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Finding the optical properties of plasmonic
structures by image processing using a
combination of convolutional neural
networks and recurrent neural networks
Iman Sajedian1, Jeonghyun Kim1 and Junsuk Rho 1,2

Abstract
Image processing can be used to extract meaningful optical results from images. Here, from images of plasmonic
structures, we combined convolutional neural networks with recurrent neural networks to extract the absorption
spectra of structures. To provide the data required for the model, we performed 100,000 simulations with similar
setups and random structures. In designing this deep network, we created a model that can predict the absorption
response of any structure with a similar setup. We used convolutional neural networks to collect spatial information
from the images, and then, we used that data and recurrent neural networks to teach the model to predict the
relationship between the spatial information and the absorption spectrum. Our results show that this image
processing method is accurate and can be used to replace time- and computationally-intensive numerical simulations.
The trained model can predict the optical results in less than a second without the need for a strong computing
system. This technique can be easily extended to cover different structures and extract any other optical properties.

Introduction
Recently, the use of deep neural networks in solving

scientific problems has increased, such as for finding
exotic particles in high-energy physics1 and predicting the
sequence specificities of DNA and RNA in biology2. In
nanooptics, these networks have been used in the design
and inverse design of nanophotonic structures3–6 and for
the design of chiral metamaterials7.
Research studies regarding the optical properties of

nanostructures all share a common theme, that is, con-
necting the geometric parameters of a structure to its
optical response, for example, relating the radius and
height of a cylinder to its reflection response. Although

this subject is interesting, the structure designs are limited
by the few geometric parameters.
Here, we show how these geometric limitations can be

overcome by simply using a 2D image of the desired
structure. We show that our model can predict the optical
response of any given structural image in less than a
second without the need for a strong computation system.
We first demonstrate how 3D structures can be converted
into 2D images, and then, we show how we use image
processing to extract the optical response of the given
structure. This method allows much more freedom in the
design of a structure compared with using only a few
geometric parameters.
The idea of using neural networks in image processing

has proved to be efficient, appealing to a number of
complex problems such as image classification8 and image
labeling9. Image classification is performed by convolu-
tional neural networks (CNN)8, which are advanced forms
of neural networks designed to extract data such as lines,
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curves, edges, and structure orientation from images10.
However, image labeling is performed by combining
CNNs with recurrent neural networks (RNN)11, which are
known for their ability to find relationships in data12.
We can use these techniques to extract the optical

response of a 3D structure from simple 2D images (Fig. 1).
Here, the optical response that we chose is the absorption
curve of a structure. Although CNNs are mostly used as a
tool for classification, as absorption curves are numerical
values, our problem is a linear regression problem13.
From previous research, we already know that the

optical response of a structure is owing to its shape, size,
and design. The CNN extracts the spatial information
from the image, such as the shapes and their locations,
and then, the RNN finds the relationship between the
image and its optical features.

Results
CNNs consist of layers that extract spatial information

from images. These networks extract this information by
analyzing subsections of the whole image and using the
results as new input data for other layers (Fig. 1). CNNs
usually consist of an input layer, convolutional layers,
pooling layers, dropout layers, fully connected layers, and
an output layer. Each layer can be switched on or off
according to the problem at hand13,14. RNNs use different

kinds of layers. Here, we used a gated recurrent unit
(GRU) layer15, which was more efficient than using long
short-term memory16.

Input data
With the goal of extracting optical responses from an

image, here, we focused on the absorption response, but
this method can be extended to any result as required. To
create a 2D image of a 3D structure, we used the fact that
if a structure is uniform in one dimension, the structure
can be defined in 2D space by its cross-section. For
example, an infinite cylinder can be approximated by a 2D
circle. In machine learning, values that are constant over
all of the input data can be omitted. Thus, under the
assumption that all the structures have the same thick-
ness, this dimension can be omitted from the input data.
Here, to create random structures, we fixed certain

geometrical properties and allowed complete freedom of
the shape. The structure was made of silver, the substrate
was glass, the height of the structure was 50 nm, the lat-
tice constant was set to 500 nm and the polarization of the
source was fixed. Periodic boundary conditions were
chosen to simulate an infinite array. A schematic of the
process is shown in Fig. 2. By fixing these parameters, we
did not change the physics of the problem, and all of the
necessary geometric information was maintained. That we
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Fig. 1 Structure of the deep learning model. a Convolutional neural networks are used to extract spatial features from an image of a structure by
extracting data from smaller parts of the image. b Recurrent neural networks are used to find the required optical response based on the features
extracted from the CNN
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used only one material type allowed us to use black and
white images for the input. If we wanted to use more
material types, we should use color images, which leads to
three additional channels for the input data (for red,
green, and blue). Using black and white pictures means
that wherever there is silver in our structure, there are
black pixels in the input image, and wherever there is no
silver, there are white pixels in the input image. The image
resolution is 100 × 100 pixels, so the resolution is high
enough to not lose any detail from the structure, but the
amount of data are small enough to avoid memory pro-
blems when trying to compile the model.
The resolution of the images was not related to the

meshing of the simulations. Accurate optical results were
first simulated with a fine mesh, and then, the image of
the structure was extracted at a lower resolution for image
processing. Although this procedure causes a certain
amount of data loss, a higher resolution image leads to a
much heavier computation load with relatively little gain.
Therefore, choosing the resolution is largely dependent
on the computational power available.
To ensure the accuracy of the model, using Lumerical, a

commercial finite-difference time-domain (FDTD) simu-
lation package, 100,000 simulations were prepared and
subjected to the model. Certain structures and their cor-
responding absorption curves are shown in Fig. 3. Each
simulation was run with 1000 frequency points, giving an
output of 1000 nodes for the model.

The input data of both the geometric designs and the
physical results had to include enough variance so that the
model could predict unseen structures, so the input
parameters were defined as follows and selected randomly
for each shape:

● Number of shapes in each structure (was chosen
randomly from one to six shapes)

● Type: circle, triangle, rectangle, ring, or polygon.
● Dimensions: width, radius, and length.
● Position: x and y.
● Rotation: 0–360 degrees.
This definition allowed enough freedom to cover all

possible outcomes.

Model layout and implementation
In preparing the model, there were a large number of

factors to optimize. Here, we optimized:
● The number of convolution layers.
● The number of nodes in each convolution layer.
● The shape of the strides used in the convolution

layers.
● The layout of the layers.
● The number of neurons in the fully connected layers.
● The activation functions.
● The loss function
● The optimizer and its hyperparameters.
We started by splitting our data into three parts. Sixty

percent of the data was used to train the model; this is the
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Fig. 2 Schematic of the process, from the 3D structure to the absorption curve output. Image processing can predict the absorption curve
from the 2D image of a given structure. A 3D structure with similar properties and different shapes can be modeled as 2D images. All the geometric
properties such as the lattice constant, material type, polarization, and thickness should be the same. Under these conditions, the shape of the
structure can be shown as a 2D image. This image is fed into a deep neural network. The network can predict the absorption curve from the given
images. The deep neural network is a combination of a CNN and an RNN
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training data set. Thirty percent of the data was used to
test the model; this is the test data set. The final ten
percent was used as the validation data set for validating
the model. The names of the validation and test data sets
are conventional, and certain researchers swap these
names. To assess the efficiency of the model, we changed
parameters such as the number of layers and checked the
model on the test data set. The final model chosen was the
model with the lowest loss on the test data set (loss is
defined in equation 1). That model was then used with the
validation data set. The validation stage assures that the
model works on unseen data.
The loss function was defined as the mean squared

error17:

M:S:E: ¼ 1
n

Xn

i¼1

Yi � Pið Þ2 ð1Þ

In equation 1, Y is the vector of real values, and P is the
vector of predictions. Batch normalization and weight
regularization were used to avoid overfitting.
The final layout for the model is shown in Fig. 4. The

model is a combination of a residual network CNN,
known as ResNet18, and a small RNN. The residual net-
work CNN is composed of groups of convolutional layers
followed by batch normalization (for regularization) and a
leaky relu layer for activation. The first group is followed
by a pooling layer for additional regularization. We used
shortcuts in three parts of our model. The shortcut is

defined as adding the output of a layer to the output of the
next layer. In this way, the gradients can flow back
through this shortcut to earlier layers, and deeper net-
works can be designed. As an example in the middle part
of Fig. 4, we added the output of leaky relu layer no. 4 (or
the input of convolution layer no. 6) to the output of
batch normalization layer no. 8. This technique was
shown by other researchers18 to give a better performance
than those of other model designs. After leaky relu layer
no. 10, we used a time distributed layer to prepare the
output of the CNN network for the input of the RNN
network. This method is a coding technique, as RNNs
require a special input shape. For the RNN network, we
used a GRU layer and connected this layer to the fully
connected layers (with 3000 nodes) with a flatten layer. A
flatten layer is another coding technique for preparing the
output of RNNs for the input of fully connected layers.
The fully connected layer with 3000 nodes is then con-
nected to the fully connected layer with 1000 nodes,
which is the output layer. We used 1000 frequency points
for our simulations. Thus, our network connects the input
image (the input of convolution layer no. 1) to the output
absorption curve (the output of the fully connected layer
with 1000 nodes).
The ResNet architecture has a few key properties, spe-

cifically that a very deep network can be defined without
getting a very small gradient18, and there are fewer
memory problems owing to the lower number of trainable

Variance in the input and output

Fig. 3 A selection of the images of random structures used as input to teach the model and their corresponding simulated absorption
curves. The light areas represent the silver structure and dark represents empty space. The absorption curves are shown for wavelengths of 800 nm
to 1700 nm. We removed the axes so that more structures can be seen
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parameters compared with other models owing to a
shortcut connection that results from the addition of a
layer to one or more of the next layers.
Owing to the complexity of the problem, although

various layouts for the model were tested, none of these
layouts produced acceptable losses. Thus, to teach the
model, more input data were needed. To prepare
100,000 simulations of input data, a CPU server with 28
Intel Xeon CPU E5-2697 v3 2.6 GHz cores was used, and
the simulations took 15 days to run.
To implement the model, Keras with the Tensorflow

backend was used, and the code was written in Python. A
GPU server with two GTX 1080ti graphics cards was used

for the implementation of the deep learning model, and
the deep learning model took ~1 week to run. The same
model would take much longer to run on a CPU server.
The lowest loss achieved for the validation data set after

500 iterations was 4.2591 × 10−05. The results of certain
structures are shown in Fig. 5. As the figure shows, the
model correlates very well to the simulated absorption
curves. The absorption curves shown in Fig. 5 are the
predicted values of absorption for each frequency by deep
learning compared with the computed values of absorp-
tion for each frequency by simulation. The prediction loss
can be further reduced by fine-tuning the model hyper-
parameters or layer design. However, achieving such a

Input Conv Pool

GRUFC

TimeDistr

: Image input : Convolutional layer

: Fully-connected layer

: Time distributed

: Gated recurrent unit

: Max-pooling layer

: Batch normalization

: Leaky relu activation

Input

Pool1

Conv2-128

Conv3-128

Conv5-256 Conv4-256

Conv1-64

Conv6-128

Conv7-128

Conv8-128

Conv9-128

Conv10-12

Conv11-25

BatchNor

BatchNor1

BatchNor6

BatchNor7

BatchNor8

BatchNor9

BatchNor10

BatchNor11

BatchNor2

BatchNor3

BatchNor5

Add1

Add2 Add3

BatchNor4

Leaky–relu

Leaky–relu1

Leaky–relu4

Leaky–relu5

Leaky–relu6

Leaky–relu7

Leaky–relu8

Leaky–relu9

Leaky–relu10

TimeDistr1

GRU1

Flatten1

FC-3000

FC-1000

Leaky–relu2

Leaky–relu3
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goal may take a very long time, as each run of the model
takes a long time. Thus, based on a personal evaluation of
the results or based on the problem type, one can decide
whether the final results are acceptable or can be
improved. This procedure is the same as that in FDTD
simulations, in which finer meshing leads to more accu-
rate results in exchange for heavier computation load. It is
not possible to increase the accuracy for a specific part,
and any change to the model is applied to all the outputs.
In Fig. 6a, we show the performance of the model on the

train and test data sets as the model progresses. To show
the steps inside each layer of the deep learning model and
how the model extracts features from the image, the
output of each layer is shown in Fig. 7 by simulating a
specific design. As the model goes deeper, a higher level of
features are extracted. For example, in layer 4, the CNN
decided that the edges of squares have a more important
effect on the outcome and thus neglected the inside of the
squares. A more detailed analysis of feature extraction
using CNNs can be found in the literature19.
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The final model can predict the absorption curve of any
given structure in less than a second, the same as any
other machine learning model. The prediction of the
results does not require much computational power, so
the prediction can be easily performed at home on most
consumer PCs, remotely over a website and even on a
smartphone. A user interface is needed to prepare the
images for the input of the model. A comparison between
the computation times of the simulation and deep
learning model is shown in Fig. 6b.

Discussion
The method introduced here can be easily adapted to

cover other structures and predict any optical outputs.
For example, to consider other thicknesses, simulations
for the desired thicknesses can be performed, and then,
the deep learning model can be used on the new data.
Next, both the images and the thicknesses are input. A
method to solve this problem is to add this extra factor to
the fully connected layers. Thus, after extracting the
spatial information from the image with the convolution
layers, the thickness parameter can be added by con-
catenating its array with the first fully connected layer.
This method leads to a model that can predict the optical
responses of different structures with different thick-
nesses. Different kinds of materials can also be used by
using color input images, where each material can be
assigned a specific color. To predict other optical
responses, the results desired in the training stage can be
input to the model. If we want the model to find any new
relationships between the input and the output (such as
the effect of thickness and using structures with different
materials), we should provide the model with enough
relevant data so that the model can learn from the data.

Based on the complexity of the desired relationship, the
amount of data can be small or large, which can be
determined by trial and error in the training stage.
The model above can also be used as a discriminator for

predicting structures with desired the absorption curves,
basically performing the same process but in reverse, by
using generative adversarial networks (GANs). GANs
consist of two neural networks, one network that suggests
a design, called the generator, and one network that
verifies the design, called the discriminator. The generator
starts from noisy images and improves with help from the
discriminator. By using a good model for the dis-
criminator, such as the model that we introduced here,
structures can be predicted to fit the desired optical
properties20–22. This model can be extended to com-
pletely replace an FDTD in a commercial package by
providing enough data and training structures or even
using 3D structures as the input of the model, which
means using 3D convolutional layers and similar deep
learning layers for 3D matrices. However, this extension
means a huge computational demand that is currently
impossible for normal users and maybe even large com-
panies but may be possible in the near future.

Conclusions
Here, a method using image processing instead of

numerical simulations to determine the optical properties
of structures was introduced. First, the technique for
converting 3D structures into 2D images was discussed.
These images were then used as inputs to the neural
network model for image processing, and unseen data
were used to check the accuracy of the model. We dis-
cussed how this model can be generalized for other
structures and how the model can be used to predict
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structures with desired optical properties. The final model
can predict the optical response of any structure from an
image in less than a second without the need for extensive
computing power.
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