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Abstract
Recent advances in artificial intelligence, particularly in the field of deep learning, have enabled researchers to create
compelling algorithms for medical image analysis. Histological slides of basal cell carcinomas (BCCs), the most frequent
skin tumor, are accessed by pathologists on a daily basis and are therefore well suited for automated prescreening by neural
networks for the identification of cancerous regions and swift tumor classification.

In this proof-of-concept study, we implemented an accurate and intuitively interpretable artificial neural network (ANN)
for the detection of BCCs in histological whole-slide images (WSIs). Furthermore, we identified and compared differences in
the diagnostic histological features and recognition patterns relevant for machine learning algorithms vs. expert pathologists.

An attention-ANN was trained with WSIs of BCCs to identify tumor regions (n= 820). The diagnosis-relevant regions
used by the ANN were compared to regions of interest for pathologists, detected by eye-tracking techniques.

This ANN accurately identified BCC tumor regions on images of histologic slides (area under the ROC curve: 0.993, 95%
CI: 0.990–0.995; sensitivity: 0.965, 95% CI: 0.951–0.979; specificity: 0.910, 95% CI: 0.859–0.960). The ANN implicitly
calculated a weight matrix, indicating the regions of a histological image that are important for the prediction of the network.
Interestingly, compared to pathologists’ eye-tracking results, machine learning algorithms rely on significantly different
recognition patterns for tumor identification (p < 10−4).

To conclude, we found on the example of BCC WSIs, that histopathological images can be efficiently and interpretably
analyzed by state-of-the-art machine learning techniques. Neural networks and machine learning algorithms can potentially
enhance diagnostic precision in digital pathology and uncover hitherto unused classification patterns.

Introduction

Digital pathology, i.e., the management and clinical inter-
pretation of information retrieved from digitalized histology
slides, aims to improve the safety, quality, and accuracy of
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pathological diagnoses [1]. Digital pathology in combina-
tion with machine learning can extend the scope of digital
pathology far beyond the possibilities of today [2].
Although there have been great advances in the field of
medical imaging using artificial intelligence (AI), con-
siderable challenges in the field of histopathology remain.

First, methods for machine learning in histopathology
traditionally use downscaling of whole-slide images
(WSIs), online repository WSIs, handcrafted features or
manually annotated regions of interest (ROI) [3]. In con-
trast, real-life pathological cases consist of many WSIs
accompanied by the patient’s (single) diagnosis and
demographic metadata (weakly labeled data). Since WSIs,
due to their size, cannot be processed through a neural
network as a whole at full resolution, one approach is to
split the information into several tiles. In the case of cancer
detection, however, only some tiles contain cancerous tissue
[4, 5]. Thus, parts relevant for the diagnosis might be
missed by this approach as tiles for classification are com-
monly chosen randomly [6]. Skin neoplasm WSI classifi-
cation using machine learning is an emerging field with
several publications in the recent past. A common approach
is multiple instance learning (MIL), a method that benefits
from the property that “bags” of “instances” can be classi-
fied labeled only on the bag—but not on the instance level
(=weakly labeled). In histopathology a “bag” is a single
WSI that is weakly labeled, e.g., as “basal cell carcinoma”
(BCC) or “non-BCC.” The WSIs are divided into non-
overlapping smaller images (tiles) that represent the
“instances” of the “bag” (see also tiling in Supplementary
Fig. 2) [5, 7, 8]. Campanella et al. [5] successfully used an
MIL method for the classification of prostate carcinoma,
BCC of the skin, and breast cancer metastases using a
recurrent neural network as a classifier. In another study,
deep learning outperformed 11 pathologists in the classifi-
cation of histopathological melanoma images [9]. However,
the second challenge, namely interpretability, remains.
Interpretability and the process of learning and decision-
making of AI in comparison to humans is a key question in
modern health care. Interestingly, it has been shown that
human and machine attention do not coincide in natural
language processing [10, 11]. A recent study that compares
human and artificial attention mechanisms in various
applications demonstrates that in addition to differences, the
closer the artificial attention is to human attention, the better
the performance [11]. Such studies are important for mak-
ing deep networks more transparent and explainable for
higher-level computer vision tasks.

In the present study, we generated automated detection
of BCCs, the most common skin tumor [12, 13], on WSIs
via an artificial neural network (ANN) using MIL with an
“attention” classifier that efficiently differentiates tumors
and healthy skin on a slide (=bag) level. As there are no

data on the differences in human and machine attention in
dermatopathology, we closely studied the regions of the
images that formed the basis for the predictions of the ANN
and compared those with the diagnosis-relevant regions of
pathologists using eye-tracking techniques.

Materials and methods

Data set

Sections of BCCs and normal skin were stained with
hematoxylin and eosin (H&E, n= 820 slides) for routine
diagnoses. H&E-stained images were scanned with Aperio
scanners (Leica Biosystems Division of Leica Micro-
systems Inc., Buffalo Grove, USA) at maximum available
resolution (2 pixels per micron). Images were retro-
spectively collected at the Kepler University Hospital and
the Medical University of Vienna for analysis by machine
learning methods, with consent by ethics votes number
1119/2018 (Ethics committee of the Federal State Upper
Austria) and 2085/2018 (Ethics committee of the Medical
University of Vienna), respectively. The images were col-
lected, including metadata: diagnosis of the lesion, age of
the patient, gender, and a pseudonymous patient identifier
(to avoid lesions from the same patient ending up in both
data sets (training or test set)). A total of 601 of the WSIs
show BCCs, and 219 show only normal skin. The samples
were categorized (BCC or non-BCC) independently by two
board-certified pathologists. This set of 820 images was
randomly split into 132 (16%) test images and 688 (84%)
training images. Twenty percent of the training set was used
for validation during hyperparameter tuning. The median
size of the WSIs was 56,896 × 26,198 pixels, with heights
ranging from 6884 to 47,939 and widths ranging from 7360
to 99,568 pixels.

Neural networks

We implemented neural network architectures based on two
approaches [14]. The first approach represents a baseline
architecture. It is a convolutional neural network (CNN)
using downsized WSIs (1024 × 1024 pixels with white
padding). The CNN consists of five blocks of
convolution–convolution–maxpooling and utilizes scaled
exponential linear unit (SELU) activation functions (Sup-
plementary Fig. 1) [15]. The architecture and the hyper-
parameters of this CNN were optimized on a validation set
using manual hyperparameter tuning. The network was
trained with stochastic gradient descent (SGD).

The second ANN architecture is composed of two
independent ANNs, one feature constructor CNN, and one
classification ANN (Supplementary Fig. 2). WSIs were split
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into tiles of size 224 × 224 pixels, as this is the image input
size for the VGG11 NN architecture. Empty tiles were
removed via pixel statistics (the average color intensity cp of
all pixels for each tile was calculated, the maximum cmax of
each WSI was calculated, and all patches with cp higher
than 0.95 × cmax were removed and considered empty).
Nonempty tiles in mini-batches of 32 were used as input for
the feature constructor CNN. Each tile was normalized to 0
mean and unit variance. We used a VGG11 network pre-
trained on ImageNet [16] as the feature constructor CNN.
The softmax function was removed, and the 1000-
dimensional output of each tile was saved as “representa-
tion.” The representations of all tiles from a WSI were used
as mini-batch input for the classification ANN, which is
based on MIL. The classification ANN was either (a) a
mean of the resulting network predictions, (b) a maximum
of the resulting network predictions, or (c) an attention
classifier according to Ilse et al. [17]. The classification
ANNs were trained with SGD. Hyperparameters were
adapted using a manual hyperparameter search.

Eye tracking

Five “BCC” and four “non-BCC” cases were randomly
selected from the test set for the eye-tracking study. WSIs

and two magnifications were shown to four board-certified
general pathologists. Eye traces were recorded using an
iView X™ RED Laptop System (60/120 Hz) (SensoMo-
toric Instruments (SMI) GmbH, Germany) and analyzed
using Experiment Suite 360° Professional (SMI GmbH,
Germany) and Python 3.4.

Analysis of results

The results were analyzed using Python 3.4. The Jaccard
similarity score was calculated using the package sklearn
(version 0.21.2). Dice distances were calculated using the
SciPy (version 1.2.1) package. For the Jaccard and Dice
indices, discrete (0/1) values were used, i.e., a pixel was set
to 1 if the pathologist looked at it for at least 7 ms; other-
wise, it was set to 0. For computer attention, a pixel was set
to 1 if it was higher than the mean value of all nonempty
(preselected) tiles; otherwise, it was set to 0.

Statistics

We assessed the statistical significance of our results using
hypothesis testing, with retraining the networks 100 times.
Means and standard deviations of accuracy, F1-score
(nonsensitive to unbalanced data sets) and AUC (area

Fig. 1 Comparison of the metrics of four different MIL-based and
baseline ANNs (MIL with attention (MIL-attention), MIL with
maxpooling (MIL-max), MIL with mean pooling (MIL-mean), and
the baseline SELU CNN (baseline SELU)). A Four different ANNs
were tested on a test set of histologic section of basal cell carcinomas
(BCC, n= 97) and normal skin (non-BCC, n= 35) to identify
tumorous lesions. Subsequently, ANNs were compared with regard to
area under curve (AUC), accuracy, and F1-score (measure of a test’s
accuracy that is not sensitive to imbalanced data sets) of 100 retrained

ANNs. Indicated we see median (lines), interquartile range (bars),
most extreme, non-outlier data points (whiskers), outliers (points). B
Receiver operating characteristics (ROC) curves of (median perform-
ing out of 100 times retrained) MIL-based and baseline methods were
calculated based on the test set of histologic section of basal cell
carcinomas (BCC, n= 97) and normal skin (non-BCC, n= 35). *p <
0.05; MIL multiple instance learning, ROC receiver operating char-
acteristic, SELU self-normalizing linear unit.
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under the curve) of the ROC (receiver operating char-
acteristic) curve were calculated using the results of these
100 retrained networks. Metrics were calculated as follows
(TN= true negative, TP= true positive, FN= false nega-
tive, FP= false positive):

Accuracy ¼ TPþ TN
all samples

;

F1 score ¼ TP

TPþ 1
2 FPþ FNð Þ :

The significance of the metrics was calculated using a
two-tailed Wilcoxon signed-rank test. The significance of
the similarity metrics (Jaccard and Dice scores) was cal-
culated using a two-tailed independent sample t-test. The
results were considered statistically significant at p values <
0.05. Correlations between two variables were calculated
using linear regression.

Results

Artificial neural networks accurately differentiate
basal cell carcinomas from normal skin in
histological sections

Swift automated analysis for digital pathology is a challenge
because it requires the processing of large data sets. To
reliably and quickly process and classify downscaled WSIs
(1024 × 1024 pixels) of BCCs (n= 601) or normal skin
(non-BCC, n= 219), we established a CNN with SELU
activation functions (Supplementary Fig. 1). This baseline
method offered the advantage of using only ~0.1% of all
available information in terms of evaluated pixels but
resulted in a mean accuracy of 0.753 ± 0.053 (SD) for the
classification between BCC vs. non-BCC (Fig. 1A and
Table 1). To increase accuracy, we tiled WSIs into squares
of small resolution, which were then processed by ANN
methods. After comparison of four different ANN methods,
we proved that MIL with attention-based pooling

significantly outperforms MIL with maxpooling, MIL with
mean pooling, and the baseline CNN with respect to the
area under the ROC curve (AUC), F1-score, and accuracy
(Fig. 1 and Table 1; architecture: Supplementary Fig. 2)
[14, 17]. In the same WSI collection, MIL with attention-
based pooling identified BCC regions with a much higher
accuracy of 0.950 ± 0.008 (SD; Fig. 1A). The robustness of
our ANN method was tested by 100 times repeated
retraining of each method, resulting in small ranges of
metrics, e.g., range of AUC: 0.8% (detailed description in
the Supplementary Results, Fig. 1A, B, and Supplementary
Fig. 3).

Table 2 represents a summary of WSIs that were mis-
classified by at least 1 of 100 retrained attention-ANNs.
BCCs were mainly misclassified due to small parts of BCC
specimen on the image. All the misclassified non-BCC
images showed at least one of the following characteristics:
(1) solar elastosis, (2) inflammation, (3) scar, (4) fibrosis,
(5) high vascularization. These features might serve as
indicators for nearby neoplasms (e.g., the probability of
nonmelanoma skin cancers rises in the proximity of solar
elastosis; inflammation is commonly close to (particularly
ulcerated) BCCs; scars can imitate the sclerosing tissue
around infiltrative growing tumors). On the other hand, two
board-certified pathologists analyzed the dermal structures
independently and were not able to find any direct indica-
tors for malignancy in these WSIs.

In addition to BCC tumor samples, the collection of non-
BCC samples (healthy skin) used in this study consisted of
uninvolved skin from surgical excisions in proximity to
various skin neoplasms (e.g., dog ears and tumor-free
resection edges) and scars (from re-excision surgeries) of
BCC, squamous cell carcinomas (SCC) and melanoma. To
check whether spatial proximity to any of those skin tumors
accounted for the classification bias of the non-BCC sam-
ples, we related the number of non-BCC samples neigh-
boring BCC, SCC, or melanoma to the number of false and
correctly classified samples. Although not statistically sig-
nificant, we observed the trend that tumor-free non-BCC
samples obtained from the skin in proximity to BCCs were
more often classified as BCCs than any other group

Table 1 Metrics of different ANN methods (MIL with attention (MIL-attention), MIL with maxpooling (MIL-max), MIL with mean pooling
(MIL-mean), and the baseline SELU CNN (baseline SELU)).

Data type Method Accuracy F1-score AUC Sensitivity Specificity

tiles MIL-attention 0.95 (0.94–0.96) 0.97 (0.96–0.97) 0.99 (0.99–0.99) 0.96 (0.95–0.97) 0.93 (0.90–0.95)

tiles MIL-max 0.90 (0.89–0.92) 0.93 (0.92–0.94) 0.96 (0.96–0.96) 0.94 (0.91–0.98) 0.78 (0.69–0.87)

tiles MIL-mean 0.88 (0.87–0.89) 0.92 (0.91–0.92) 0.91 (0.91–0.92) 0.93 (0.92–0.95) 0.72 (0.69–0.75)

downscaled WSIs baseline SELU 0.76 (0.72–0.80) 0.83 (0.78–0.87) 0.84 (0.82–0.86) 0.78 (0.68–0.87) 0.73 (0.57–0.89)

AUC area under the ROC curve, CNN convolutional neural network, MIL multiple instance learning, WSI whole-slide image.

Bold values indicate name and metrics of the proposed attention-ANN method.
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Fig. 2 Regions of interest
according to attention weight
matrices (ANN) and eye
tracking (pathologists). A
Representative image of the
attention weight matrix of a
BCC section. B Representative
images of the ten most important
tiles for the MIL-attention
method of three BCC WSIs. C
Representative image of the
attention weight matrix of a non-
BCC sample. D Representative
images of the ten most important
tiles for the MIL-attention
method of three non-BCC WSIs.
E–G Representative images of
the cumulated eye traces of four
board-certified pathologists on
three BCC samples. H–J
Representative images of the
cumulated eye traces of four
board-certified pathologists on
three non-BCC samples. E–J
Blue circles represent the
artefactual retraction gaps. Red
circles highlight particular focus
points of eye traces. Green
circles highlight epidermis,
glandular structures, and hair
follicles. K–N Similarity
measures between a single
pathologist’s eye trace and the
attention weight matrix of a
median performing ANN-
attention model. K Heat map of
Jaccard scores between
pathologists and the ANN and
pathologists to each other. L
Scatter and bar chart of Jaccard
scores between pathologists
(Path-Path) and the ANN and
pathologists to each other
(ANN-Path; one scatter
represents “path vs. path” in one
image, p= 5.81 × 10–15). M
Heat map of the Sørensen–Dice
coefficient between pathologists
and the ANN and pathologists to
each other. N Scatter and bar
chart of the Sørensen–Dice
coefficient between pathologists
(Path-Path) and the ANN and
pathologists to each other
(ANN-Path; one scatter
represents “path vs. path” in one
image, p= 1.10 × 10−16). P1–P4
pathologist 1 to pathologist 4,
ANN artificial neural network,
BCC basal cell carcinoma, WSI
whole-slide image.
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(Supplementary Fig. 4; not significant using binomial test-
ing). This allowed us to hypothesize that ANNs consider
stromal changes important during the recognition of BCCs
in addition to direct tumor detection.

ANNs and pathologists identify basal cell
carcinomas based on different recognition patterns

Interpretability and the process of decision-making of AI in
comparison to humans is a key question in modern health
care. In addition to classification prediction, the MIL-
attention method outputs an attention weight matrix, which
represents importance values for each tile. To address the
issue of interpretability, we identified the local tiles (areas)
of sections that are important for the classification of the
network by analyzing its corresponding attention weights.

Analysis of the ROI according to attention weight
matrices documented that ANN “scans” through the whole
section for diagnosis (Fig. 2A, C). Unexpectedly, detailed
close-ups of the most important tiles revealed a focus of the
ANN not only on BCC tumor cells and tumor stroma (e.g.,
cytoplasm, nuclei, and basophilic staining) but also on
adnexal (including sebaceous and vascular structures, and
connective tissue in the areas of surrounding normal skin
(Fig. 2B, D)).

To address the question of whether all areas relevant for
BCC diagnosis by the ANN are also part of the BCC
recognition pattern recognized by expert pathologists, we
conducted an eye-tracking study with four board-certified
pathologists who blindly diagnosed the same slides that
were presented to the ANN. Cumulated eye tracing data of
the four blinded pathologists unambiguously demonstrated
that all four pathologists unconsciously focused on similar
structures before making a diagnostic decision for BCCs
(Fig. 2E–J and Supplementary Fig. 5).

Upon the qualitative data review, we identified three
main differences between pathologists and neural networks.
First, pathologists preferably focused on individual areas of
the tumor (examples in Fig. 2E–J, red circles), while the
ANN included the entire tumorous section equally in its
decision (e.g., Fig. 2A, C). Second, the pathologists’
attention concentrated on the artefactual retraction gap for
diagnosis (e.g., Fig. 2E, F, blue circles), while the network
does not attach as much importance to it (e.g., Fig. 2A, B).
Third, in non-tumor sections, pathologists focus mainly on
the epidermis, glands, and hair follicles (examples in
Fig. 2H–J, green circles), while the ANN “scans” through
the whole section and pays additional attention to con-
nective tissue patterns (e.g., Fig. 2C, D). To quantify the
difference in pattern recognition between the ANN method
and pathologists, we applied the Jaccard index and the
Sørensen–Dice coefficient, two commonly used statistics
for the measurement of similarities between sample sets.

Both metrics proved that the similarity of the interpersonal
eye traces of pathologists is significantly higher than the
similarity between the pathologists and the attention weight
matrix of the ANN method (Fig. 2K–N, p < 10−4). These
results demonstrate that pathologists are trained to focus on
specific structures with higher contrast and color intensity
for diagnosing BCCs, while the ANN bases its decision on
all types of regions.

Discussion

Due to technical progress, whole-slide imaging has become
a standard method in (digital) pathology. It enables a geo-
graphically independent, collaborative diagnosis of difficult
cases. Recently, it has been shown that the analysis of WSI
is comparable to classical microscopy in terms of diagnostic
accuracy [18, 19]. These developments have greatly
advanced computer-aided diagnosis. As an example,
computer-aided diagnosis is already used for the assessment
of several receptors in breast cancer and Ki67 in carcinoid
tumors [20, 21]. In the present study, we implemented an
ANN that predicts whether histological WSIs contain BCCs
or normal skin with high accuracy, sensitivity, and speci-
ficity. Compared to other methods applied in this field, we
use “attention” as a classifier, which is an easy method that
implicitly outputs priorities of different regions. For this
method, no detailed tumor region annotation is required.
We detected important tiles and structures relevant for the
diagnosis and subsequently identified histologic structures
that might be important for the diagnosis of BCCs. Even-
tually, we qualitatively compared the differences in
diagnosis-relevant regions between the ANN and
pathologists.

Machine learning is an emerging field in medicine, e.g.,
for the diagnosis of dermatoscopic photographs, radiology
images, skin lesion photographs, and unprocessed clinical
photographs [22–25]. In addition, the number of promising
methods for computer-aided diagnosis in digital pathology
has increased. Recent studies have shown classification
accuracies higher than 90% for the detection of different
classes of skin lesions [26] and tumor/metastasis predictions
[5] on WSIs using ANNs. Campanella et al. recently
demonstrated that ANN architectures are capable of
clinical-grade prediction of WSIs including various differ-
ent diagnoses. The authors analyzed BCCs, among others,
resulting in 100% diagnostic sensitivity with an acceptable
false positive rate. Based on their data, they propose to
remove 75% of the slides from the workload of a patholo-
gist without loss of sensitivity [5]. While these results are
intriguing, it should be noted that the attribution of medico-
legal responsibility for errors occurring in AI-assisted
workflows is not clearly regulated up to date. In our study

Artificial neural networks and pathologists recognize basal cell carcinomas based on different. . . 901



we mainly focused on the interpretability of computer-aided
diagnosis.

Our study addresses the challenge of evaluating real-life
gigapixel data via machine learning and provides inter-
pretable predictions. In this context, our project differs from
others in this field, as it does not utilize publicly available or
downsized data. Instead, it employs real-life data, retro-
spectively, collected from patients of two study centers. Our
approach allows using weakly labeled input data and
reduces the need for handcrafted annotations, such as seg-
menting the tumor area, to a minimum. Through this
approach, we also bypass subjective local annotation fea-
tures that may contain mistakes and are time-intensive for
collecting from physicians. The methods of the current
study represent a proof-of-concept that ANNs can deal with
this kind of data efficiently.

There are multiple histomorphologic variants of BCCs
that share similar histopathologic features with almost all
variants. BCCs typically comprise islands or nests of
basaloid cells surrounded by loose fibromucinous stroma,
with a characteristic peripheral palisading of cells and a
haphazard arrangement of cells in the center [27, 28].
Artefactual retraction gaps between the tumor and stroma,
apoptotic cells, amyloid deposits in the stroma and a vari-
able inflammatory infiltrate are often associated with BCCs
[27, 28]. One key machine learning question in health care
is its interpretability and the process of decision-making in
comparison to humans, where the benefit of human-
computer collaboration differs significantly between used
methodologies [29]. Analyzing the different ROIs between
pathologists and our ANN method, we identified several
differences in attention patterns. We observed that neural
networks distribute their attention over larger tissue areas,
whereas pathologists focus on specific structures (e.g.,
peripheral palisading of tumor cells and retraction gap). In
addition, the ANN integrates the connective tissue in its
decision-making, which is different from the recorded eye
traces of pathologists. In this context, the ANN method
predicted normal skin that was close to BCCs more likely as
“BCC” than skin close to melanomas or SCCs (Supple-
mentary Fig. 4). Moreover, the tissue of the misclassified
non-BCC images was interspersed with features that are
also commonly seen in proximity to BCC (e.g., inflamma-
tion and solar elastosis; Table 2). Our results indicate that
the tumor microenvironment of BCCs is also important for
BCC diagnosis, in line with previous histopathological
findings [30]. Consequently, we tested if the network is able
to classify stroma of BCC WSIs as “BCC.” The ANN
predicted the images to be “BCC” in 0–33% of cases (data
not shown). Further studies with higher training sample
numbers will be needed to address this issue in more detail.

Distinguishing BCCs with superficial growth pattern
(superficial) to those with growth to the reticular dermis and

deeper within the test set, we found that 23.3% (21/90) of
test cases were superficial, whereas they accounted for 80%
(4/5) of misclassified BCCs (by at least one of 100 retrained
ANNs). Our findings demonstrate that performance metrics
may differ significantly for tumor subtypes and should be
reflected in reporting of future studies.

The attention patterns of pathologists are based upon
learned behaviors for distinguishing a great number of
different tumors, including various cutaneous cancer
entities. In contrast, our ANN was only trained to separate
BCCs from non-tumor skin. This difference may explain
the distinct attention patterns of pathologists (e.g., use of
higher magnification and focus on retraction artifact),
which are different compared to the ANN. Future studies
with ANNs that have to learn to distinguish multiple
tumor entities are needed to better understand the different
interpretation of the attention-based data between
pathologists and ANNs.

Microscopically controlled surgery is considered the
gold standard for the treatment of certain skin cancers [31].
In this context, skin sections of microscopically controlled
surgery represent a significant daily workload of patholo-
gists. Consequently, automated systems that prescreen
WSIs for cancerous tissue might be time saving in daily
practice. In this study, we developed an ANN that can
detect BCCs in skin sections with high accuracy. However,
there are still several limitations to this technique before it
can be safely applied in daily clinical routines (e.g., pace of
imaging procession and sample size, legal aspects).

Our results demonstrate that ANNs diagnose BCCs in
partially different ways compared to human professionals,
although the outcome—the correct histologic diagnosis—is
comparable. As the interpretability of ANNs is the key for
future applications, our data are a significant contribution to
this rapidly emerging field.
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