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Hybrid cuprous halides enable high-sensitivity
luminescence lifetime thermometry with
exceptional water resistance

Yimin Yang' and Jialiang Xu@®'™

Abstract

A new type of hybrid cuprous halide (TPPsCu,Br,) is reported for luminescence lifetime thermometry, featuring both
extraordinary water stability and ultrahigh temperature sensitivity. This material overcomes the long-standing trade-off
between sensitivity and water resistance in metal halide-based thermometers, opening up new avenues for

temperature sensing in humid or agueous environments.

Optical temperature measurement technology, parti-
cularly strategies based on monitoring changes in optical
parameters (e.g., photoluminescence (PL) intensity or
lifetime) with temperature, has been widely applied in
temperature sensing' . However, traditional methods
(e.g., infrared thermal imagers), which primarily rely on
PL intensity measurements, are often susceptible to var-
ious interfering factors. These factors include, but are not
limited to: fluctuations in the excitation light source,
variations in sample concentration, the photobleaching
effect, sample scattering properties, and wavelength-
dependent absorption differences. These interference
sources may cause significant errors in the temperature
measurement methods based on PL intensity in practical
applications®”.

In contrast, PL lifetime-based optical temperature
measurement technology = demonstrates  significant
advantages. Since the PL lifetime essentially reflects the
duration of the excited state of the luminescent center, it
primarily depends on the intrinsic properties of the
material and its local environment (e.g., temperature), and
is relatively insensitive to external factors affecting PL
intensity (e.g., light source fluctuations, concentration
changes). Therefore, PL lifetime-based methods can fun-
damentally overcome the inherent limitations of
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traditional intensity-dependent temperature
methods (e.g,, infrared thermal imaging)'’.

At present, PL lifetime-based temperature sensing
materials primarily focus on two types of doped phos-
phors: Ln*"-ion-doped and ns*-ion-doped materials. For
Ln*"-doped materials (e.g., europium, terbium, and other
rare earth ions), their luminescence typically originates
from 4f-4f transitions. Due to effective shielding by the
outer 5s’5p° electron shell, these transitions are less
influenced by the surrounding crystal field environment,
resulting in an insufficiently large variation range (At) of
PL lifetime with temperature, which in turn limits their
temperature sensing sensitivity (S)* ™%, On the other
hand, ns*-ion-doped materials (e.g, Te*", Bi**, Sb>T,
Sn*") typically exhibit higher temperature sensitivity (i.e.,
larger At), but their PL lifetime is often very short
(nanosecond (ns) level). Such short lifetimes require
complex and expensive ultrafast time-resolved detection
systems (e.g., time-correlated single photon counting) and
short-pulse lasers, which significantly increase system
complexity and cost, limiting their widespread application
in most practical scenarios'®™*®, Therefore, the develop-
ment of new temperature-sensing materials that combine
high temperature sensitivity (i.e., a large PL lifetime
change rate) and long lifespan (for easy detection) has
become an urgent need in this field.

Opver the past decade, metal halides (MHs), as emerging
materials, have gained extensive attention in PL lifetime-
based temperature sensing'®~>*. Among them, organic-
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Fig. 1 Schematic diagram of water environment temperature sensing. Underwater temperature detection is achieved by exciting TPP3Cu,Br, in
water with 355 nm pump light to generate 524 nm green light. Benefiting from the excellent underwater stability and unique temperature-
dependent luminescence lifetime of TPP;Cu,Br,, in the field of underwater temperature sensing, the lifetime-based TPPsCu,Br, material
demonstrates extremely low error. This fully proves the reliability of lifetime-sensing technology in practical applications. Measured images
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inorganic hybrid metal halides (OIMHs) are particularly
notable owing to their significant temperature-dependent
structural characteristics. Upon heating, the thermal
motion of organic cations (or molecules) in OIMHs
intensifies, often leading to severe lattice expansion (e.g.,
phase transitions, structural distortions). This lattice
change induces defect states, alters exciton dynamics, or
affects electron-phonon coupling strength, thereby sig-
nificantly modulating the radiative recombination rate of
self-trapped excitons (STEs) in the material, ultimately
resulting in a strong temperature dependence of PL life-
time. OIMHs typically exhibit relatively long PL lifetimes
(microsecond (ps) to millisecond (ms) level), making them
highly suitable for the development of sensitive and easily
measurable PL lifetime-based thermometers®~>*, How-
ever, OIMH-based temperature sensing materials often
suffer from their poor water stability. Many OIMHs
decompose easily in humid environments or water, which
severely limits their practical application in scenarios
requiring water contact or high humidity (e.g., biomedi-
cine, environmental monitoring). Despite significant
progress in OIMH research, developing OIMHs with both
excellent water stability and high temperature sensitivity
in PL lifetime-based temperature measurement remains a
major challenge® 2",

A potentially effective strategy to overcome the water
stability challenge is the introduction of hydrophobic
organic molecules into OIMH structures. In a recent
study published in Light: Science & Applications, Xueyuan
Chen, Datao Tu, Luping Wang et al. addressed this
challenge by developing a zero-dimensional hybrid
cuprous halide, TPP3Cu,Br, (TPP = triphenylphosphine),

which simultaneously achieves ultrahigh temperature
sensitivity and exceptional water resistance®’. This
breakthrough stems from the unique design integrating
hydrophobic organic TPP molecules with [Cu,Br,]
dimers, creating a material that sets new performance
benchmarks for MH-based thermometers (Fig. 1).

The key feature of TPP3Cu,Br, is its extraordinary
temperature-dependent luminescence lifetime. Benefiting
from a TPP-induced soft lattice, the material exhibits
giant thermal expansion (3.6% volume increase from 300
to 380K), far exceeding that of typical MHs (<0.5%
expansion). This expansion drives significant lattice dis-
tortion, causing the STE luminescence lifetime to plum-
met from 51.2 s (280 K) to 0.97 s (380 K), retaining only
1.9% of its initial value. This dramatic change corresponds
to a maximum sensitivity (S,) of 12.82% K ', among the
highest for undoped MHs. Unlike conventional MHs that
degrade rapidly in water, TPP3Cu,Br; retains 97.3% of its
luminescence intensity after 15 days of immersion. This
resilience stems from hydrophobic TPP molecules form-
ing a protective barrier. Their large steric hindrance and
rigid conformation prevent water molecules from acces-
sing the hydrophilic [Cu,Br,] dimers. Additionally, strong
Cu-P covalent bonds in the lattice resist water-induced
ionization, further enhancing structural stability. When
used for underwater temperature sensing, TPP;Cu,Br,
(lifetime-based) exhibits minimal error (1.09 °C at 10 mm
depth), outperforming intensity-based methods that suffer
from increased light scattering and absorption at greater
depths. This underscores the robustness of lifetime-based
sensing in real-world applications. The integration of
ultrahigh sensitivity and water resistance in TPP3;Cu,Br,
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represents a pivotal advance in MH-based thermometry.
By leveraging the synergistic effect of organic-inorganic
hybridization, Chen et al. have not only resolved the long-
standing stability-sensitivity dilemma but also expanded
the application scope of luminescent thermometers to wet
environments—from monitoring microzone temperatures
in biological tissues to underwater industrial sensing.

Looking ahead, this work paves the way for exploring
hybrid metal halides with tailored organic components,
potentially unlocking even higher performance. As
researchers refine these materials, we can anticipate a new
generation of compact, robust, and highly sensitive ther-
mometers that redefine possibilities in both scientific
research and daily life.
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