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Abstract

Phototherapy offers advantages of non-invasiveness, cost-effectiveness, localized treatment, and potential for home-
based care across various medical conditions. However, its adoption is hindered by the large size, limited safety, and
professional operation requirements of current phototherapeutic devices. Unlike bulky laser phototherapeutic devices,
wearable and implantable LED-based devices overcome these limitations, offering improved safety, portability, and
uniform light distribution, making them promising prototypes for next-generation phototherapies. This review
explores the home-care potentials of phototherapy from a clinical application perspective and provides a
comprehensive overview of its therapeutic mechanisms and diverse applications. By synthesizing the latest
advancements and cutting-edge research, we identify key clinical challenges associated with wearable and
implantable phototherapy devices and propose fundamental strategies to address these limitations, such as
miniaturization, biocompatibility, and energy efficiency. Furthermore, we draw on interdisciplinary cutting-edge
research to address the challenges faced by phototherapy devices. We also emphasize the critical value of integrating
artificial intelligence (Al) and flexible sensing technologies within phototherapy systems. Specific methods and
potential applications are discussed for effectively integrating phototherapy systems with Al algorithms to establish a
closed-loop diagnostic and therapeutic system. Grounded in clinical applications, we outline concrete research
directions for developing next-generation LED-based phototherapy devices. This review delivers valuable insights for
clinicians leveraging phototherapy and offers a roadmap for researchers in material science, flexible electronics, and Al

fostering interdisciplinary innovations to advance future phototherapy applications.

Introduction

The application of phototherapy dates back 3500 years,
when ancient Egyptians and other civilizations along the
Nile River combined medicinal plants with sunlight to
treat vitiligo'. In the late 19th century, sunlight was found
to have therapeutic effects on anthrax and rickets. In the
early 20th century, Niels Ryberg Finsen utilized artificial
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light sources to treat cutaneous tuberculosis (lupus vul-
garis), earning the Nobel Prize in Physiology or Medicine
in 1903 In 1960, Dr. Maiman developed the solid-state
laser and performed the first retinal tumor surgery using
laser technology®. Due to its high brightness, mono-
chromaticity, and directionality, laser therapy has been
widely applied in treating pigmented disorders®, tumors®,
scars®, infections’, vascular malformations®, and oph-
thalmic surgeries®. An important development occurred
in photomedicine in 1983 when Rox Anderson introduced
the concept of selective photothermolysis’. Building on its
historical foundation, phototherapy has evolved into a
diverse and versatile field, leveraging various light wave-
lengths for specific therapeutic applications.

Each segment of the electromagnetic spectrum offers
distinct biological effects and clinical advantages based on
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its unique energy, frequency, and wavelength (Fig. 1a). In
the gamma-ray range (< 0.01 nm), high-energy radiation
targets tumors in radiotherapy'®, while X-rays
(0.01 ~ 10 nm) are used for diagnostic imaging''. Ultra-
violet (UV) light (10 ~ 400 nm) addresses skin conditions
and tumors'? Blue light (450 ~ 490 nm) is used for anti-
bacterial therapy’ and neonatal jaundice treatment'?,
while green light (495 ~ 570 nm) aids in retinal therapy'*
and pain relief'®. Yellow light (570 ~ 590 nm) enhances
immune function and improves mood'®, and red light
(620 ~ 750 nm) promotes wound healing17, hair growthls,
and deep-tissue phototherapy'®. Near-infrared lights
(NIR, 700 ~2500nm), particularly 808 and 980 nm,
are effective for pain management, and technologies like
functional near-infrared spectroscopy are used for
tissue imaging®. Mid-infrared lights (2500 ~ 25,000 nm)
include CO, lasers (10,600 nm) for surgical procedures®’,
while far-infrared lights (>25,000 nm) generate thermal
effects for conditions like arthritis®? (Fig. 1a).

The phototherapeutic mechanisms primarily rely on
several pathways (Fig. 1b). Optogenetics® is a technique
that allows precise control of neural activity and cellular
functions through the activation of specific light-sensitive
proteins, including ChR2, enhanced bacteriorhodopsin,
natronomonas pharaonis halorhodopsin, and the like®*.
When exposed to a 473 nm blue light, ChR2 channels
open, allowing a significant influx of cations like Na™,
leading to depolarization and subsequent neuronal exci-
tation”. This mechanism enables precise regulation of
neuronal and cellular functions, making optogenetics a
powerful tool widely used in neuroscience and biomedical
research (Fig. 1b). Photobiomodulation (PBM)*°, pre-
viously referred to as low-level laser therapy (LLLT),
typically employs red and NIR (600 ~ 980 nm) to activate
the rate-limiting enzyme cytochrome C oxidase (CCO) in
the mitochondrial electron transport chain. This activa-
tion enhances ATP synthesis and reduces oxidative stress
while upregulating signaling molecules such as nitric
oxide (NO) and calcium ions (Ca®"). Consequently, a
cascade of downstream signaling pathways is triggered,
resulting in the regulation of cellular physiological func-
tions®’ (Fig. 1b). Photodynamic therapy (PDT)%%?° uses
light of a specific wavelength to activate photosensitizers
(PSs), generating reactive oxygen species (¢OH, +«O,", and
'0,) to eliminate cancers and pathogens™. Blue light
phototherapy, utilizing the wavelength of 400 ~ 470 nm,
facilitates the absorption of light energy by bilirubin
molecules in the skin and converts it into water-soluble
isomers, such as lumirubin. These isomers can be excre-
ted from the body without requiring hepatic metabolism'?
(Fig. 1b). These mechanisms underpin the therapeutic
efficacy of phototherapy across diverse medical scenarios.

Current phototherapy has been successfully applied to
several major human organs, including skin, nervous,
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circulatory, urinary, musculoskeletal, and digestive sys-
tems (Fig. 1c, Table 1). Due to the limited penetration of
light, phototherapy is primarily focused on the body
surface, such as hair loss'®, dermatological diseases®! 32,
wound healing17’34, chronic wound management35’36,
ophthalmopathy®’, and neonatal jaundice'®*® (Fig. 1c,
Table 1). Such devices are designed to fit the body surface
(e.g., skin, mucous membranes) and deliver light energy to
superficial tissues, as well as areas that can be penetrated
by external light sources, such as subcutaneous capillaries
and the cerebral cortex. The therapeutic targets are
typically located in the epidermis, dermis, shallow sub-
cutaneous layers, or areas that can be penetrated by near-
infrared light, typically up to 3—5 cm beneath the skin®.
Since they deliver light to the target area without
requiring surgical intervention, these devices are clinically
defined as wearable phototherapy devices. For instance,
Sahel et al.’” injected an adeno-associated viral vector
encoding ChrimsonR into the eye, to facilitate partial
vision restoration in a blind patient through the combined
use of optogenetics and phototherapy goggles (Fig. 1c).
Additionally, the face-fit surface-lighting micro light-
emitting diodes (micro-LED) mask developed by Kim
et al.*>* conforms to complex facial contours, giving rise to
significant improvement in facial elasticity, sagging, and
wrinkles (Table 1). Analogously, the textile-based blue
organic light-emitting diodes (OLEDs) developed by Choi
et al."® balance comfort and therapeutic efficacy, enabling
at-home treatment for neonatal jaundice (Fig. 1c).
Recently, we fabricated a stretchable red and blue LED
(r&bLED) patch%, which potentially offers a convenient
antibacterial and wound-healing facilitation for managing
chronic infectious wounds at home (Fig. 1c). Further-
more, a randomized controlled trial validated the efficacy
of LLLT in the treatment of traumatic brain injury.
Among 68 randomly assigned patients, 33 patients
received NIR light therapy using a custom LED-helmet
within 72 h post-injury, while 35 patients received sham
treatment as controls. The results demonstrated statisti-
cally significant changes in multiple brain diffusion tensor
imaging parameters during the subacute phase.

To date, researchers are devoting enormous efforts to
overcoming the challenges of delivering light to deeper
tissues*’, with the ultimate goal of expanding the applic-
ability of phototherapy. Among them, fiber-optic and
implantable LED devices are being developed to treat heart
diseases'”*"*?, diabetes*>™*’, bladder pain syndrome®,
encephalopathy”>**~!, spinal cord injuries®*, and neurolo-
gical disorders®>** (Fig. 1c, Table 1). These devices require
implantation through natural body cavities (e.g., gastro-
intestinal tract, oral cavity, nasal cavity), minimally invasive
procedures, or open surgery, to make direct contact with or
be placed near deeper tissues, enabling precise light energy
delivery. From a clinical application perspective, these
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Fig. 1 Phototherapy and the underlying mechanisms. a Introduction of light. The electromagnetic spectrum illustrates the distribution of electromagnetic
waves across various wavelengths. The enlarged section corresponds to the ultraviolet, visible, and infrared regions, which are the primary wavelengths used in
phototherapy applications. b Schematic representation of the main mechanisms involved in phototherapy, including optogenetics**, photobiomodulation’,
photodynamic therapy®®, and blue light therapy'*. Optogenetics activates light-sensitive proteins, such as channelrhodopsin-2 (ChR2), allowing significant cation
influx, particularly Na*, through ion channels, leading to depolarization and neuronal excitation. Photobiomodulation employs red and near infrared (NIR) light to
activate cytochrome C oxidase (CCO) in the mitochondrial electron transport chain, enhancing ATP synthesis and reducing oxidative stress while upregulating
signaling molecules such as nitric oxide (NO) and calcium ions (Ca*™). ATP, adenosine triphosphate. Photodynamic therapy uses light of specific wavelengths to
activate photosensitizers (PSs), generating reactive oxygen species (OH, <O, and '0,) to eliminate cancers and pathogens. Blue light phototherapy enhances
bilirubin absorption in the skin, converting it into water-soluble lumirubin, which is excreted from the body without hepatic metabolism. ¢ Representative
applications of diseases treated with phototherapy and their corresponding research references: encephalopathy”“®', ophthalmopathy®’, anti-

cancer’®'*01%571%” neonatal jaundice', spinal-cord injury®”, peripheral nerve modulation®***, thrombocytopenia'®, hair loss'®, cosmetic dermatology®’, anti-

bacterial'**'", heart disease'*"'*?, diabetes*, bladder pain syndrome*® wound healing'”**, and diabetic foot ulcer*>®. Figure 1, created with BioRender.com,
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devices are commonly referred to as implantable photo-
therapy devices. For example, Ausra et al.** customized a
soft, thin-film micro-LED array that enabled high spatio-
temporal precision for optogenetic stimulation delivery,
facilitating cardiac pacing and defibrillation when implanted
in vivo (Fig. 1c). Additionally, the combination of uLED
implants with optogenetically modified neurons expressing
channelrhodopsin-2 (ChR2) allows for facile neural mod-
ulation within the body25’46’48’52’53 (Table 1). Kim et al>®
developed an implantable multi-LED array that ensures
stable contact with the target cortical region and skull for
PBM therapy (Table 1). Their studies demonstrated that
630 nm red light effectively reduced infarct volume and
neuronal damage following ischemic stroke. Besides, Kathe
et al.>* developed a uLED system capable of conforming to
the dura mater of the spinal cord. Using an optogenetic
model of spinal cord injury in mice, they integrated a
physiological signal sensing module with a phototherapy
module to achieve closed-loop control of spinal cord neu-
rons. This innovative approach effectively addressed chal-
lenges associated with spinal-cord injuries (Fig. 1c, Table 1).

Over the past five years, the development of wearable
and implantable phototherapy devices has accelerated
significantly, with their effectiveness in treating various
diseases being well demonstrated. Despite significant
advancements, wearable and implantable phototherapy
devices still face several challenges. Different diseases
require specific parameters (wavelength, power density,
and exposure duration) yet current devices often lack the
precision and monitoring system to meet diverse clinical
needs. Long-term comfort, biocompatibility, and energy
supply also require optimization. Furthermore, improving
therapeutic efficiency, expanding applications, and redu-
cing costs in complex clinical settings remain pressing
issues. Addressing these technical bottlenecks and align-
ing devices with clinical requirements is essential for
advancing this field.

Challenges and unmet clinical needs in
phototherapy devices

As previously mentioned, researchers classify LED pho-
totherapy devices into wearable and implantable categories
from the perspective of clinical applications. The choice
between wearable or implantable phototherapy strategies
depends on factors such as the depth of the target tissue™,
the nature of the disease, and whether anatomical barriers™®
(e.g., bone structures, dense fascia) need to be crossed, as
well as the need for precise spatial localization™® (Fig. 2a, b).
Wearable devices do not require surgical intervention,
providing higher patient compliance; however, they face
limitations in addressing the phototherapy of deeper tis-
sues. Implantable phototherapy devices, on the other hand,
help overcome the challenge of delivering light to deeper
organs and can enable precise phototherapy (e.g.,
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optogenetic control of bladder afferent nerves™) (Fig. 2a, b).
However, both types face numerous technical and clinical
challenges necessitating efforts to improve therapeutic
efficacy and user experience. From the perspective of
clinical phototherapy applications, wearable devices require
excellent portability, personalized phototherapy cap-
abilities, uniform light distribution, and conformity to the
contours of the body surface to enhance therapeutic effi-
cacy (left, Fig. 2). In addition to these requirements,
implantable phototherapy devices must meet challenges
such as energy supply, device longevity, encapsulation
leakage, biocompatibility, and so on (right, Fig. 2).

Challenges in wearable phototherapy devices

First, insufficient portability of phototherapeutic devices
significantly limits their usage scenarios (Fig. 2c). Photo-
therapy devices for skin diseases are often large and
cumbersome, making them unsuitable for home use by
patients®®>. In comparison, Zhang et al.>*> developed a
compact phototherapy device designed for skin treatment.
Its enhanced portability enables patients to undergo
treatment conveniently at any time, thereby improving
therapeutic outcomes. Secondly, current phototherapy
devices lack personalized and precise treatment cap-
abilities (Fig. 2d). For instance, managing symptoms in
epilepsy patients often relies on preventive medication or
optogenetic-based phototherapy””. If a system could
accurately predict epileptic episodes based on the patient’s
physiological data and changes in brainwave patterns,
timely interventions could significantly improve out-
comes. Addressing this challenge is essential for future
wearable phototherapy devices to enhance therapeutic
efficacy and improve patient compliance. Thirdly, the
uniformity of light exposure in phototherapy devices is a
critical factor influencing therapeutic outcomes (Fig. 2e).
Laser-based point light sources often lead to uneven light
intensity, resulting in variable efficacy between central and
peripheral regions'®. Researchers have explored LED
array configurations to enhance light uniformity; however,
insufficient illumination persists in the gaps between
LEDs'”. Moreover, irregular surface geometries in the
target illumination area further compromise the effec-
tiveness of phototherapy (Fig. 2f). For instance, the high
mobility of human joints makes conventional rigid pho-
totherapy devices incompatible with joint movements,
preventing effective therapy during motion. Similarly, the
complex anatomical structures of the face and periorbital
regions, coupled with significant inter-individual varia-
bility, pose challenges to achieving uniform light dis-
tribution®'. Apparently, improving phototherapy devices
to achieve better illumination uniformity, enhanced
portability, and greater adaptability to body surface con-
tours is a critical challenge that must be addressed to
enhance therapeutic efficacy (Fig. 2c—f).
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Challenges in implantable phototherapy devices

Due to the limited penetration depth of light, its delivery
directly to internal tissues remains formidable challenges
for wearable devices®®>. On the other hand, implanted
phototherapy systems pose unique energy supply chal-
lenges, as their batteries not only face implantation diffi-
culties but also present potential biosafety concerns
(Fig. 2g). Key considerations include battery size, energy
density, and biocompatibility. Mickle et al.*®* demon-
strated wireless power transfer for optogenetic therapy;
however, the required coils were bulky and could only
power a limited number of LEDs. In contrast, Yamagishi
et al.”® employed a self-powered approach for high-power
PDT, but challenges remain in effectively covering large
treatment areas. Apparently, engineering a biocompatible,
safe, and optimized energy supply tailored to the specific
requirements of implantable phototherapy systems is
crucial for advancing their functionality and therapeutic
potential. Moreover, implantable phototherapy devices

must contend with the harsh physicochemical environ-
ment. Sim et al.** demonstrated the use of OLED-based
phototherapy devices implanted in the small intestine for
diabetes treatment. However, the vulnerability of OLED
materials to water and oxygen degradation severely limits
the duration of effective phototherapy (Fig. 2h). To
address this issue, dense and biocompatible encapsulation
techniques are required to ensure device longevity.
Nevertheless, overly thick encapsulation materials can
compromise light intensity and device flexibility, while
excessively thin encapsulation increases the risk of
harmful material leakage, raising safety concerns (Fig. 2i).
Enhancing the durability of light-emitting materials and
improving encapsulation quality are critical challenges for
advancing implantable phototherapy devices. Most
importantly, as implantable devices, phototherapy systems
must ensure robust biocompatibility and safety (Fig. 2j).
Materials used in batteries, light-emitting components,
encapsulation layers, and conductive elements may
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contain metals or corrosive materials that can trigger
metal toxicity, corrosive reactions, or immune-mediated
foreign body responses. Kim et al.>> addressed these
challenges by developing a flexible OLED-based photo-
therapy device using a soft substrate and xylene film
encapsulation. This approach minimized mechanical
damage to neural tissues while effectively reducing the
risk of immune rejection associated with implanted
devices. Besides the biocompatibility of materials, heat
generated during phototherapy and by the electronic
components may cause thermal damage®. Therefore,
effective heat dissipation design is also crucial (Fig. 2j).
From the perspective of clinical phototherapy applica-
tions, future LED phototherapy devices must achieve
comprehensive advancements to address the aforemen-
tioned challenges. This will require the development of
novel conductive materials, light-emitting materials,
encapsulation materials, and batteries, as well as
advancements in manufacturing processes. Addressing
these issues represents a complex interdisciplinary
endeavor. In the following sections, we will propose spe-
cific strategies and highlight cutting-edge research aimed
at overcoming these challenges. Additionally, we will
summarize the design principles and fabrication work-
flows for next-generation LED phototherapy devices.

Strategies to overcome challenges in
phototherapeutic prototypes

As phototherapy technologies continue to advance in
the medical field, innovations in material science and
fabrication technologies have established a robust foun-
dation for addressing technical challenges and achieving
substantial improvements in device performance. Incor-
porating the latest advancements and clinical needs
identified by phototherapy specialists, our research team
has reviewed and proposed targeted strategies to tackle
the current limitations of phototherapy devices. These
strategies focus on enhancing light distribution uni-
formity, advancing device miniaturization, improving
implantability, integrating diagnostic and therapeutic
functionalities, and enabling the intelligent modulation of
phototherapy parameters.

Strategies to improve illumination uniformity

Zhang et al.>° demonstrated the use of OLED technology
to achieve surface light emission, resulting in improved
illumination uniformity and enhanced phototherapy effi-
cacy. QLED materials, which are compatible with the same
fabrication processes as OLEDs, were utilized by Bian
et al.®’, who employed spin-coating and thermal evapora-
tion deposition techniques to produce QLED devices
capable of uniformly emitting high-intensity green light.
Similarly, Kim et al.> utilized uLED technology, achieving
comparable uniformity in light distribution with notable
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improvements in therapeutic outcomes. Lee et al.°* intro-
duced a diffusion layer, such as SiO,, and Deng et al."’
employed fiber optic lenses, enabling phototherapy devices
with initially uneven illumination to achieve significantly
more uniform light distribution (Fig. 3a). This design sig-
nificantly reduces the risk of localized burns caused by
uneven illumination while enhancing the effectiveness of
treatment for large lesions, particularly in anatomically
complex areas such as the face®?, joints®® and curved body
surfaces®>®%,

Strategies for miniaturization of phototherapy devices
Miniaturization technologies are key to realizing wear-
able and implantable phototherapy devices (Fig. 3b).
Through efficient integrated circuit designs and modular
structures, the size and weight of devices have been sub-
stantially reduced. In this regard, Li et al.*® designed a
phototherapy patch comprising a phototherapy module,
sensing module, power supply module, and Bluetooth/W/i-
Fi module, significantly enhancing the portability and
usability (Fig. 3b). The use of soft materials further enables
the device to closely conform to the human body, ensuring
effective illumination in complex curved areas such as
joints, thereby enhancing both comfort and therapeutic
results®®. Additionally, soft materials allow for further
miniaturization of the device®®, making it more suitable for
wearable or implantable phototherapy applications.

Strategies to enhance implantability of phototherapy
devices

For implantability®®, optimizing material selection and
encapsulation technologies are crucial to ensuring both
performance and biosafety. Additionally, the mechanical
properties of the implantable phototherapy device and
their compatibility with the target organ*"®’, along with
the choice of energy supply method*', are equally crucial
to the design of implantable phototherapy devices
(Fig. 3c). The use of biocompatible materials, such as
hydrogels, flexible polymers, and biocompatible metals,
significantly reduces the risks of inflammation and
immune rejection®®. Multilayer encapsulation technolo-
gies (including both inorganic and organic layers) pre-
serve device stability under extreme in vivo conditions,
such as high humidity, acidity, and oxygen levels, while
preventing leakage of harmful substances®®. Furthermore,
by adjusting the Young’s modulus and tensile strength of
device materials to align with the mechanical properties of
human tissues, potential biosafety issues post-
implantation can be minimized. Ideally, the device’s
overall Young’s modulus should be lower than that of the
target tissue, while its tensile strength should exceed that
of the tissue’®. Additionally, depending on the device’s
expected in vivo residence time, solutions such as soft
batteries’’, micro-batteries”’, wireless power™®, or energy
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harvesting methods®® can be employed to address energy
supply challenges (Fig. 3c). Thermal management is cri-
tical for implantable phototherapy devices. For low level
light power therapies, such as PBM*® or optogenetics?,
passive heat transfer via body tissues suffices to maintain
safe temperatures. However, high level light power
applications like PDT require effective thermal manage-
ment. Pulsed light therapy’>”® can control heat genera-
tion while maintaining efficacy. Flexible thermal

conductive materials’*, optimized heat dissipation struc-
tures’>’%, and micro cooling plates’” enable passive and
active cooling, ensuring the device stays within safe
temperature ranges, thus enhancing performance and
biosafety (Fig. 3c).

Strategies for integrating monitoring, Al and phototherapy
The integration of therapeutic and diagnostic capabilities
represents a critical advancement in phototherapy devices
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(Fig. 3d). By incorporating electrochemical sensors’® and
spectroscopic analysis modules””, these devices can moni-
tor biochemical indicators such as glucose, urea, and pH
levels, alongside hemodynamic parameters like blood
oxygen saturation and tumor markers. Additionally, inte-
grating bioelectric signal monitoring®, including electro-
cardiograms (ECG), electroencephalograms (EEG), and
electromyograms (EMG), provides comprehensive physio-
logical data to support personalized diagnosis and treat-
ment (Fig. 3d). Leveraging intelligent adjustment
technologies, phototherapy devices can now dynamically
optimize treatment parameters based on patients’ real-time
conditions (Fig. 3e). Using multimodal deep learning
algorithms®’, these devices analyze physiological indicators,
biochemical markers, and behavioral data to intelligently
adjust parameters such as wavelength, light intensity, and
exposure duration. This closed-loop system enhances
phototherapy efficiency, reduces reliance on medical pro-
fessionals, and facilitates home-based applications, paving
the way for improved therapeutic outcomes and broader
usability.

Based on cutting-edge research, we propose the afore-
mentioned strategies from a clinical perspective to
address these challenges in phototherapy. In the following
sections, we will elaborate on the implementation of these
strategies through advancements in multidisciplinary
research and discuss their specific impact on enhancing
the phototherapy application.

Cutting-edge technologies and future processes
1. Advances in the development of LED phototherapy
devices

To address the challenges of performance and applic-
ability in LED phototherapy devices, researchers have
introduced a variety of innovative strategies through
material selection and process optimization. Significant
progress has been made in areas such as soft substrates,
soft active materials, soft emissive layers, soft encapsula-
tions, and power supplies.

Soft substrate

The soft substrate is critical for determining the
mechanical properties of phototherapy devices and
ensuring compatibility with target tissues (Fig. 4a). An
ideal substrate, as summarized in the table shown in
Fig. 4a, should have a lower Young’s modulus than the
target tissue while providing sufficient tensile strength,
high-temperature resistance, chemical stability, and
stretchability. Polyimide (PI) is well-suited for wearable
and implantable devices due to its thermal and mechan-
ical properties'”, while softer, biocompatible materials like
Polydimethylsiloxane (PDMS)®?, Thermoplastic Poly-
urethane (TPU)?, Styrene-Ethylene-Butylene-Styrene®!
(SEBS), and Ecoflex® are preferable for dynamic areas.
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Tailoring substrate selection to specific applications
enables optimal adaptation to target regions. For example,
wrapping the spinal cord for optogenetic therapies in
paralysis treatment?, conforming to the body surface for
blue-light therapy in jaundice management'?, or adhering
to the intestinal lining for red-light therapy applications*?
(Fig. 4a).

Soft active materials

In the fabrication of wearable or implantable photo-
therapy devices, soft active materials (Fig. 4b) should
exhibit essential characteristics such as high electrical
conductivity, stretchability, low cost, compatibility with
diverse fabrication processes, biocompatibility, and dur-
ability. These requirements are designed to ensure that
phototherapy devices maintain efficient optical power
output to meet therapeutic needs while preserving
stretchability.

Metal thin films are commonly used in device circuits
due to their high conductivity and cost-effectiveness.
They have been applied in optogenetic modulation for
epilepsy”’, phototherapeutic repair of cerebral infarc-
tion®”, antimicrobial treatments for implant infections®?,
and red-light therapy for hair loss'®. Structural optimi-
zation ensures their flexibility and mechanical stability.
Current research mainly focuses on techniques such as
serpentine pattern557, island-bridge structures®®, or metal
cracks® to enhance their tensile strength. However, these
approaches often significantly increase the device’s
volume, which hinders miniaturization. Therefore,
intrinsically stretchable materials such as liquid metals
and polymers are better suited for future phototherapy
devices. For instance, liquid metal materials, celebrated
for their self-healing properties and exceptional ductility,
are especially well-suited for dynamic applications®, such
as treating arthritis, adapting to the beating surface of the
heart'>*!, and addressing urinary dysfunction through
optogenetic modulation in response to bladder pressure
changes*®. Encapsulating liquid metals in elastomers can
further improve their stretchability®”*. Furthermore, the
liquid metal’s inherent chemical stability and the hermetic
sealing design effectively address the challenges of oxi-
dation, ensuring long-term performance and reliability in
stretchable systems®®. Conductive polymers, which offer
good stretchability and low cost, are another promising
option. Although they are susceptible to water and oxygen
degradation, surface molecular modifications can sig-
nificantly enhance their durability®®, while maintaining
good electrical conductivity (Fig. 4b). Many novel soft
active materials can meet these requirements but are
limited by their thermal tolerance, making them unsui-
table for high-temperature processing. Consequently, the
development of low-temperature fabrication techniques
offers a pathway to expand the applications of these
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(see figure on previous page)

Fig. 4 Key progresses and innovations in processes and materials. a The ideal properties required for soft substrates and representative
applications in nervous system (reprinted with permission®”. Copyright 2022, Springer Nature)*, body surface'®, and gastrointestinal tract (reprinted
with permission‘”’ under Creative Common CC BY license. Copyright 2023, American Association for the Advancement of Science)*. b Soft active
materials, including metal thin films (the left image is reprinted with permission®”. Copyright 2023, Springer Nature. The right image is reprinted with
permission®. Copyright 2021, John Wiley & Sons)*”#, liquid metals (reprinted with permission®. Copyright 2023, American Association for the
Advancement of Science)®*®”'”! and conductive polymer materials (reprinted with permission®®. Copyright 2023, Springer Nature)®®, along with their
associated fabrication processes such as spin coating, 3D printing, screen printing, inkjet printing, dispensing, and photolithography. ¢ Soft emissive
component including Micro-LED®' and OLED (reprinted with permission®. Copyright 2022, Springer Nature)® (reprinted with permission'®.
Copyright 2020, Springer Nature). d Soft encapsulation: hybrid organic/inorganic multilayer®. e Heat dissipation design: flexible thermal materials,
external control module’””?, boron nitride nanoseed structure”, and microchannels”” for enhanced heat management. (reprinted with permission”
under Creative Common CC BY license. Copyright 2020, Springer Nature) f Power supply including soft battery (the middle image is reprinted with
permission'?? under Creative Common CC BY license. Copyright 2024, Springer Nature. The right image is reprinted with permission'*. Copyright
2022, Springer Nature)'?°~'? wireless power supply'?*™'?° (the image for RF antenna is reprinted with permission’”. Copyright 2020, Springer Nature.
The image for Infrared light is reprinted with permission'?®. Copyright 2018, National Academy of Sciences). Figure 4, created with BioRender.com,

released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International license

advanced materials. Cutting-edge processing methods
currently include spin coating”®, 3D printing”’, screen
printing”, inkjet printing93, dispensing printing, and
photolithography®* (Fig. 4b).

Soft emissive components

The light sources used in flexible LED-based photo-
therapy devices can be classified into three main types:
uLEDs, OLED, and QLEDs. uLEDs>"**** offer high light
intensity ( ~ 1,000,000 nits), long lifespan (~ 100,000 h),
and a narrow FWHM (15-20 nm), but have limitations in
heat dissipation, flexibility, and light uniformity compared
to OLED'****3 and QLED®"*%7. OLED-based devices
require further enhancement in brightness and resistance
to oxygen and moisture®®””, while QLEDs need to
improve stability, ensuring no heavy metal incorpora-
tion®1%° (Table 2). To address these challenges,
researchers have proposed various strategies.

In the field of soft emission components, pLEDs/Micro-
LED have become a focal point due to their high bright-
ness, dense emission, and exceptional precision, making
them the ideal selection for phototherapy device'
(Fig. 4c, Table 2). The challenge of transferring pLEDs onto
flexible substrates’® has been effectively resolved with
advanced laser transfer technologies®. With decreasing
costs, flexible uLEDs show great promise as phototherapy
light sources, particularly for complex surfaces like the
face'®33* intestines®®, brain®>*, heart'’, and lungs103.

At the same time, OLED materials, conferring flexibility,
low-temperature fabrication, and uniform light emission
(Table 2), are already being applied in areas such as diabetic
management43, hyperbilirubinemia treatment'>>%, hemo-
dynamic monitoring®®, and neuroregulation®. However,
their limited lifespan under high-intensity illumination
constrains their broader use in phototherapy devices.
While photobiomodulation and metronomic photo-
dynamic therapy (PDT) can achieve therapeutic effects at
lower light intensities, simultaneous improvements in

brightness and durability are essential to extend OLED
applications to a wider range of therapies, including pho-
todynamic and photothermal treatments. Encouragingly,
advances in thin-film packaging technologies are now
effectively addressing these issues'®. In parallel, new
OLED optimization strategies, such as incorporating spe-
cial solvents to dilute and reduce defects in the regions
where electrons are captured within the OLED structure,
along with the use of the double-sided polariton-enhanced
Purcell effect to improve OLED stability, are further
enhancing the light emission efficiency and lifespan of
OLEDs®??8991057108 (Eig 4c). As detailed in Table 2, Red/
Green (Phosphorescent) OLEDs exhibit lifespans exceed-
ing ~100,000 h, while Blue OLEDs, especially the phos-
phorescent type, are showing ongoing improvements'®*'%,
Remarkably, researchers have also achieved major break-
throughs in the fabrication of intrinsically stretchable
OLEDs®*%M%  which currently represent the most
stretchable light-emitting components developed to date.

QLEDs offer excellent flexibility, uniform surface
emission, high light intensity ( > 300,000 nits), and narrow
FWHM (20-30 nm)*'*!? (Table 2). Current research
focuses on developing biocompatible, heavy-metal-free
(e.g., Cd-free) flexible QLEDs®'%°, However, their limited
stability and short lifespan remain significant challenges
for phototherapy, with only a few studies addressing these
issues' 271> New methods, such as electrically excited
transient absorption (EETA)®', can effectively quantify the
issues present in heavy-metal-free QLEDs. By optimizing
the core-shell structure'® and surface passivation stra-
tegies''®, it is possible to further enhance the luminous
efficiency and stability, ensuring the biological safety of
QLEDs (Fig. 4c).

Soft encapsulation

Encapsulation technologies also play a vital role in
ensuring device stability. The ideal encapsulation should
maintain the device’s stretchability, lightweight nature,
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Table 2 Characteristics and Comparison of LED-based Light Sources for Phototherapy Applications

p-LED OLED

QLED (heavy-metal-free) Refs

Light intensity ~ High (~ 1,000,000 nits)

Moderate (~ 10,000 nits achievable; EQE

43,61,101,106,107

High (> 300,000 nits)

remains at 40% under 0-15,000 cd m ™)

Emission area  Point light source

Uniform surface-emitting light source

Uniform surface-emitting ~ *>%311°

light source
FWHM Narrow (15-20 nm) Relatively broad (> 30 nm) Narrow (20-30 nm) 1397
Flexibility None per se (relies on flexible Soft and flexible Soft and flexible 316096
substrate and chip transfer
technology)
Life span Long (> 100,000 h) Red/Green (Phosphorescent): Long (LTsp > Medium 13958,100,106,108,109
~100,000 hours); Blue (Fluorescent): Medium
(LTso ~ 10,000 hours); Blue (Phosphorescent):
Limited but under improvement
Stability High, oxygen- and humidity- Moderate, oxidation- and moisture-sensitive  Limited 3699104116161

resistant

Heat dissipation Poor (spot high heat flow)

Excellent (uniform low heat flow)

(requires excellent encapsulation)

Medium (faceted medium 37

heat flow)

and durability (Fig. 4d). Hybrid organic/inorganic multi-
layer encapsulation'®*'!” combines the gas-barrier prop-
erties of inorganic layers with the flexibility of organic
layers, providing stability for phototherapy devices in
extreme environments such as fluid-filled cavities like the
abdominal and thoracic cavities, intracranial regions, and
even the gastrointestinal tract, while minimizing the risk
of toxic substance leakage—an essential consideration for
implantable devices (Fig. 4d).

Heat dissipation design

LED phototherapy devices must address the potential
side effects of heat generation during use. The skin’s
outer layers, including the epidermis, dermis, and sub-
cutaneous tissue, have low thermal conductivity
(k~03Wm ' K N8 posing challenges for heat
management. An ideal design integrates flexible thermal
materials, efficient heat dissipation structures, and
effective heat transfer mechanisms (Fig. 4e). In photo-
therapy, an effective strategy for preventing thermal
damage is to transmit the LED light source via optical
fibers while keeping the heat-generating control units
external'’®, Metronomic PDT’>’%, using low-dose,
extended-duration, high-frequency light, reduces local
thermal load accumulation and provides an effective
heat management solution. This approach offers a viable
strategy for addressing heat dissipation in PBM, opto-
genetics, and blue light therapy. However, further stu-
dies are needed to assess its applicability across other
phototherapy strategies. Additionally, advanced thermal
management designs, such as polymer/boron nitride

nanosheets’* and miniaturized microchannel heat
sinks’’, offer potential solutions for enhancing heat
dissipation in LED phototherapy devices (Fig. 4e).

Power supply

The power supply for phototherapy devices (Fig. 4f)
plays a pivotal role in determining their functionality and
application potential. An ideal power source should
combine high energy density, soft, biocompatibility, and
durability to meet the diverse demands of wearable and
implantable phototherapy systems. Recent innovations in
power systems have been driven by soft batteries and
wireless power transfer technologies, enabling both device
miniaturization and extended operational lifespans. Soft
batteries have progressed significantly, making it possible
to integrate them into textiles for wearable phototherapy
devices, such as LED therapy patches designed to treat
skin conditions like acne, wounds, and psoriasis'*°.
Alternatively, they can be incorporated as miniaturized
droplet'* or thin-film batteries'** in micro-sized photo-
therapy devices, allowing precise energy delivery for
localized treatments. For implantable phototherapy devi-
ces, the choice of power source is dictated by the appli-
cation. Solid-state batteries, with their ability to prevent
toxic substance leakage, are better suited for long-term
implantable systems. Wireless power transfer technolo-
gies, such as magnetic induction and triboelectric nano-
generators'>® (TENGs), can harness kinetic energy from
the human body to power implantable devices. These
technologies expand the usability of phototherapy systems
in scenarios requiring portability and frequent use.
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Additional methods, such as ultrasonic power'**, infrared
functionality’®®, and far-field communication (RF)'°,
present promising wireless energy options for implantable
applications. These approaches are particularly advanta-
geous for treatments requiring minimal device main-
tenance and long-term functionality. Despite these
advances, phototherapy devices often demand substantial
power for high-intensity light output, particularly in
applications such as deep tissue treatment®® or PDT'*., In
these cases, wireless power solutions alone are insufficient
to sustain real-time energy needs and they must be paired
with integrated batteries to provide reliable energy sto-
rage. The careful selection and integration of power sys-
tems, tailored to the specific clinical context, ensures that
phototherapy devices achieve optimal performance across
a wide range of medical applications.

2. Future manufacturing processes for LED phototherapy
devices

In response to the challenges currently faced by LED-
based phototherapy devices in clinical applications, as well
as recent advancements in the field, we present a universal
fabrication process for future wearable/implantable LED
phototherapy devices.

Selection of soft substrates

Selecting the appropriate soft substrate based on the
intended application is a key step toward achieving device
flexibility and stretchability (Fig. 5a). Textile-based sub-
strates, with their breathability and softness, are particu-
larly suitable for large-area treatment scenarios'”, such as
phototherapy garments for jaundice treatment, photo-
therapy knee braces for arthritis management, and pho-
totherapy caps for promoting hair growth. Hydrogel
substrates, known for their high biocompatibility and
transparency, are preferred for devices in direct contact
with the skin or organs’®. Polymer substrates, which
balance mechanical strength and flexibility, are better
suited for highly deformable regions and implantable
phototherapy devices. Current soft substrates face sig-
nificant challenges in conforming to complex biological
surfaces (e.g., brain gyri or joint folds). As shown in Fig. 4a
(left), the elastic modulus of brain and lung tissues is an
order of magnitude lower than that of common polymer
substrates (PI, PET, PDMS, SEBS), and the grooves in
regions like the brain and skin hinder full adhesion of
flexible phototherapy devices, affecting treatment uni-
formity'?®, Flexibility is influenced by device thickness,
Young’s modulus, and width®®, with studies showing that
a thickness of 10—100 um ensures effective brain tissue
adaptation'*”. Ultra-flexible nanoelectronics (<10 pm
feature size, 1 pm thickness) can further reduce chronic
inflammation'®®. Currently, phototherapy devices are
often fabricated on polymer substrates, and researchers
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have employed various methods to optimize the interface
compatibility with tissues. OLED and QLED devices have
achieved thicknesses around 10 um>>**'%, offering
excellent flexibility, while micro-LEDs can enhance tissue
and organ compatibility and phototherapy efficacy

through substrate design (octopus’ structure)”.

Fabrication processes for electrodes

To address the temperature tolerance of new materials,
low-temperature fabrication techniques are better suited
for future LED phototherapy devices'®' (Fig. 5b). Methods
like inkjet and 3D printing enable precise fabrication of
complex structures’ while optimizing conductive ink
properties for multilayer flexible circuits. Spin-coating**
further improves the uniformity and optical performance of
emissive layers with precise film thickness control (Fig. 5b).

Preparation of soft emissive components

The manufacturing processes for soft emission com-
ponents are continuously optimized to improve efficiency
and reduce costs (Fig. 5c). Laser-induced transfer tech-
nology enables high-precision and large-scale production
of uLEDs'*, making them one of the most promising
solutions for future phototherapy applications. Mean-
while, thermal evaporation'®* techniques and advanced
spin-coating”® methods significantly enhance the lumi-
nous efficiency and lifespan of OLED and QLED devices
by improving the fabrication of the emissive layer. When
combined with elastomers, OLED®® and QLED'** devices
exhibit enhanced stretchability and flexibility. Both of
these light-emitting components can achieve ultra-
uniform surface emission and meet the optical power
requirements of phototherapy. Additionally, Surface-
Mount Device LEDs can be directly integrated into pho-
totherapy devices through soldering® (Fig. 5c¢).

Soft thin-film encapsulation

To preserve the softness and thinness of future LED
phototherapy devices, atomic layer deposition'*> (ALD)
(Fig. 5d) can sequentially deposit organic and inorganic
layers, providing effective water and oxygen barriers.
ALD’s self-limiting growth mechanism ensures smooth
atomic surfaces and uniform nanoscale films, making it a
promising approach for thin-film encapsulation®®.

Energy supply methods

The power supply for future LED phototherapy devices
should be tailored to specific application requirements
(Fig. 5e). For wearable devices, rechargeable micro-
batteries are ideal, offering extended use®® for applica-
tions such as acne, wounds, and psoriasis. Implantable
devices for short-term applications may utilize high-
energy-density micro-batteries or soft batteries, particu-
larly for treating heart diseases, cancer, and deep tissue
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Attribution-NonCommercial-NoDerivs 4.0 International license

disorders. Long-term implantable devices require wireless
power transfer systems to provide sustained energy sup-
ply. While wireless coils are commonly used, their size
constraints limit achievable power levels and application
scenarios. Alternative methods, including RF commu-
nication'?®, ultrasound'®*, infrared'*>, and energy har-
vesting technologies like piezoelectric nanogenerators'>®
or self-powered systems'’, show potential but are insuf-
ficient for high-power phototherapy applications. How-
ever, their real-time power output often falls short of the

demands of high-intensity phototherapy applications,
necessitating battery storage to ensure a reliable and
continuous energy supply.

Integration of sensing modules

The integration of sensors is pivotal for enhancing the
intelligence of phototherapy devices (Fig. 5f). Electrodes
for electrochemical and electrophysiological sensors are
typically patterned using laser engraving'®, with func-
tional materials deposited to enable targeted data
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collection®®. Photoelectric detectors, based on spectro-
scopic principles, are fabricated similarly to LED emissive
materials®®, while pre-packaged detectors can be soldered
directly onto flexible circuits'*. As shown in Fig. 5g, the
design of future phototherapy devices incorporates micro-
processing chips that collect sensor data and use built-in
algorithms to dynamically adjust treatment parameters in
real time. Sensors monitoring parameters such as tissue
oxygen levels, skin temperature, and light absorption
enable real-time feedback and optimization of therapy,
ensuring maximum efficacy tailored to specific clinical
conditions.

Integrating sensors that monitor physiological para-
meters marks a significant advancement in phototherapy
device technology. These sensors enable real-time feed-
back and dynamic optimization of treatment parameters,
ensuring maximum therapeutic efficacy by adapting to
specific clinical conditions. Seamless integration of sen-
sors during device fabrication enhances functionality,
streamlines design, and creates compact, efficient systems
that reduce manual adjustments and improve adaptability
across diverse clinical scenarios. Future devices, lever-
aging advanced Internet of Things technologies, will
better meet clinical needs and address the growing
demand for professional phototherapy services in home
settings, further broadening the scope and impact of
phototherapy technology.

Future directions: towards intelligent and
integrated phototherapy systems

The rapid development of soft wearable and implan-
table sensors drives phototherapy devices toward
enhanced intelligence and integration. A range of wear-
able and implantable sensor devices (Fig. 6a), including
smart glasses'*!, smart contact lenses'**~'**, monitoring
headphones®, implantable EMG, EEG and ECG devi-
ces”, smartwatches'*!, microneedle patches79, tendon
sensors®®, and wound monitoring patches'®®, have been
developed to continuously monitor a wide variety of
physiological, biochemical, and behavioral indicators
(Fig. 6b).

In the treatment of chronically infected wounds
(Fig. 6¢), phototherapy devices integrated with sensors
collect key physiological and biochemical data, such as
pH, temperature, lactate, uric acid, and oxygen saturation,
providing real-time insights into wound infection and
healing progress'®® (Fig. 6b). These data are wirelessly
transmitted to cloud platforms, where deep learning
models, trained on large datasets, analyze the wound state,
and recommend optimized phototherapy parameters
(Fig. 6¢). Models are embedded into phototherapy devi-
ces, using algorithms like CNNs for image data, LSTMs
for time-series data, and Transformers for multimodal
spatiotemporal inputs. Reinforcement learning methods,
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including Deep Q-Learning, Policy Gradient methods,
and supervised control, refine the settings by learning
from therapeutic outcomes. Model feedback and online
learning further enhance adaptability, ensuring con-
tinuous optimization based on real-world data. This
intelligent system dynamically adjusts phototherapy
parameters—such as wavelength, intensity, and duration
—creating a closed-loop framework for precise, efficient,
and personalized wound management (Fig. 6¢).

Based on the integration strategy of phototherapy
devices with Al, Table 3 summarizes representative sen-
sors that could be integrated with phototherapy systems
in the future. Possible application scenarios are illustrated
in Fig. 6d, with their integration approaches described as
follows:

For the head, phototherapy devices based on optoge-
netics have been developed for the treatment of epi-
lepsy’”, Alzheimer’s disease'*>'*®, and depression'*’
(Figs. 1a, 6d). These devices can integrate with wearable
sensors, such as earbuds®® and smart contact lenses'*>1%3,
to monitor brainwaves, neural signals, and tissue oxyge-
nation levels (Table 3), enabling personalized optical
therapies tailored to the patient’s disease progression.
Additionally, facial sweat sensors**® and electrochemical
biosensors”® (Table 3) have the potential to be combined
with phototherapy masks®' and soft light-emitting patch'”
for applications in acne treatment'*’, pigmentation dis-
orders', and facial rejuvenation®” (Figs. 1a, 6d).

In the torso region, wearable microneedle sensors’”,
electrochemical sweat sensors'®', and smartwatches'*>
are capable of monitoring blood glucose levels, blood
oxygen saturation, heart rate, pulse, ECG signals, and
physical activity acceleration, providing valuable insights
into both cardiac and behavioral functions (Table 3).
These advancements support applications such as light-
based modulation of glucose metabolism®®, Parkinson®
and optogenetic cardiac pacemakers*'(Figs. 1a, 6d).
Moreover, integrating transcutaneous bilirubin sen-
sors'>?7°® with phototherapy garments'® enhances the
treatment of hyperbilirubinemia (Table 3), while implan-
table sensors combined with phototherapy devices hold
promise for simultaneously monitoring gastrointestinal
microbiota and modulating gut flora*® (Fig. 6d).

For the limbs, sensors that measure deep tissue oxygen
concentration®” and peripheral metabolites’® (Table 3),
when integrated with phototherapy devices, enable
closed-loop management of chronic infectious wounds,
offering new solutions for addressing diabetes-related
complications(Fig. 6d). Furthermore, optogenetic periph-
eral nerve modulation is becoming increasingly sophisti-
cated. For example, integrating implantable pressure
sensors with phototherapy devices allows precise regula-
tion of bladder pressure, providing a solution for urinary
dysfunction®®, Lastly, incorporating sensors capable of
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detecting visual evoked potentials and electroretinography
signals into phototherapy glasses allows real-time mon-
itoring of visual function and supports vision restoration
through targeted phototherapy”’ (Fig. 6d).

The future of intelligent phototherapy systems extends
beyond parameter adjustment to deep integration with
treatment feedback mechanisms. Through real-time data
analysis, these systems can detect subtle changes in dis-
ease states and automatically update Al models, further
enhancing treatment precision. The high level of inte-
gration between phototherapy devices and sensors
enables lightweight and non-invasive designs, making
them highly suitable for daily use in home settings.

In conclusion, the advancements in soft wearable and
implantable sensors, combined with the powerful data
processing capabilities of Al algorithms, provide a solid
foundation for the widespread application of intelligent
phototherapy devices. This direction not only enhances
treatment efficiency and safety but also advances the field

of precision medicine, offering personalized solutions for
a range of complex diseases.

Conclusions and future perspective

This review adopts the perspective of clinical photo-
therapy practitioners, addresses specific clinical needs,
and summarizes the extensive applications of photo-
therapy devices in the medical field. It highlights the
major challenges encountered during the implementation
of wearable and implantable phototherapy devices.
Drawing on advancements in photomedicine, materials
science, and soft electronics, the review proposes targeted
strategies to address these challenges, summarizes inter-
disciplinary research contributing to the future develop-
ment of phototherapy devices, and outlines a potential
fabrication roadmap for future devices. Furthermore, it
explores the integration of emerging Al technologies and
soft sensing modules to design closed-loop phototherapy-
monitoring systems for enhanced therapeutic outcomes.
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Building on the outlined challenges and strategies for
advancing phototherapy devices, it is essential to recognize
the transformative role of photomedicine in clinical prac-
tice. Photomedicine has emerged as a cornerstone in dis-
ease diagnosis and treatment, transitioning from its
historical role as an adjunct therapy to serving as a first-line
treatment for various conditions. It has demonstrated
remarkable efficacy in managing neonatal jaundice, wound
healing, pigmentary disorders, and vascular anomalies. This
transition underscores its value as a low-cost, highly pre-
cisive physical therapy. The increasing clinical relevance of
photomedicine necessitates its broader adoption, particu-
larly as advancements in technology continue to improve its
therapeutic precision and accessibility. Despite its promise,
significant challenges remain in the design and engineering
of wearable and implantable phototherapy devices. Wear-
able devices often face issues related to portability, perso-
nalization, illumination uniformity, and compatibility with
the mechanical and optical properties of target tissues. We
highlight the potential of OLED and pLED technologies,
combined with optical lenses and diffusion layers, to
improve illumination uniformity and facilitate miniatur-
ization through modular designs. On the other hand,
implantable devices, while offering more targeted treat-
ment, encounter limitations such as insufficient energy
supply, reduced durability, encapsulation leakage, and bio-
safety concerns. Novel biomaterials, multilayer thin-film
encapsulation, and soft or micro-batteries can be incorpo-
rated to enhance durability and biosafety. Additionally,
integrating sensors such as electrochemical, spectroscopic,
and electrophysiological systems enable closed-loop diag-
nostic and therapeutic capabilities, further advancing the
precision and effectiveness of phototherapy applications.

Advances in light-emitting and conductive materials are
also shaping the future of phototherapy devices. uLEDs
and OLEDs are identified as the most suitable light-
emitting materials due to their high efficiency, flexibility,
and biocompatibility. Similarly, liquid metals and
stretchable conductive polymers are emerging as pro-
mising candidates for soft active materials, enabling
devices to better conform to complex anatomical surfaces.
To realize the potential of these technologies, low-
temperature fabrication techniques are essential, parti-
cularly for new soft active materials that are sensitive to
high-temperature environments. Additionally, hybrid
organic-inorganic thin-film encapsulation and advanced
wearable/implantable power solutions further accelerate
the development of future phototherapy devices. To
support the development of next-generation photo-
therapy devices, we outline a comprehensive design fra-
mework that incorporates the selection of soft substrates,
active material deposition, and device schematics. This
framework provides a roadmap for researchers and
engineers to create devices that meet the stringent
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requirements of medical applications, including safety,
durability, and user-friendliness.

Finally, integrating AI with phototherapy devices
represents a significant opportunity to advance the field.
Leveraging wearable and implantable sensing technolo-
gies, Al has the potential to enable closed-loop systems
that combine diagnostic and therapeutic capabilities,
allowing for real-time adjustments to various clinical
applications. Such intelligent systems hold transformative
potential, as evidenced by proposed application scenarios
that demonstrate their ability to improve outcomes across
a range of medical conditions. These advancements
highlight the exciting future of photomedicine and its
growing role in precision healthcare.
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