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0.003°/h bias instability of honeycomb disk
resonator gyroscope achieved by mode reversal
combined mode deflection control method
Liangqian Chen1, Qingsong Li 1✉, Tongqiao Miao 1, Peng Wang1, Xuhui Zhang1, Yang Zhang1, Xuezhong Wu1 and
Dingbang Xiao 1

Abstract
Microelectromechanical systems (MEMS) gyroscopes with higher precision have always been a focal point of research.
Due to limitations in resonant structure, fabrication processes, and measurement and control techniques, MEMS
gyroscopes with bias instability better than 0.01°/h are still rare and expensive. This paper incorporates electrode
machining error and capacitance detection nonlinear error into the gyroscope model, resulting in a more
comprehensive bias output model. Based on this, a mode reversal combined mode deflection control method is
proposed to eliminate the thermal drift and decrease the bias instability of the gyroscope. Experimental results
demonstrate that compared with the traditional force-to-rebalance mode, the new method achieves a 595 times
reduction in bias variation during −40 °C to +60 °C temperature cycles and a 6.3 times reduction in bias instability at
room temperature. The average bias instability of honeycomb disk resonator gyroscopes can reach 0.003°/h at
integration times of 8500 s after applying the new method across three prototypes, which is the best reported
performance of the MEMS gyroscope thus far. This paper provides a new paradigm for achieving higher precision
MEMS gyroscopes.

Introduction
Nowadays, microelectromechanical systems (MEMS)

gyroscopes have broad market prospects in autonomous
navigation, north finding, unmanned systems, and precise
guidance due to their small size, low power consumption,
and mass production capabilities1,2. However, limitations
in device-level technology (e.g., materials of resonant
structure, fabrication processes, control methods) restrict
their potential for high-performance commercial and
military applications due to bias drift3,4. Lynch5 proved
that anisotropic stiffness and anisotropic damping cause
the bias drift of symmetrical gyroscopes. After mode-
matching and orthogonal coupling suppression6, smaller
errors, such as damping variation and capacitance
detection nonlinearity, will affect the bias instability (BI)
of the gyroscope.

For the bias error caused by damping variation (or
quality factor variation), one approach is to reduce the
variation of quality factor (Q-factor) with temperature by
additional tuning of Q-factor7–11, thereby reducing the
bias thermal drift of the gyroscope. On-chip temperature
control can also effectively mitigate Q-factor variation due
to temperature changes, further decreasing bias thermal
drift12,13. Another approach leverages the inherent
damping and vibration characteristics of symmetric
gyroscopes for self-calibration without additional hard-
ware, such as mode reversal and mode deflection. Mode
reversal realizes the difference of the damping asymmetry
error by periodically switching the driving mode and the
sensing mode. It has been validated as an effective method
for self-calibrating bias drift14–16. Mode deflection cor-
rects the vibration direction to align with the damping
axis, eliminating bias drift caused by damping error cou-
pling17. In addition, polynomial fitting compensation18

and fuzzy algorithm compensation19–21 are relatively
common bias drift compensation methods. However,
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these methods heavily rely on the repeatability of the
gyroscope, potentially leading to underfitting or over-
fitting over time. All the above methods can suppress the
bias drift of the gyroscope to some extent. However, in the
pursuit of higher precision, the researchers found that
some small terms neglected in previous modeling have
become the key to limiting the BI of the gyroscope22.
The electrode machining error of the gyroscope is an

easily neglected item in dynamic modeling. Electrode angle
error23 or assembly eccentricity error in micro-
hemispherical gyroscope24,25 will directly lead to coupling
between driving and sensing force signals. This results in
scale factor nonlinear errors and additional bias drift26. The
detection of nonlinear effects is common in capacitive
micro-resonators, and its effect on the scale factor27 (SF)
and signal-to-noise ratio28,29 (SNR) of the gyroscope has
been paid more attention, while its effect on the BI of the
gyroscope has rarely been discussed. In fact, the effect of
detection nonlinearity on the output of the rate gyro is often
ignored as a fixed value under the ideal dynamic model
without considering the machining error30. However, due to
the electrode error cannot be ignored in actual processing, it
is difficult for the gyroscope to maintain perfect output
stability over a longer time scale under the combined action
of electrode error and detection nonlinear effect.
In this paper, a mode reversal combined mode deflec-

tion (MRCMD) control method is presented, which is
suitable for a symmetrical vibrating gyroscope. Innovative
claims include the following:
1. The MRCMD control method is proposed and

realized for the first time, which is used to suppress
the bias drift caused by the coupling of various
minor errors in the gyroscope coupled vibration
model.

2. The gyroscope vibration model under the coupling
condition of electrode manufacturing error and
capacitance detection nonlinear error is analyzed.
According to the distribution regularity of
circumferential harmonics in the model, the
method of eliminating the second harmonics by
mode reversal and further eliminating the fourth
harmonics by mode deflection is proposed to
achieve a better suppression of the bias drift of the
gyroscope.

3. By suppressing multiple harmonics separately, the
bias drift of the gyroscope under the combined
action of electrode manufacturing error and
detection nonlinear error is greatly suppressed.
The average BI of 0.003°/h is achieved on three
gyroscopes. According to the authors' knowledge,
this is the best average BI reported so far MEMS
gyroscope.

Compared with other methods mentioned above, this
control method can achieve bias suppression of the

gyroscope in the condition of joint nonlinear detection of
electrode manufacturing errors, eliminating the need for
complex multiple error calibration, and is suitable for any
mode-matching MEMS gyroscope.

Results
Description of structure and control system
The structure of the honeycomb disk resonator gyro-

scope (HDRG) and its conventional force-to-rebalance
(FTR) mode control system are shown in Fig. 1a. The
HDRG mainly consists of multiple honeycomb-shaped
ring frames composed of numerous spokes connected
with a central anchor point. To achieve a higher Q-factor,
a circle of lumped mass is suspended in the outer ring31.
The inner ring and outer ring of the structure contain a
large number of electrodes, including driving electrodes
(DE), sensing electrodes (SE), and tuning electrodes for
achieving quadrature tuning (QT) and frequency tuning
(FT). Details and dimensions regarding the optimization
design of HDRG can be found in previous work32,33.
HDRG operates in the wine-glass mode with n= 2. The
operating frequency of the gyroscope is approximately
4.2 kHz, and the Q-factor is about 570 k (ref.34).
The classical FTR control system consists of four pri-

mary control loops: the automatic gain control (AGC)
loop, the phase-locked loop (PLL), the quadrature control
loop, and the in-phase control loop. These loops respec-
tively control the driving amplitude, phase, quadrature
signal, and in-phase signal of the gyroscope. Specifically,
the PLL controls the resonator to vibrate at its natural
frequency, and the AGC loop keeps the HDRG vibrating
with a constant amplitude along the driving axis. The
quadrature control loop minimizes the quadrature signal
along the sense axis to zero by adjusting the axis-tuning
voltage. The in-phase control loop realizes the angular
velocity detection by counteracting the vibration dis-
placement caused by the Coriolis force along the sensing
axis. In addition, mode matching can be achieved by
applying a frequency-tuning voltage to the FT electrodes.
Since the geometric dimensions of a single electrode are
relatively small compared to the entire resonator, in order
to simplify the calculation, parallel-plate capacitors are
used for demonstration in the subsequent modeling.

Effects of capacitance detection nonlinear error
The schematic diagram of the capacitance detection

nonlinear effect is shown in Fig. 1b. When the gyroscope
vibration displacement is small, the detection nonlinearity
is weak, and the relationship between the vibration
amplitude and the detection voltage can be regarded as
linear. However, for a better SNR, a larger vibration dis-
placement is often required. With the increase of vibra-
tion displacement, the detection nonlinearity is gradually
enhanced, which will cause the detection signal distortion.
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For HDRG, all capacitors in the outer ring have the same
areas. The driving and sensing of HDRG are both
achieved through two pairs of differential capacitors. For
the differential capacitance used in HDRG, the Fourier
expansion of differential capacitance variation can be
expressed as:

ΔCd ¼ 2 C � C0ð Þ ¼ 2 εA
d0�Δx � εA

d0þΔx

� �

¼ 4εA Δx
d0

2 1þ Δx
d0

� �2
þ O Δx

d0

� �4
� �

� 4εA Δx
d0

2 1þ Δx
d0

� �2
� �

ΔCs � 4εA Δy
d0

2 1þ Δy
d0

� �2
� �

ð1Þ

where, ε is the dielectric constant of the air, A is the
equivalent area of the capacitor plate, d0 is the
capacitance gap, Δx and Δy represents the directional
vibration displacement of the DE and SE of the resonant
structure. After high-frequency carrier demodulation, the
detected signal can be expressed as:

V deo � kd 1þ Δx
d0

� �2
" #

Δx; V seo � ks 1þ Δy
d0

� �2
" #

Δy

ð2Þ

where, kd ¼ �4εAK 1

d20
, ks ¼ �4εAK 2

d20
can be regarded as the

conversion gain of the two pairs of driving and SE to
convert the displacement signal into the voltage signal. K1

and K2 represent the circuit gain.

When the gyroscope works in the FTR mode and the
angular velocity input is zero. We define x̂ ¼
jxj cosωdt; ŷ ¼ 0 as the displacement of vibration. It is
assumed that the gyroscope vibrates in the direction of an
arbitrary angle α, then:

Δx

Δy

� �
¼ xα

yα

� �
¼ p

x̂

ŷ

� �
¼ cos α sin α

� sin α cos α

� � jxj cosωdt

0

� �

¼ jxj cosωdt cos α

�jxj cosωdt sin α

� �

ð3Þ

where xα is the vibration displacement in the driving
mode direction, yα is the vibration displacement in the
sensing mode direction, and p is denoted as the deflection
matrix.
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Fig. 1 Structure, control system, and errors of the HDRG. a Structure of the HDRG and schematic diagram of the basic FTR control system. b The
schematic diagram of the capacitance detection nonlinear effect. c The schematic diagram of the electrode misalignment error
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Substituting Eqs. (3) into (2), there is:

Vdeo � kdjxj cos α cosωdt þ kd
jxj3
d0

2 cos3αcos3ωdt

¼ kdjxj cos α 1þ 3
4

jxj
d0
cos α

� �2
� �

cosωdt

þkd
jxj3
4d0

2 cos3α cos 3ωdt

V seo � �ksjxj sin α 1þ 3
4

jxj
d0
sin α

� �2
� �

cosωdt

�ks
jxj3
4d0

2 sin3α cos 3ωdt

ð4Þ

After the signal is demodulated and low-pass filtered,
the higher harmonics other than the first harmonic will be
removed, so the actual output effective signal is:

Vdeo ¼ Ndjxj cos α cosωdt; Vseo ¼ �Nsjxj sin α cosωdt

ð5Þ
where

Nd ¼ kd 1þ 3
4
P0

2cos2α

� �
; Ns ¼ ks 1þ 3

4
P0

2sin2α

� �

ð6Þ
represent the nonlinear gain of the driving electrode and
the sensing electrode, respectively. In addition, defined
P0 ¼ jxj=d0 as the normalized amplitude of vibration.
Then the displacements of the gyroscope on the driving

electrode x and the sensing electrode y can be expressed as:

x

y

� �
¼ Nd 0

0 Ns

� �
x̂

ŷ

� �
¼ Nd 0

0 Ns

� �
p�1 xα

yα

� �
ð7Þ

For HDRG, the equation of motion can be expressed as35:

€x

€y

� �
þ

2
τ þ Δð1τÞ cos 2θτ Δð1τÞ sin 2θτ
Δð1τÞ sin 2θτ 2

τ � Δð1τÞ cos 2θτ

" #
_x

_y

� �

þ ω2 þ ωΔω cos 2θω ωΔω sin 2θω
ωΔω sin 2θω ω2 � ωΔω cos 2θω

� �
x

y

� �

¼ 1
meff

f x
f y

" #
þ 2nAgΩ

_y

� _x

� �

ð8Þ

where

ω2 ¼ ω2
1 þ ω2

2

2
; ωΔω ¼ ω2

1 � ω2
2

2
;
2
τ
¼ 1

τ1
þ 1
τ2

;

Δ
1
τ

� �
¼ 1

τ1
� 1
τ2

ð9Þ

meff is the effective mass of the HDRG, Ag is the angular
gain, Ω is the angular velocity, ω is the average natural
frequency, ω1 and ω2 are the natural frequency along the
two stiffness axes, τ is the average damping time constant,
τ1 and τ2 are the damping time constants along the two
damping axes, θω is the deflection angle (DA) of the stiffness
axis, θτ is the DA of the damping axis, and n is the modal
number, f x and f y represent the driving and sensing force.
Under the condition of zero angular velocity input,

substituting Eqs. (7) into (8), when the gyroscope works in
the FTR mode, the closed-loop axis-tuning voltage will
suppress the quadrature signal to zero, and the solution
can be obtained:

ΩZROðαÞ ¼ 1
2nAg

Δ 1
τ

� 	
sin 2 θτ � αð Þ 1þ 3

8P0
2

� 	


� 1
τ
3
16 P0

2 sin 4αþ 3
8P0

2 cos 2α

 �

Δ 1
τ

� 	
sin 2θτ

�

ð10Þ

The circumferential zero-rate output (ZRO) of the
HDRG can be expressed as the superposition of the sec-
ond and fourth harmonics related to the mode angle α. As
shown in Fig. 2a, the circumferential distribution of bias
under different P0 conditions can be seen through the
simulation of numerical analysis. With the increase of P0,
the fourth harmonics are gradually excited and affect the
circumferential distribution of bias. Similarly, the cir-
cumferential distribution of bias at different θτ angles is
shown in Fig. 2b. θτ mainly affects the circumferential
distribution of second harmonics.

Effects of electrode machining error
The schematic diagram of electrode misalignment error

is shown in Fig. 1c. Due to the limitation of micro-
machining technology level, electrode errors in micro-
gyroscope machining are still unavoidable. In the FTR
mode, the force coupling error caused by electrode mis-
alignment error can be expressed as:

f̂ x
f̂ y

" #
¼ cos α1 � sin α2

sin α1 cos α2

� �
f x
f y

" #
ð11Þ

where α1 is the angle error of the DE, and α2 is the angle
error of the SE.
Similarly, assuming that the gyroscope vibrates in the

direction of any circumferential angle α, then:

f xα
f yα

" #
¼ cosðα� α1Þ sinðα� α2Þ

� sinðα� α1Þ cosðα� α2Þ

� �
f x
f y

" #
¼ r

f x
f y

" #

ð12Þ
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Denote r�1 as the new coupled deflection matrix
replacing the deflection matrix p in Eq. (7), then:

x

y

� �
¼ Nd 0

0 Ns

� �
x̂

ŷ

� �
¼ Nd 0

0 Ns

� �
r

xα
yα

� �
ð13Þ

In this way, the dynamic equation model is obtained
when both the detection nonlinear error and the electrode
angle error are considered. Under the condition of zero
angular velocity input, substituting Eqs. (13) into (8),
when the gyroscope works in the FTR mode, the closed-
loop axis-tuning voltage will suppress the quadrature
signal to zero, and the solution can be obtained:

The influence of α1 and α2 on the circumferential dis-
tribution of bias is shown in Fig. 2c, d. With the further
introduction of angular errors, the circumferential dis-
tribution of bias becomes too complex to predict. It is easy
to find that when the two errors are coupled together, it is
difficult to analyze and identify one of the errors sepa-
rately. Naturally, such a complex equation can also be
viewed as a superposition of a constant and the second
and fourth harmonics associated with the mode angle α:

ΩZROðαÞ ¼ 1
2nAg

1
4 cosðα1 � α2Þ

�½A sinð4αþ φ1Þ þ B sinð2αþ φ2Þ þ C�
ð15Þ
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ΩZROðαÞ ¼ 1
2nAg

1
4 cosðα1�α2Þ

�

�Δð1τÞ½sinð2αþ 2θτ � α1 � α2Þ þ sinð2α� 2θτ � α1 � α2Þ�ð2þ 3
4P0

2Þ
þΔð1τÞ½sinð2θτ þ α1 � α2Þ � sinð2θτ � α1 þ α2Þ�ð2þ 3

4P0
2Þ

þΔð1τÞ½� sin 2ðα� θτ � α1Þ þ sin 2ðαþ θτ � α1Þ�ð1þ 3
4P0

2sin2αÞ
þΔð1τÞ½� sin 2ðα� θτ � α2Þ þ sin 2ðαþ θτ � α2Þ�ð1þ 3

4P0
2cos2αÞ

þ 4
τ ½� sinð2α� α1 � α2Þ þ sin 2ðα1 � α2Þ�ð38P0

2 cos 2αÞ þ 2Δð1τÞ sin 2θτð38P0
2 cos 2αÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð14Þ
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where

A sinð4αþ φ1Þ ¼ 3P0
2

2τ � sin 2α� α1 � α2ð Þ cos 2α½ �
þ 3

8 P0
2Δð1τÞ cos 2α � � sin 2ðα� θτ � α1Þ½

þ sin 2ðαþ θτ � α1Þ þ sin 2ðα� θτ � α2Þ
� sin 2ðαþ θτ � α2Þ�

ð16aÞ

B sinð2αþ φ2Þ ¼ 3
4 P0

2 cos 2α½2τ sin 2ðα1 � α2Þ þ Δð1τÞ sin 2θτ �
þð1þ 3

8P0
2ÞΔð1τÞ � ½� sin 2ðα� θτ � α1Þ

þ sin 2ðαþ θτ � α1Þ
� sin 2ðα� θτ � α2Þ þ sin 2ðαþ θτ � α2Þ�
�ð2þ 3

4P0
2ÞΔð1τÞ � ½sinð2αþ 2θτ � α1 � α2Þ

þ sinð2α� 2θτ � α1 � α2Þ�
ð16bÞ

C ¼ 2þ 3
4
P0

2

� �
Δ

1
τ

� �
½sinð2θτ þ α1 � α2Þ � sinð2θτ � α1 þ α2Þ�

ð16cÞ

Error suppression method
According to Eqs. (15) and (16), the classical mode

reversal36 can easily eliminate the second harmonic error
term. When the driving angle α is 0° and 90°, respectively:

BRE ¼ 1
2
ΩZROð0�Þ þΩZROð90�Þ½ � ¼ kα A sinφ1 þ C½ �

ð17Þ

where kα ¼ 1
2nAg

1
4 cosðα1�α2Þ. Equation (17) can be expressed

as the bias residual error (BRE) in classical mode reversal. For

this part of the error, when the driving angle α changes:

BREðαÞ ¼ kα½A sinð4αþ φ1Þ þ C� ð18Þ

It is natural to think that the mode reversal, combined
with mode deflection, can be used to remove BRE. For
HDRG, the damping angleθτ is found to be almost invar-
iant with temperature in ref.17. This means that the ratio
between the Δð1=τÞ and 2=τ is also almost invariable with
temperature. Because the deformation caused by vibration
is small relative to its geometric size, the electrode angle
error α1 and α2 is also considered unchanged after the
completion of machining. Then the derivative of Eq. (18)
with respect to temperature can be expressed as:

d½BREðαÞ�
dT

� kα
∂A
∂T

sinð4αþ φ1Þ þ
∂C
∂T

� �
ð19Þ

where T is temperature. The simulation results of numerical
analysis are shown in Figs. 2e, f. In FTR mode, the bias and
drift are large, and the circumferential distribution is very
complex. After mode reversal, the bias and drift are smaller,
and the circumferential distribution is simpler. The drift can
be suppressed by deflecting the gyro vibration direction to
the mode angle where the drift is zero. Therefore, by setting
Eq. (19) to zero, a definite α can be obtained so that the BRE
is no longer sensitive to temperature. In this way, the bias
drift of the gyroscope can be eliminated.

Implementation of the MRCMD control method
Figure 3 shows the control scheme of the MRCMD.

Compared to the FTR control mode, the content in the
black dotted box is extra. The set DA α and reversal control
time sequence can be input into the FPGA. The displace-
ment signal and the force signal pass through the deflection
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Fig. 3 Schematic diagram of the mode reversal combined mode deflection control system. Schematic diagram of the MRCMD control system
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matrix p and p�1 respectively to realize the deflection of
the vibration mode. Compared with the FTR mode, the DA
of the vibration mode is α. A pair of virtual switches (VS) is
set between the driving loop and the sensing loop. VS can
switch between option 1 and option 2 according to the set
time sequence controller. When VS is in option 1, the
signal received from SE enters the sensing loop, while the
signal received from DE enters the driving loop. In this
case, HDRG works in the state of αþ 0�. When VS is in
option 2, the signal received from DE enters the sensing
loop, while the signal received from SE enters the driving
loop. At this time, HDRG works in the state of αþ 90�.
Figure 4 shows the working time sequence diagram with

MRCMD of the HDRG. The gyroscope operates alternately
in mode 1 (α ¼ αþ 0�) and mode 2 (α ¼ αþ 90�) for every
constant period. The working time and transition time
settings for each cycle can be found in previous work37,38.
The transition time is determined by the decay time of the
resonant structure and the controller. The working time, on
the one hand, needs to evaluate the bias characteristics of
the gyroscope, and on the other hand, it needs to be
balanced with the transition time to achieve a larger avail-
able data ratio. In this paper, the working time for each
mode is set to 60 s, and the transition time is set to 20 s.

Calibration of DA
Based on the established error model and control system,

the identification experiment of DA is performed. Firstly, the
circumferential bias distribution of HDRG is tested. Since
the QT electrodes are located at α= 45°, 135°, 225°, and
305°, the axis-tuning voltage needs to become large as DA
approaches these angles. Therefore, it is necessary to turn off
the quadrature control loop in Fig. 3 and use the force-
controlled quadrature mode instead when measuring the
entire circumferential bias distribution. The HDRG is fixed
on a stable surface, we used a marble table. The DA α of the
HDRG was changed from 0° to 720° at a rate of 2°/s. The
angular rate of the output is fitted as Eq. (15). The experi-
mental results are shown in Fig. 5a. The raw data is repre-
sented by black dots, and the fitted curve is represented by
an orange curve. The second harmonic term, fourth har-
monic term, and constant term represented in Eq. (15) are
respectively represented by green, blue, and magenta curves.
In addition, since DA changes at a rate of 2°/s, the constant
term C in Eq. (15) should be the magenta curve minus 2°/s.
It can be seen that the second harmonic term still occupies
the main component of the circumferential bias. Then, the
fitting residual after only second harmonic fitting and fur-
ther after fourth harmonic fitting is shown in Fig. 5b. It can
be seen that after the fourth harmonic fitting, the fitting
residual is obviously suppressed.
Identification of DA α is performed according to

Eq. (19). The condition for obtaining the target α is to
make the derivative of BRE with respect to temperature
zero. Select the temperature range of ½T1;T2�. By inte-
grating Eq. (19) along ½T1;T2�, the drift over this tem-
perature range can be obtained:

DriftðαÞ ¼ R T2

T1

d½BREðαÞ�
dT

¼ kα½ðAT2 � AT1Þ sinð4αþ φ1Þ þ ðCT2 � CT1Þ�:
ð20Þ

Since only the fourth harmonic term and the constant
term are involved in Eq. (20), there must be at least two α in
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Fig. 4 Working time sequence diagram with mode reversal
combined mode deflection of the HDRG. Working time sequence
diagram with MRCMD of the HDRG
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the range [−45°, 45°] to make the drift zero. In order to
avoid excessive axis-tuning voltage, the measurement range
of [−40°, 40°] is selected in this paper. Select two tempera-
ture points T1 and T2, and put the gyroscope in the tem-
perature test chamber at α ¼ �40�, and the bias of mode 1
and mode 2 is tested, respectively. In order to reduce the
impact of noise, each mode is tested for 30 s of valid data.

BRE is calculated by Eq. (17). And the average value is taken
as the final result. Set the step of the DA change to 1°. The
next step is to control the HDRG at α ¼ �39� and repeat
the above steps until the measurement is complete in the
[−40°, 40°] range. Then set the constant temperature in the
temperature test chamber to T2, and repeat the test. In this
paper, T1 is set to −40 °C and T 2 is set to 60 °C. The BRE
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drift measured between T1 and T2 is shown in Fig. 5c. It can
be seen that the curve has three points of intersection with 0,
so the choice of DA is not fixed. Generally, the intersection
closer to α ¼ 0� has the least nonlinearity of capacitance
detection when there is no angular velocity input. Therefore,
α ¼ 2:7� it is selected in this paper.

Gyroscope performance characterization
In order to verify the effectiveness of MRCMD, the

thermal bias of the HDRG was tested under temperature
cycling conditions ranging from −40 °C to +60 °C. The
rate of temperature variation is set at 1 °C/min. Two
temperature cycles were tested when the same HDRG
worked in FTR mode, mode reversal, and MRCMD,
respectively, and the results are shown in Fig. 6a. For ease
of observation, the data were moving averaged for 100 s.
In FTR mode, the bias variation is 125.03°/h, while in
mode reversal, the bias variation is reduced to 10.67°/h.
When operating at MRCMD, the bias variation is further
reduced to 0.21°/h. The test data of the two modes are
shown in Fig. 6b. It can be seen that after mode deflection,
the bias variation of the two modes becomes very sym-
metrical, so further mode reversal can get better results.
In addition, in order to verify the universality of the
method, two temperature cycles are tested on all three
HDRGs operating at MRCMD. For ease of observation,
the data were moving averaged for 1000 s. As shown in
Fig. 6c, the bias variations of the three gyroscopes are
respectively 0.32°/h, 0.50°/h, and 0.21°/h. The average bias
variation is 0.34°/h. The bias thermal drift is well
eliminated.
The BI of the same HDRG operating in FTR, mode

reversal, and MRCMD was tested at room temperature.
Each bias test lasts for more than 17,000 s. As shown in
Fig. 6d, in the FTR mode, the BI is 0.01503°/h, while in
mode reversal, the BI is reduced to 0.00818°/h. When
operating at MRCMD, the BI is further reduced to
0.00238°/h at integration times of 8500 s. In addition, it is

also verified on three HDRGs. As shown in Fig. 6e, the BI at
room temperature is 0.00406°/h, 0.00256°/h, and 0.00238°/
h, respectively. The average BI reaches 0.003°/h at inte-
gration times of 8500 s, which, to the best of the authors’
knowledge, is the best average BI for MEMS gyroscopes
reported to date. Even more excitingly, the BI still has the
potential to be further reduced because the slopes of the
curves remain negative when approaching 8500 s.
Under different operating modes, the room temperature

BI and the bias variation under temperature cycle of
HDRG are shown in Fig. 6f. It can be seen that the
method proposed in this paper has a significant effect on
improving the precision of the gyroscope, and this
method is universal. The reported performance of MEMS
gyroscopes in different operating modes is shown in
Table 1. Compared with other high-precision MEMS
gyroscopes, it can be found that the MRCMD method
proposed in this paper improves the gyroscope perfor-
mance to a new level.

Discussion
In this paper, a new control method of the MEMS

gyroscope with MRCMD is proposed to improve the BI
and thermal drift. In addition to the anisotropic stiffness
and anisotropic damping error that are often discussed.
This paper explores even smaller errors in a MEMS
gyroscope that is actually fabricated. Specifically, the zero-
rate output model of the gyroscope is obtained when the
electrode machining error and capacitance detection
nonlinear error are coupled together. The MRCMD
control scheme is proposed according to the bias cir-
cumferential output regularity. And the identification of
DA is realized by using the circumferential bias output
after mode reversal. The experimental results show that
the new control method is effective in eliminating thermal
drift and improving BI. Moreover, this method has no
additional hardware cost and has a driving effect on the
development of higher-precision MEMS gyroscopes.

Table 1 Performance summary of the MEMS gyroscopes

Work Type Operating mode Temperature range (°C)/bias variation (°/h) BI (°/h)

39 Disc FTR/mode reversal – 0.012

40 Dual mass FTR – 0.016

41 Tuning fork Open-loop sense – 0.02

4 Tuning fork Open-loop sense 35 to 85/<0.4 <0.02

42 Dual suspended masses FTR/whole-angle 40 to 90/<0.7 0.007

43 Disc FTR – 0.04

44 Micro-shell Whole-angle – 0.029

17 HDRG Mode deflection −40 to 60/1.22 0.014

This work HDRG MRCMD −40 to 60/0.34 0.003
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