardware
system innovation and image reconstruction software
optimization. System innovation approaches can enhance
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resolution®, but the increased complexity and cost una-
voidably hinder the application of light-field technology.
Current light-field image reconstruction methods mainly
rely on convolutional neural network (CNN) based deep
learning approaches, such as VCD-Net®, HyLFM-Net’,
and VSLEM'. The results obtained by these networks
tested on various currently available public datasets
(Table S1) leave much to be desired (Table S2). VCD-Net
can realize high-speed (200 Hz) 3D imaging of neuronal
activity, cardiac blood flow, and other rapid biological
processes, but it employed a typical U-Net structure''
after the data was pre-upsampled through stacked
Conv2D and PixelShuffle’?, which can induce noise
amplification and additional cost during computation.
HyLFM-Net utilized ConvTranspose rather than Pixel-
Shuffle during upscale sampling, which impaired resolu-
tion by partially cutting off high-frequency signals. Instead
of using pre-upsampling, HyLFM-Net used progressive
upsampling, making the network more complex for
training. The 3D residual blocks in HyLEM-Net consisted
of Conv3D, which can reduce the computation efficiency
when compared to the conv2D used in VCD-Net. HyLFM
has demonstrated high-quality 3D reconstruction through
imaging of zebrafish neural activity and cardiac dynamics,
achieving volume imaging rates up to 100 Hz. However,
HyLFM-Net employed plenty of 3D convolution opera-
tions in the network, which can lead to an increase in the
number of network parameters and training time. VsLFM
took a new route to improve the spatial resolution of
light-field images. Instead of working on the reconstruc-
tion procedure, VsLFM focused on the processing of raw
light-field images and generated multiple-view data
through virtual scanning. Thus, VSLFM solely improved
the resolution of the raw light-field image, therefore, its
3D volume reconstruction still involved the time-
consuming iteration procedure, whose efficiency was
thousands of times lower than that of VCD-Net and
HyLFM-Net. VsLFM has achieved near-diffraction-
limited high-resolution with strong robustness to optical
distortion and sample motion, which has been demon-
strated in the imaging of zebrafish hearts, Drosophila
brains, and mouse livers. Although VsLFM has made
important progress in improving the resolution and
applicability of LEFM, its training highly relies on high-
quality data from scanning light-field microscope, which
was not widely available.

Although all these reported methods improved the
spatial resolution of light-field images, they have two
common drawbacks. First, all these methods only
demonstrated their feasibility in microscale image
reconstruction and their performance on large scale
remained unknown. The limited application of these
networks severely prevented light-field imaging from
benefiting more research domains and prohibited the
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development of interdisciplinary research. For instance,
light-field PIV is a commonly used technique for flow
dynamic measurements, such as microfluidics experi-
ments in the biological domain and macroscale water
tunnel experiments in the mechanically related domain.
When the same network being applicable to both scales of
light-field image reconstruction, a fair comparison of flow
phenomena in both the microfluidics experiment and the
water tunnel experiment can be established. This would
result in a collaboration between the two domains to
explore the flow mechanism at different scales. Second, all
these reported methods employed CNN-based networks
that relied on traditional loss functions for network
training. Typically, the design of traditional linear loss
functions requires a specific optimization target defined
for CNN to minimize the difference between predicted
and ground truth images, which involves averaging all
plausible outputs and thus produces blurring results'?.
Specifically, when minimizing the Euclidean distance to
its nearest neighbor, traditional loss function would make
the optimization stay or vibrate at the average of nearby
source samples, thereby leading to blurry patches'*'®.
Additionally, because traditional linear loss functions do
not allow learn-to-adapt, determining a proper linear loss
function was a low-efficiency and time-consuming pro-
cedure, and a lot of manual effort was required to fine-
tune the loss function, making the whole training process
low efficiency'®. Therefore, the optimization of CNN-
based networks was a lengthy procedure. In contrast,
generative adversarial networks (GANSs) offer an adaptive
nonlinear loss function, which allows adaptation and
tunability according to the data during the training pro-
cedure'’. This enabled GANS to be used in plenty of tasks
that would require different kinds of loss functions in
conventional methods'®'®, thereby significantly reducing
the time needed for loss function determination. By
cooperating with a generative model, GAN can be readily
customized for applications that otherwise require dif-
ferent types of loss functions. Though GAN has been
widely utilized in various fields, its potential in high-
resolution light-field image reconstruction remains
unexplored.

Here, we introduce a novel approach called Real-Time
and Universal network (RTU-Net), which can reconstruct
3D high-fidelity content from 2D light-field raw data at
uniform spatial resolution improvement over a broad
range of applications across different dimensions, ranging
from microscale to macroscale. Currently, RTU-Net is the
only network that can generalize the weights for multi-
scale light-field reconstruction and has revealed strong
robustness when the network was trained on data at a
fixed scale but tested on data at different scales or from
variant imaging sources. Specifically, we tested the per-
formance of RTU-Net with microscale datasets including
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tubulin and mitochondrion, mesoscale synthetic mouse
neural imaging data, and macroscale light-field PIV data.
Results proved that RTU-Net has enabled faster and
higher resolution light-field image reconstruction when
compared to existing end-to-end networks (Table S3).
Additionally, it eliminated the time-consuming iterations
involved in the reconstruction process when compared to
physics-based approaches. Due to its multiscale recon-
struction capability and high accuracy, RTU-Net will
significantly enhance the advancement of volumetric
image reconstruction.

Results
Principle of RTU-Net

RTU-Net takes raw light-field image as the input and
outputs reconstructed high-resolution volumetric image.
RTU-Net is trained using a GAN, which has one gen-
erator and one discriminator, both of which are CNN
networks and are trained and optimized through loss
function iteratively. Before training, we create the training
dataset by converting the high-resolution 3D images
(obtained synthetically or experimentally) of stationary
samples into 2D light-field images using the wave optics
model of LEM (Fig. 1, “Methods” and Fig. S1)’. The light-
field image is subsequently organized into sub-images of
varying views, which are then fed into the generator. The
generator initially extracts the characteristics of the sub-
images and subsequently improves the resolution through
a combination of convolution and up-sampling strategies
(Figs. S2 and S3). Following that, spatial information
obtained from multiple angles is combined using cascaded
convolutional layers to produce 3D image stacks with
varying depths, resulting in the generated volume (fake).
The RTU-Net is trained using three strategies of optimi-
zation. One optimization method involves training the
discriminator by alternating between using genuine and
fake data as input. The goal is to enhance the dis-
criminator’s ability to accurately distinguish between fake
and real data. When real (fake) data is provided as input,
the discriminator is optimized to accurately identify the
input as 1 (0). The second optimization process enhances
the performance of the generator by utilizing BerHu and
multiscale structural similarity index measure (MSSSIM)
loss functions. This process utilizes the ground truth
(real) and the output volume (fake) as the basis for opti-
mization, aiming to push the generator to produce a
volume that closely resembles the ground truth volume.
The last optimization improves the generator by using the
discriminator as the basis for optimization. When the
artificially generated volume produced by the generator is
fed into the discriminator, the discriminator will output a
value ranging from O to 1. This value is then passed back
to the generator, which uses it to improve itself by
minimizing the binary cross-entropy (BCE) loss function
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to generate a volume that matches the ground truth.
Through iterative minimization of these loss functions,
the network is progressively tuned until the discriminator
is unable to distinguish between the ground truth and the
artificially generated volume provided by the generator.
At this point, the training process comes to a halt. Finally,
the network that has undergone training is employed to
perform predictions (Fig. 1b). We have demonstrated the
feasibility of RTU-Net in the reconstruction of high-
resolution light-field images in multiple applications over
different scales, including microscale (~ 300 um) struc-
tural and functional data, mesoscale neuroimaging data
(~ 1 mm), and macroscale (~ 3 cm) PIV dataset.

RTU-Net demonstrated real-time superior resolution in
reconstructing microscale tubulin with different densities
and diameters

We first verified the feasibility of RTU-Net in tubulin
imaging and compared the performance of RTU-Net with
other existing methods, including physics-based methods,
such as VSLFM! and light-field deconvolution (LED),
and end-to-end networks, such as HyLEM-Net’ and
VCD-Net®. For consistent comparison, we utilized
the high-resolution 3D data reconstructed by scanning
light-field microscopy (sLEM)'’ as the reference
(Figs. 2a and S4) and generated the training and validation
dataset by projecting the high-resolution 3D data into 2D
light-field images. All networks were evaluated using the
same new samples that were not part of the training or
validation dataset. The results showed that RTU-Net
successfully reconstructed the synthetic tubulins with the
highest peak signal-to-noise ratio (PSNR), lowest learned
perceptual image patch similarity (LPIPS), and mean
squared error (MSE). The average PSNR of RTU-Net
reached 41.22 dB (Figs. 2b and S4), while the value for
other methods was lower than 40 dB. The average LPIPS
of RTU-Net reached 1.882 x 10~° (Fig. S5a), whereas the
LPIPS of other methods was higher than 2.4 x 10~°. The
average MSE of RTU-Net reached 8.373 x 10~ (Fig. S5b),
which was much lower than the reconstruction results of
the other methods. In addition, RTU-Net provided the
lowest mean value (0.0011) for the difference map of
tubulins (Fig. S5c), which was much lower than other
methods (0.0035-0.0006). To further compare the
reconstruction results, the 3D volumes reconstructed by
all five methods were maximum intensity projected (MIP)
onto the x-y and x-z planes, respectively (Figs. 2c, S4, and
Video 1). The MIP images demonstrated that RTU-Net
reconstructed synthetic tubulins with minimal artifacts. In
contrast, VSLFM incorrectly recreated multiple non-
existent structures (highlighted with blue lines), and
both HyLFM-Net and VCD-Net failed to recover the
features labeled with green lines. In addition, due to
the low resolution, the image produced by LFD presented
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the tubulin structure in a thicker manner than the actual
structure. The outstanding performance of RTU-Net was
further confirmed in the enlarged view of the MIP image,
which clearly depicted the artifacts and ghosting produced
by other approaches (Fig. 2d). Subsequently, we per-
formed a frequency analysis on images reconstructed by

all the methods. Our findings revealed that the Fast
Fourier Transform (FFT) of the image reconstructed by
RTU-Net exhibited a spectrum that closely resembled
that of the ground truth (Fig. 2e), with a structural simi-
larity index measure (SSIM) value of 0.8455 when com-
pared to the spectrum of ground truth. In contrast, the
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Fig. 2 The performance of RTU-Net on synthetic tubulins. a Orthogonal MIPs of 1-um-diameter synthetic tubulins, acquired by sLFM with a x63/
1.4 NA oil-immersion objective in ideal imaging conditions. b PSNR of results obtained by RTU-Net, VsLFM, HyLFM-Net, VCD-Net, and LFD. The center
line represents the median, the box limits represent the lower and upper quartiles, and the whiskers represent 1.5-fold the interquartile range, n = 61.
¢ MIPs obtained by RTU- Net VsLFM, HyLFM-Net, VCD-Net, and LFD trained on the same type of sample. Blue and green lines label the defects of the
reconstructed images. d The enlarged view of images for ground truth, RTU-Net, VsLFM, HyLFM-Net, VCD-Net, and LFD. e The Fourier transforms of
the whole FOV image for different methods. The SSIM values between the FFT of the ground truth image and the FFT of each method are displayed.
f The normalized intensity profile of the blue line labeled feature in (d). g The curves of reconstruction time versus frame levels applied for different
FOV (inset: an enlarged part of the graph). h Bar chart of reconstructed time on different FOVs. The loading of training weights for the first frame takes
time. Two comparisons are conducted, without the first frame (upper row) and with the first frame (bottom row). Scale bar: 10 um

spectra of the other methods were noticeably distinct
from that of the ground truth, with SSIM values much
lower than that of RTU-Net. To further compare the
specific details reconstructed by different methods, we
chose one of the reconstructed proteins and conducted a
normalized intensity analysis. The findings suggest that
the structure reconstructed by RTU-Net had an intensity
distribution that was closest to that of the ground truth
(Fig. 2f), while the intensity distribution obtained by other
methods either failed to resolve the peak or revealed
redundant features due to the poor resolution.

We also tested the performance of RTU-Net in the
reconstruction of tubulin with variant densities and dia-
meters, and compared results with that of other end-to-
end networks, including VCD-Net and HyLFM-Net (Figs.
S6 and S7). For the test of densities, the images of tubulin
with 5 densities were tested. The results indicated that the
SSIM between the output of each network and ground
truth decreased as the density of tubulin increased, but
RTU-Net attained the best results when the density
remained constant (Fig. S6). For the test of diameters, we
reconstructed 10 pm-diameter synthetic tubulins in
addition to the 1 pm-diameter structure with all networks.
Quantitative analysis revealed that the Pearson correlation
and SSIM of RTU-Net were close to 1, and the PSNR of
RTU-Net was as low as 35 dB, which was much better
than other methods (Fig. S7).

We then quantified the prediction speed of RTU-Net for
volumes with sizes ranging from 35 x35x12pum® to
210 x 210 x 12 yum?, using 16 frames of images for each
test. The results showed that the prediction time of the
first frame increased from 0.38s (35 x 35 x 12 pmg) to
1.56 s (210 x 210 x 12 um?) as the size increased. However,
the prediction time required after the prediction of the
first frame was stable at ~0.004 s, with minimal relation-
ship with field-of-view (FOV) (Fig. 2g and h). The 0.004 s
prediction speed equals 250 Hz volume rate, enabling
RTU-Net for real-time light-field image reconstruction.

RTU-Net demonstrated superior resolution in
reconstructing microbeads

We then verified the feasibility of RTU-Net through the
reconstruction of microbead with a diameter of 100 nm.

Results demonstrated that RTU-Net obtained the best
resolution among all the tested networks (Fig. S8). Spe-
cifically, RTU-Net accurately resolved a small particle that
was invisible for other methods (Fig. S8a, bottom right);
RTU-Net was also the only network that distinguished
two closely located (199 nm) particles (yellow arrow) (Fig.
S8b), clearly showing two peaks in the profile of the beads.
Quantitatively, RTU-Net attained 341.7 + 60.65 nm and
271.5+48.91 nm in axial and lateral full width at half
maximum (FWHM), respectively, which were the best
resolution among all the methods (Figs. S8¢c and S9). In
terms of reconstruction efficiency, though VsLFM
obtained a lateral resolution comparable to RTU-Net, the
reconstruction time of VSLEM (~1600s) was severely
longer than that of RTU-Net ( ~ 0.004 seconds after the
first frame) (Table S4) when tested in our server (Table
S5). Considering both resolution and efficiency, RTU-Net
is the best against all other reported networks for light-
field reconstruction.

RTU-Net demonstrated strong generalization ability under
different microscale training samples

Generalization ability is critical in the application of
deep learning in biological sample reconstruction, parti-
cularly in cross-sample experiments with diverse data.
Collecting large datasets that cover a wide range of bio-
logical phenomena, such as specific types of cells in dif-
ferent physiological and pathological states, is time-
consuming and extremely difficult. Therefore, develop-
ing a network that can maintain constant performance
across the reconstruction of different biological samples is
highly necessary. Previously reported networks, such as
VCD-Net and HyLFM-Net, have been testified for weak
generalization ability due to poor adaptation of the loss
function and network structure'’. Although later reported
VsLFM improved generalization ability, the iterative
computation required for volumetric reconstruction
prohibited it for rapid and instant imaging. RTU-Net has
the capability to surpass all prior deep learning methods
in terms of generalization for light-field image
reconstruction.

In order to validate the exceptional effectiveness
of RTU-Net, we conducted a comparative analysis of
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Fig. 3 The generalization ability of RTU-Net with different training samples. a The ground truth MIP of a fixed L929 cell with mitochondria,
acquired by sLFM with a x63/1.4 NA oil-immersion objective in ideal imaging condition. The Fourier transform for the entire field of view is shown in
the bottom right panel. The magnified view of the purple area is displayed at the top right panel. b MIPs of a fixed L929 cell with mitochondria
reconstructed by VsLFM and LFD. The corresponding Fourier transform and enlarged views are shown at the bottom of each panel. ¢ MIPs from a
fixed L929 cell with mitochondria reconstructed by RTU-Net, HyLFM-Net, and VCD-Net. These neural networks were trained on different samples,
including mitochondria, membranes, and tubulins. The Fourier spectrum and the enlarged view corresponding to each panel are shown at the
bottom. d SSIM of mitochondria obtained by RTU-Net (trained on mitochondria), HyLFM-Net (trained on mitochondria), VCD-Net (trained on
mitochondria), RTU-Net-Net (trained on membrane), HyLFM-Net (trained on membrane), VCD-Net (trained on membrane), RTU-Net (trained on
tubulins), HyLFM-Net (trained on tubulins), VCD-Net (trained on tubulins), VsLFM and LFD. The positive values indicate that the beveled method has a
higher SSIM compared to the horizontal method, whereas the negative values indicate the opposite. Scale bar:10 um

RTU-Net, VsLEM, VCD-Net, HyLFM-Net, and LED using
cell imaging techniques. Specifically, we focused on the
mitochondria, which played a crucial role in respiration
and cell signaling pathways, and the cell membrane,
which was essential for energy production and signaling
processes within the cell. Hence, volumetric and high-
resolution reconstruction of mitochondria and mem-
branes is highly wanted to investigate cellular bioener-
getics and cell signaling. In this test, the mitochondria and
membrane reconstructed through scanning light-field
microscopy (sLFM) were used as the ground truth (Figs.
3a and S10a and Slla), and then the same sample was
reconstructed through several methods such as physics-
based networks, i.e, VsLEM, and LED, and end-to-end
networks, i.e, RTU-Net, VCD-Net, HyLFM-Net. Com-
pared to ground truth, images reconstructed by physics-
based methods revealed obvious defects. The image
reconstructed by VsLFM showed aberrations, leading to a
loss of structures (labeled with the purple box); the image
reconstructed by LFD was blurry as a result of low reso-
lution (Figs. 3b and S10 and S11).

We then trained RTU-Net, HyLFM-Net, and VCD-Net
on mitochondria, membrane, and tubulins, respectively,
and tested these networks on mitochondria. When both
the test dataset and the training dataset were based on
mitochondria, all three networks demonstrated good
refactoring performance. However, when these network
models were trained on membrane and tubulin data and
tested on tubule data, the performance of VCD-Net and
HyLFM-Net degraded significantly. In contrast, RTU-Net
achieved consistent results even when the training data
set was changed, suggesting the strongest generalization
ability over other networks (Figs. 3c and S11f).

To provide a clearer quantitative assessment of the
performance of each method, we calculated the SSIM
between ground truth and the reconstructed volumes
obtained by each method, respectively. We arranged these
methods based on the order of beveled and horizontal
edges (Fig. 3d), and subtracted the SSIM of the horizontal
edge from the SSIM of the beveled edge method, yielding
the corresponding value on the heat map. The positive
subtraction result indicated that the SSIM value of the

beveled edge method was higher than that of the corre-
sponding horizontal edge method, and vice versa.
Expectedly, the sample SSIM of RTU-Net trained by
mitochondria was higher (0.07-0.23) than that of all the
other methods. In contrast, SSIM value of VSLFM was
above that of VCD-Net trained solely on tubulins. Again,
this experiment has successfully demonstrated the
superiority generalization of RTU-Net.

RTU-Net facilitated accurate quantitative analysis of neural
activity in microscale zebrafish light-field imaging

We then examined RTU-Net’s performance on the
reconstruction of overtime data, which was the 10 Hz
light-field image of zebrafish larvae brain expressing
GCaMP6. For comparison, we reconstructed the data
with RTU-Net, VCD-Net, and HyLFM, and extracted the
activity of three neurons from the same position for three
networks (Fig. S12). The results showed that the neural
signal obtained by RTU-Net was almost the same as the
true values, while VCD-Net and HyLFM failed to fully
recover the neural activity. This validation successfully
proved the superior dynamic volume imaging capability of
RTU-Net.

RTU-Net demonstrated accurate analysis of neural activity
in mesoscale light-field imaging

LFM is a promising method for neural activity imaging
in small model organisms. To demonstrate the potential
of RTU-Net for mesoscale light-field image reconstruc-
tion, we reconstructed structural and functional neuron
images of mouse brain at mesoscale. We used a two-
photon microscope (Olympus FVMPE-RS) to acquire the
high-resolution 3D structural image of a mouse brain
labeled by green fluorescence protein and then back-
projected the two-photon volume into a light-field image.
Following that, we reconstructed the light-field image
with RTU-Net and the conventional method and com-
pared the reconstructed results with the two-photon
image (ground truth). The results indicated that RTU-Net
has recovered a volume comparable to ground truth
(Fig. 4a top and Video 2), and can obviously resolve soma
at a depth of 150 um with more elaborate detail than LFD
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\.

Fig. 4 RTU-Net performance on in vivo two-photon imaging data. a 3D rendering static volumes and enlarged MIPs of neurons at a depth of
150 um in mouse cortex, obtained by OLYMPUS cellSens Dimension (left), RTU-Net (middle), and LFD (right). b Decorrelation functions and the
estimated normalized cut-off frequency k. for ground truth, RTU-Net, and LFD. Gray curves represent decorrelation functions with high-pass filtering;
green curves represent the decorrelation function without any high-pass filtering; vertical black lines represent the cut-off frequency. ¢ Comparison of
dynamic volumetric light-field reconstruction methods and ground truth. Simulated mouse primary visual area V1 ground truth volume

(depth = 0 um) containing neurons, blood vessels, and neuropil (left). RTU-Net reconstructed volume (right). d Neuronal activity traces corresponding
to circles in (c). e Simulated ground truth volume (depth =0 um) only containing neurons (left) and the RTU-Net reconstructed volume (right).

f Neuronal activity traces corresponding to circles in (e). Scale bar: 20 um for (a) (top), (¢, ), and 50 um for (a) (bottom)

(Fig. 4a bottom), allowing accurate localization of soma
(Fig. S13). We further confirmed the superior resolution
of RTU-Net by quantifying the cut-off frequency®®. We
input 3D volume subjected to a total of 10 high-pass fil-
ters (from weak to strong filtering) and then obtained the
normalized cut-off frequency (k. (Fig. 4b) across all
depths, which was 0.5741 for RTU-Net, but was 0.4946 for
LFD, indicating higher resolution of RTU-Net.

We then tested RTU-Net through simulated mesoscale
functional neural imaging of brain activity reported by
nuclear-confined calcium indicator GCaMP6s*"**. Using
the method reported by NAOMi**>, we conducted a
simulation of two distinct types of mouse brain cortex,
with a volume acquisition rate of 10Hz. One of the
simulations included neurons, blood vessels, and neuropil
in the visual 1 area, whereas the other simulation just
included neurons. The ground truth was the simulated
high-resolution image, whereas the light-field image was
generated using back projection. We first reconstructed
the light-field volume with RTU-Net and then extracted
the neural activity (Fig. 4c—f). While the RTU-Net
reconstructed neural image closely resembles the
ground truth image when blood vessels and neuropil were
taken into account during simulation, the extracted neural
activity differed significantly from the ground truth
(Fig. 4c, d). This discrepancy was mostly caused by the
strong interaction of background. However, when the
background was removed from the simulated data, both
the reconstructed neural image and the neural activity of
RTU-Net approximated that of the ground truth
(Fig. 4e, f), successfully proving the efficacy of RTU-Net
for mesoscale light image reconstruction.

RTU-Net provided high-resolution particle localization in
macroscale light-field PIV

Following the previous tests, we examined the perfor-
mance of the RTU-Net in reconstructing macroscale
light-field PIV image®*>**, PIV utilizes a laser to illumi-
nate particles that have been seeded into the flow, then
images these particles’ location with a camera at two
successive frames. The particle images are divided into
small interrogation windows to computationally deter-
mine the displacement of each window through optical
flow or correlation algorithms®>*®, The velocity vectors of

the flow field are then calculated with the displacement
and the time within which the displacement occurs.
Apparently, accurate localization of particle position is
essential to the measurement result. However, recently
emerged LF-PIV has difficulty to preciously localize par-
ticle position due to the poor axial resolution. Considering
the impressive results achieved by RTU-Net in recon-
structing light-field images at both microscale and
mesoscale levels, we are confident that RTU-Net can
enhance the axial resolution for LF-PIV. To demonstrate
the feasibility, we utilized RTU-Net to reconstruct a large-
scale LF-PIV image. We first tested RTU-Net’s perfor-
mance through the imaging of fixed particles. Practically,
five particles (500 pm in diameter) were fixed at an
interval of 5 mm between the x and z planes, and imaged
with a customized light-field camera (Methods) (Fig. 5a).
After reconstructing the light-field image, we extracted
the central position of each particle and used the inter-
mediate particle P3 as a reference to calculate the parti-
cle’s true position (Fig. 5b). Then we quantified the
absolute error of the position tensor between the true
position of the particle and the computed position which
was obtained through the conventional refocusing algo-
rithm and RTU-Net, respectively. The results demon-
strate that the location estimated by RTU-Net exhibited
minimal mismatch (mean: 0.94 mm) in comparison to the
actual position. In contrast, the location estimated by the
conventional refocusing approach® exhibited severe
inaccuracies (mean: 2.3 mm) (Fig. 5¢). We also quantita-
tively computed the absolute error along the axial direc-
tion. The spatial deviation in our approach was 3 to 4
times greater than that of RTU-Net, especially at locations
close to the edge. The main reason for these inaccuracies
was the incorrect reconstruction of positions in the
z-direction. At P2, the deviation was 7 times greater than
that of our method. (Fig. 5¢, d).

To demonstrate the superior performance of RTU-Net
in imaging with LF-PIV, we conducted experiments on
square lid-driven cavity flow (Method). We performed
dynamic imaging over volume size of 90 x 40 x 40 mm®
and 25 x 25 x 25 mm® in the downstream secondary vor-
tex (DSE) when Reynolds number (Re) was 13144 and
3286, respectively, where the DSE was caused by the main
flow separation in the angular region (Fig. 5e). We
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Fig. 5 The performance evaluation of RTU-Net on LF-PIV imaging of square lid-driven cavity flow. a The diagram illustrates an experiment
with five particles placed vertically, spaced apart by 5 mm intervals. b The light-field image captured in (a) is reconstructed by refocusing (green) and
RTU-Net (red), respectively. The central position of each particle is extracted, in which blue is the ideal position. ¢ In Cartesian coordinates, the

distance between the reconstructed particle position x; and the ideal position x.,,, in space is expressed as a tensor /> | (x; —x;dea,)z, d The
histogram shows the absolute deviation between the particle’s actual and ideal location in the z direction from the perspective of x-z. @ Schematic
drawing of setups for square lid-driven cavity flow measurement (upper) and the secondary vortex in the imaging area (bottom). f The flow velocity
vector fields acquired by refocusing, RTU-Net, and Fluent. The central point of the captured secondary vortex is marked by a purple circle, while the
flow separation region is indicated by a blue box. g The streamline visualization derived from refocusing, RTU-Net, and Fluent. h, The velocity error
provided by refocusing and RTU-Net when compared with Fluent-simulated velocity vectors, n = 5000

performed flow validation for the flow with Re = 13144
on different imaging sources (Fig. S14 and Videos 3 and
4), and the results showed that RTU-Net can be applied to
dynamic reconstruction for different imaging sources. For
the flow with Re = 3286, we reconstructed the 3D particle
field using Refocusing® and RTU-Net, respectively, and
then calculated the velocity vectors of the reconstructed
3D particle field for two consecutive frames by the optical
flow algorithm®®* (Fig. 5f). For comprehensive compar-
ison, we also computational simulated the lid-driven
cavity flow with commercial software (Ansys Fluent) as a
reference. The comparison of velocity fields at positions
y=15mm and z=7.5mm indicated that the flow field
computed based on the particle field reconstructed by the
refocusing method differed significantly from the simu-
lated results in the x-z plane, failing to reconstruct the
separation structure (blue boxed labeled region in Fig. 5f)
of the flow. However, the same separation region was
successfully recovered when the particle field was recon-
structed by RTU-Net. We also computed the 3D
streamlines for the imaging volume. Again, the flow
reconstructed using the refocusing approach showed
minimal flow in the z direction due to its poor axial
resolution (Fig. S15a and Video 4), while the flow field
reconstructed by RTU-Net closely matched the Fluent
simulation result (Fig. 5g), revealing a vortex shape. In
addition, the velocity errors of flows also provided the
superior performance of RTU-Net: the velocity vector
reconstructed with particle field produced by RTU-Net
demonstrated a much smaller error than the refocusing
method. Although both velocity vectors revealed similar
errors along the x-direction, they represented significantly
different error distributions along the axial direction. The
velocity errors for the refocusing method (0.3603 + 0.0041
mm/s) reconstructed particle field were 86% higher
than that obtained with RTU-Net (0.1934 + 0.001 mm/s)
(Fig. 5h and Fig. S15b).

We also tested the RTU-Net in vortices generated by a
rotating disk, where the vortex axis was perpendicular to
the axis of the imaging system, so high axial resolution
was required to fully resolve the vortex profiles across the
axis. The vortices were generated by rotating fan blades
driven by a controlled-speed motor, which were

controlled to rotate at low speeds, and the experiments
were performed at three speeds of 9, 12, and 15 rpm (Fig.
S16 and Video 5). Once the flow was stabilized, we irra-
diated the particles with a laser and used a common
industrial camera to photograph the vortices within the
flow region at a frequency of 40 Hz in order to reconstruct
the flow’s three-dimensional structure at a finer level. The
tracer particles used in the experiments were white
polyethylene microspheres with a diameter of 255 um and
a particle concentration of 0.03 particles per microlens
(PPM), and the overall cavity was a 200 x 100 x 150 mm?>
acrylic five-sided box-shaped tank with an actual imaging
area volume of 25 x 15 x 24 mm?®. The imaging area had a
volume of 25 x 15 x 24 mm®. We also used a light-field
camera to capture two consecutive images of the flow field
(Fig. 6a), and then reconstructed the flow field using the
optical flow method and compared the results of the
RTU-Net and refocusing method. Our findings showed
that RTU-Net has successfully resolved the complete
vortex structure from the velocity profiles and the
streamline images, due to the high axial resolution
reconstruction (Fig. 6b, c). In contrast, the refocusing
method cannot accurately estimate the axial distribution
of the particles, leading to disordered flow vectors and
streamlines (as shown in Fig. 6b and c). Therefore, RTU-
Net shows promise as a general tool for studying mac-
roscale flow measurements at high fidelity.

RTU-Net proved strong generalization ability in 5-round
validation and in reconstruction of data from variant
imaging sources and scale

The generalization of RTU-Net is essential for its
application in a broad domain, especially when the data
scale and imaging sources change. We first performed
5-round validation (leave-one-out method) to test the
generalization of RTU-Net (Table S6). Specifically, we
split a dataset of 2000 data into 5 portions, and in each
round we used 4 portions (1600 data) for training and the
other 1 portion (400 data) for validation. The testing
dataset was the same during the 5 rounds and was dif-
ferent from the training and validation data. In the per-
formance evaluation, the values of PSNR, SSIM, LPIPS,
MSE and Pearson correlation have a small gap between
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different rounds and showed high consistency. For
example, PSNR ranged from 39.03 to 40.46 and SSIM
ranged from 0.9738 to 0.9802 with small fluctuation,
indicating that the model’s performance was stable. This
indicated that the model has good generalization ability
and its prediction results have high reliability under dif-
ferent training data sets.

We then further tested the generalization ability of RTU-
Net on data from different sources (Figs. S14 and S17) and
different scales (Fig. S17), both of which were unseen data
to RTU-Net. We have classified our tests into three cate-
gories, one was the test for images from the same imaging
source but at different scales, which was conducted with
microtubulin data, and another was the test for images
from different imaging sources, which was tested with
micro tubulin data and macroscale LF-PIV data. We then
quantified the generalization performance of RTU-Net
with PSNR, SSIM, and LPIPS.

For the same imaging source test, we took 10pum
tubulins as the example, generated the dataset, and
trained RTU-Net at 40x magnification. Then we pre-
dicted the unseen data that was not included in the
training set atlOx, 19.4x, 40x, 63x magnification,
respectively. The results indicated that, even when the

scales varied largely from 10x to 63x, RTU-Net’s PSNR,
SSIM, and LPIPS remained almost constant, demon-
strating that RTU-Net has strong generalization ability for
unseen data at different scales (Fig. S17a—e).

For the different imaging source tests with tubulin, we
generated a dataset with 10 pm tubulin, trained RTU-Net
on imaging source 1 at 40x magnification, and then
predicted the unseen data from imaging source 2 that has
different sizes in microlens. The predicted data was not
included in the training set and was magnified by 63x,
40x, 19.4x, and 10x, respectively. Even when the network
was trained on 40x data from imaging source 1, RTU-Net
was still able to reconstruct light-field image at different
scales from imaging source 2, by providing PSNR, SSIM,
and LPIPS that were only slightly worse than that
obtained with data from imaging source 1. The overall
reconstruction results were still close to the true value
(Fig. S17f-i). This test successfully demonstrated that the
RTU-Net has a strong generalization ability for different
scales of imaging under different imaging sources.

For the different imaging source tests with LF-PIV, we
assessed RTU-Net’s generalization ability on the recon-
struction of LF-PIV images from different imaging sour-
ces in macroscale. Firstly, we used RTU-Net to
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reconstruct LF-PIV images of top cover-driven square-
cavity flow in a 90 x40 x40 mm® transparent square
chamber (Fig. S14a). The Reynolds number of the flow
was 13144. The images were two different imaging
sources at 40 Hz with different microlens sizes (Fig. S14b).
When the network was trained on data from imaging
source 1, it can reconstruct the data from both imaging
sources and can localize particles clearly (Fig. S14c), and
Video 4), demonstrating the strong generalization of
RTU-Net.

Discussion

To summarize, we have demonstrated a deep learning-
based method that can reconstruct high-resolution light-
field images at the microscale, mesoscale, and macroscale
levels. At the microscopic scale, we reconstructed tubu-
lins, mitochondria, and mitochondrial cell membranes
and demonstrated that RTU-Net has the highest spatial
resolution and minimal reconstruction artifacts compared
to reported networks. At the mesoscopic scale, we
reconstructed mouse cortex volume, extracted neurons
for activity trace analysis, and obtained traces that highly
resemble ground truth. At the macroscopic scale, we
performed LF-PIV measurements, and the results showed
that the RTU-Net proved 3 to 4 times improvement in
particle localization resolution and thereby allowing high-
quality reconstruction of flow dynamics. Furthermore,
RTU-Net exhibited superior generalization capability
compared to previous end-to-end networks, and achieved
a reconstruction speed that was 3.2 x 10 times (light-field
image of the same size: 1248 x 1248 pixels) faster than
physical iteration-based reconstruction approaches.
Quantitatively, RTU-Net outperformed conventional
methods in a number of metrics. It provided the best
PSNR, LPIPS, and the lowest MSE among all the com-
pared methods, showing excellent robustness and recon-
struction accuracy (Table S3). As a network that bridges
the reconstruction of light-field images from the micro-
scale to the macroscale, RTU-Net has successfully broken
the limitation of other reported methods that are only
demonstrated in the microscale.

Because one advantage of RTU-Net is that it can be
trained on small datasets, potential overfitting to synthetic
datasets could be prevented by continuously reducing the
data size for synthetic or simple datasets. However, the
current RTU-Net still has some limitations. Firstly, RTU-
Net can only be applied to light-field imaging, which can
be subsequently compensated by appropriate adjustments
to the network structure. However, its underlying
mechanism can be extended to various imaging techni-
ques that utilize iterative or trained computational
approaches for image reconstruction or recovery. Sec-
ondly, for real experimental data with noise, the incor-
poration of a denoising module into RTU-Net might be
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necessary. Thirdly, the training time of the network is
slightly long and the resolution could be further
improved, which can be achieved by utilizing more
powerful graphics processing units and better pre-pro-
cessing/pre-training strategies, respectively. Finally, the
volume size of RTU-Net reconstruction is dependent on
the graphics memory, which can be subsequently solved
by making the model more lightweight or using more
advanced image coding methods.

Ultimately, we expect that RTU-Net can bring new
insights into computational imaging techniques, as it has
successfully demonstrated the ability to reconstruct
multiscale light-field images at high-resolution with con-
stant performance. We envision that RTU-Net provides
more possibilities for us to explore large-scale imaging
that can further enhance our understanding of science.

Materials and methods
Dataset preparation

At the microscale, we prepared samples (64x, 40x, and
19.4x) through two strategies (Tables S7 and S8). First,
when the performance comparison includes VsLFM, we
chose to use the dataset of VsLFM for training for all the
reconstruction methods, considering the difficulty in
obtaining scanning light-field image data due to the lack
of scanning light-field equipment'. In this case, the
ground truth was the volume obtained after processing
scanning light-field images with sLFM. Second, for the
comparison without VSLFM, we used the VCD-LFM
dataset (zenodo.org) for training. At the mesoscale, we
simulated the volume of neural activity in the rat cerebral
cortex with the mesoscopic field imaging parameter 10x/
0.4 NA objective (Table S9) for mesoscopic samples
training®. At the macroscale, we trained macroscopic
particle samples by simulating particles with 0.5x/0.045
NA objective (Table S10).

RTU-Net architecture

Our network was trained to learn the mapping rela-
tionship between the raw light-field image and the 3D
depth images (Y). The problem can be written as:

Y =f(LF;0) (1)

where LF indicated light-field image, 0 represented the
network parameters to be learned through training and Y
represented the function that maps from light-field image
to 3D volume.

The generator (G) of RTU-Net was based on an
encoder-decoder structure. The encoder was a feature
extraction module that took the multi-view sub-images of
the raw light-field images as input and consisted of three
convolutional blocks, including 3 x 3 kernel, batch nor-
malization, and ReLU. The decoder employed the same
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structure as the encoder. It should be noted that we
improved the skip connections. Specifically, we deter-
mined the optimal connection through ablation experi-
ments (Table S11) by simply connecting the even-channel
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when a=3, =1, y=0.5, the network produced the best
performance without blur, so we used this combination in
the weight of our loss function.

The MSSSIM and BerHu losses are expressed as:
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portions of the encoder and decoder in tandem at layers 1
and 3, respectively, which yielded better results than the
traditional skip-connection approach. In addition, to
suppress the edge serrated and checkboard artifacts that
were induced by solely using the bicubic interpolation and
the pixel shuffle checkerboard that existed during train-
ing®!, we combined bicubic and pixel shuffle for sampling
and proved that the artifacts can be significantly reduced.

The discriminator (D) of RTU-Net consisted of five
convolutional blocks and two dense layers. Each con-
volutional block contains two convolutional layers, but
the channel number applied in each layer differs for each
block. For the first block, its layer’s channel number
matched the slice number of the reconstructed volume.
For the other blocks, the channel number used in each
layer was 20 x 2¥, where k was the layer number. A global
average pooling layer was then applied to change the size
of feature maps in each channel. The five convolutional
blocks were followed by two dense layers (1 x1 con-
volution). The first dense layer has 20 hidden units with
ReLU activation function, and the second dense layer used
a sigmoid activation function. The detailed structure of
the GAN module was illustrated in Figs. S18, S19, Tables
S12 and S13.

Loss functions

The training loss of RTU-Net was composed of three
parts: pixel-wise BerHu loss®?, MS-SSIM**, and adver-
sarial loss using the condition GAN (cGAN) structure®®,
In our study, the total loss of RTU-Net was expressed as:

arg min max LGur—Net = aLgertu(G (%), ) 2)
+ BLms-ssim(G(%),¥) + yLeaan(G, D)

where x was the input light-field image, and y was the
ground truth. a, S, y were coefficients. The best
combination &, 8, y was determined through loss function
weighting ablation experiments (Table S14). Specifically,
the performance of each weight was validated with metrics
such as PSNR, SSIM, and LPIPS. Our study indicated that

where G(x);, y; were the 2! downsampled images of x and
Y, respectlvely #y,, was the mean of y, H(x), Was the mean
of G(x), O'y was the variance of y, O'G( ) was the variance of
G(x), and GG(W was the covariance between G(x) and ¥,
G(¥) ) was the intensity value at the pixel (m,n) of
image G(x), and y was the intensity value at the pixel (r,n)
of image ¥, .- @m, B;» y;» Ci were empirical constants®
and ¢ was a constant (set as 0.1). BerHu loss addresses
robustness to outliers in tasks, and MSSSIM loss focuses
on capturing perceptual differences in image similarity
assessment. Unlike the previous loss function that only
recognized overall or average pixel values, the adversarial
loss function emphasized the high-level features of the
image, such as texture features, shape features, and spatial
relationship features at a single pixel scale.

The combination of MSSSIM, which was used to eval-
uate regional/global similarity, and a pixel-wise loss term
(such as L1, L2, Huber, and BerHu), which was utilized to
evaluate the visual quality and preservation of fine details
between restored image and the ground truth, has
demonstrated improved performance in translating and
restoring image®°.

For GAN network, we incorporated an adversarial loss
function. The adversarial loss function was defined as:

Loax(G,D) = S o llog(1 ~ D(G(x)))] + 3 EyllogD(y))]  (5)

Data preprocessing and training procedures

All networks were implemented in Python with the
PyTorch framework. Our training procedure used the
AdamW optimizer (B1=0.9, 2 =0.999%") with weight
decay to be 1 x 10 and the learning rates of the generator
and discriminator to be 1x107° and 1x 1077, respec-
tively. The learning rate was reduced by a factor of 0.95
for every 5 calendar elements, and the batch size was 2
(Table S15). Meanwhile, we wused alternating dis-
criminator and generator training to train the network. To
prove the converge performance of our loss function, we
have performed ablation test, and compared the loss
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decay curve of our loss function with that of MSE, MS-
SSIM, BerHu, MAE, and the combination of BerHu and
MS-SSIM, respectively (Figs. S20, S21 and Table S16).
The results showed that the generator loss of our network
converged close to 0, which successfully demonstrated
RTU-Net’s good convergence performance.

The time consumption for the RTU-Net procedure
depended on the dataset size and computational resour-
ces. As a reference point, RTU-Net reached convergence
after 400 calendar hours of training on 2164 pairs of
synthetic tubulin image patches normalized to (—1, 1),
each pair containing a light-field image (208 x 208 pixels)
and a volume (208 x 208 x 61 pixels). The normalized
formula was:

x — min(x)

nomarlize(x) = 2% -1 (6)

max(x) — min(x)
where x was the image (light-field image/volume) to be
normalized, min (-) computed the minimum value of the
input image, and max () computed the maximum value of
the input image. This meant that our RTU-Net can be
trained without large dataset size, which was one of the
advantages of our network. To validate this point, we
trained our network with larger dataset sizes, predicted
data that was not included in the training dataset with the
trained network, and then quantitatively assessed the
reconstructed image. The results revealed that when the
training dataset size varies from 2000 4000 to 6000,
parameters such as PSNR, SSIM, LPIPS, MSE, and Person
correlation only changed slightly (Table S17), demon-
strating that small training dataset size worked well for
our network and no overfitting occurred. The results also
proved that our network was cost-effective. The compu-
tation was performed on a workstation equipped with
Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50 GHz and
A100 PCle 40GB graphic card.

Optimizer ablation experiments

We performed ablation experiments on the network
with different optimizers (Table S18), batch sizes (Table
S19), and learning rates (Table S20). Among the optimi-
zers, Rprop, SGD, and AdamW were chosen. The results
showed that the PSNR using AdamW was 5.11 dB higher
than that of Rprop and was 14.08 dB higher than that of
SGD. Similarly, the SSIM using AdamW was 0.0292 and
0.9112 higher than that of Rprop and SGD, respectively.
Moreover, AdamW also attained the lowest LPIPS and the
Pearson correlation among the three optimizers, clearly
demonstrating the advanced performance of AdamW.

Batch size ablation experiments
For the ablation experiments with different batch sizes,
we chose batch sizes of 2, 4, 8, and 16 (Table S19), and the
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results showed that the PSNR of different batch sizes only
differed by less than 0.6 dB, the SSIM differed by less than
0.01. Also, the LPIPS differed by a maximum of
3.02x 10”7, and the MSE differed by a maximum of
1.356 x 102, respectively. The maximum difference in
Pearson correlation was 0.0269, which indicated that
RTU-Net can adapt to different batch-size training and
has little effect on the reconstruction results.

Learning-rate ablation experiments

We chose the generator/discriminator learning rates of
1x107%/1x107°% 1x107%/x10"7, and 1x 10~ 7/1x10~°
for the ablation experiments (Table S20), and the results
showed that the network was optimal when the generator/
discriminator learning rate was 1x 107 %/1x10~”. Con-
currently, the loss decline curve of RTU-Net was plotted at
varying learning rates (Fig. S22). When the learning rate
was minimal, the convergence of the network was sluggish
due to the limited step size, which can result in the net-
work converging at a local extreme point, leading to the
absence of a genuine optimal solution. Conversely, when
the learning rate was substantial, the network converged
more rapidly. However, the large step size can cause the
network to depart from a specific optimal extreme point,
thereby missing the identification of the optimal solution.

Regularization method

Batch normalization was used in the network structure
of RTU-Net, and we used the default weight decay of
1x10 by the AdamW optimizer during training. Dropout
was not included for the following reasons. First, deep
networks with residual connectivity tend to be more stable
and less sensitive to overfitting®®”®. Second, we have
incorporated batch normalization into the network, which
not only sped up training but also acted as a regularizer to
some extent, reducing the dependence on dropout™.
Continuing to include dropout may lead to a series of
more problems such as model underfitting, difficulty in
training convergence, and degradation of generalization
ability. Third, our training used AdamW, which was an
adaptive optimizer with weight decay and regularization
that also reduced the dependence on dropout™’.

Performance metrics
We employed PSNR and SSIM to quantitatively evaluate
the performance of RTU-Net. The formula for PSNR was:

MAX?

PSNR = 10lg———L_
1Y =Xl

(7)

where X represented the ground truth, Y represented the
corresponding reconstructed result, and MAX; was the
maximum pixel value of an image. MAX; was 255 when
each sampling point was represented by 8-bit. SSIM was
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calculated by the following formula:

(2pxpy + (0.01 - R)*) (20xy + (0.03 - R)?)
(K% + 13 + (0.01-R)*) (0% + 0% + (0.03 - R)?)

(8)

where X was the ground truth signal, ¥ denoted the
corresponding reconstruction result signals, gy and uy
represented the average values of each signal, ox and oy
represented the corresponding variance of each signal,
and oyy was the covariance for X and Y. R was the
dynamic range and was 1 when the data was normalized
to a single-precision floating-point number. LPIPS was
realized by deep neural network; the specific architecture
and parameters were obtained by large-scale training,
which can be used to capture the perceptual information
of the image. The calculation formula was as follows:

1
LPIPS = >, 777, 2 ko

SSIM =

-1 -1 2
W (th B th) ’ ’2

©)

where X denoted the ground truth signal, Y denoted the
corresponding reconstruction result signal, / was the
number of network layers of the network used for LPIPS,
w; was the weight of the /th layer of the network, H; and
W, were the sizes of the images of the /th layer of the
network, respectively, and ||e||5 denoted the square of the
L2 paradigm. The MSE was calculated as follows:

MSE = ||Y — x| (10)

where X denoted the ground truth signal, ¥ was the
corresponding reconstruction result signal, and ||e|[> was
the square of the L2 paradigm.

We also used the Pearson correlation coefficient (p) to
evaluate the similarity between the ground truth and the
results obtained by different methods. p was calculated by
the following formula:

_ E[(X — ux) (Y — py)]

P (11)
where X and Y denoted the signals, yx and gy represented
the mean values of each signal, oy and oy denoted the
corresponding standard deviations of each signal, and E [']
denoted the expectation.

The analysis of neural activity

To quantify the fluorescence intensity of individual
neurons, all pixels within a specific neuron’s region of
interest (ROI) were averaged over time, resulting in a
singular value denoted as F, representing the fluorescence
intensity of that particular neuron. To well extract cal-
cium dynamics, we computed neuron-specific baseline Fj,
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which was determined as the average of all F recordings.
The calcium dynamics were then extracted using the
formula AF/F,= (F — F,) /F,.

Zebrafish imaging

Zebrafish larvae (5-7 days after fertilization) expressing
GCaMP6 were imaged with scanning widefield micro-
scopy (ground truth) and light-field microscopy. The
light-field data was reconstructed by RTU-Net, VCD-Net
and HyLFM-Net, and was then processed with CalmAn**
to extract the neural activity.

CFD simulation of square lid-driven cavity flow

We used the commercial simulation software Ansys
Fluent to carry out numerical simulation for square lid-
driven cavity flow. The flow field volume was
100 x 100 x 100 mm® and included 2 million grids. The
flow was modeled by the k- SST turbulence model, and
the boundary layer’s grid encryption was used to make
sure that y+ (the position of the mesh’s first layer in the
boundary layer) was smaller than 1 in order to better
represent the flow field structure close to the wall. The
drive belt in the experiment was configured as a sliding
wall moving at a speed of 0.3 m s~ ', which produced shear
stress. Given that the active agent in the actual experi-
ment, sodium dodecyl benzene sulfonate, was added to
the water to achieve a uniform distribution of particles, we
made minor adjustments to the simulation’s water’s
density and viscosity, setting them at 998.2 kg-m > and
0.001001 kg (m:s) ', respectively. When the residual
number dropped below 107% the calculations were
deemed to have converged and allowed the flow to suf-
ficiently develop.

Experimental setup and data acquisition for flow
measurement

In the square lid-driven cavity flow experiment, a
100 x 100 x 100 mm® square chamber was utilized, and
the drive belt’s tangential motion above the square
chamber created the flow. The motor can be adjusted to
change the belt’s motion speed. We added a slightly bigger
reservoir to the upper section of the square chamber to
guarantee a steady level of water in the space. To maintain
a continuous experimental condition, this reservoir
allowed the conveyor belt to stay submerged throughout
the whole experiment. White polyethylene microspheres
with a diameter of 200 um and a density of 1 g-cc * were
seeded in the water. These particles had a density of 0.072
PPM, evenly distributed throughout the flow. A massive
primary vortex was created in the square cavity’s center
throughout the experiment, and a secondary vortex (DSE)
was created downstream of the corner zone, which was
the point where the downstream sidewall and the bottom
sidewall intersected. We used a light-field camera to
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acquire data at 40 frames per second of the secondary
vortex in the DSE region. In order to showcase the RTU-
Net’s efficacy in 3D imaging, we captured an image of a
vortex produced by a revolving disk. The cavity flow
driven by a square lid was less intricate in its axial flow
structure than the vortex indicated. The disk rotation
speed was set to 120 revolutions per minute.
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