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Abstract

Classification of cancers by tissue-of-origin is fundamental to diagnostic pathology. While the combination of clinical data,
tissue histology, and immunohistochemistry is usually sufficient, there remains a small but not insignificant proportion of
difficult-to-classify cases. These challenging cases provide justification for ancillary molecular testing, including high-
throughput DNA methylation array profiling, which promises cell-of-origin information and compatibility with formalin-
fixed specimens. While diagnostically powerful, methylation profiling platforms are costly and technically challenging to
implement, particularly for less well-resourced laboratories. To address this, we simulated the performance of “minimalist”
methylation-based tests for cancer classification using publicly-available and internal institutional profiling data. These
analyses showed that small and focused sets of the most informative CpG biomarkers from the arrays are sufficient for
accurate diagnoses. As an illustrative example, one classifier, using information from just 53 out of about 450,000 available
CpG probes, achieved an accuracy of 94.5% on 2575 fresh primary validation cases across 28 cancer types from The Cancer
Genome Atlas Network. By training minimalist classifiers on formalin-fixed primary and metastatic cases, generally high
accuracies were also achieved on additional datasets. These results support the potential of minimalist methylation testing,

possibly via quantitative PCR and targeted next-generation sequencing platforms, in cancer classification.
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Introduction

Tissue-of-origin information is important for cancer diag-
nosis. While the current paradigm that combines clinical
data, histology, and immunohistochemistry (IHC) permits
the classification of the vast majority of cancers, difficult
cases remain. These include cancers of unknown primaries
(CUPs) [1] and other challenging differentials from
pathology subspecialties that provide impetus for ancillary
molecular testing, including DNA methylation array
profiling. As examples of diagnostic profiling, Moran et al.
[2] developed a pan-cancer classifier called EPICUP,
which provided a diagnosis for 87% of 216 CUPs; inter-
estingly, among patients with EPICUP diagnoses, those
who received tumor-specific therapies survived longer
than those who received empiric therapies for CUPs;
Capper et al. [3] published a methylation array-based
classifier for CNS tumors (molecularneuropathology.org);
strikingly, predictions from that classifier changed 12% of
the original neuropathology diagnoses in an independent
validation cohort.
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While biologically informative and diagnostically
useful [2-7], tests based on methylation array profiling are
costly and technically challenging to implement as a new
platform. In particular, investment in new equipment (e.g.,
Illumina instruments), reagents, and additional capacity
for testing may be required, which essentially restricts
such endeavors to major centers or reference laboratories.
For many smaller clinical laboratories, where limited
resources are stretched thin by existing and anticipated
mandates, investments in methylation array profiling
would be unrealistic.

In this paper, we propose that cancer tissue-of-origin
testing by DNA methylation can be greatly simplified. Our
hypothesis is that high accuracies can be achieved using
small and focused sets of the most informative CpG mar-
kers (rather than all probes) on an array, and that as a
consequence of this, testing can be dramatically scaled
down and adapted for lower throughput, potentially less
expensive, and more readily-available platforms—such as
targeted next-generation sequencing (NGS) and quantitative
PCR. To evaluate this proposition, we first identified the
most informative diagnostic CpG probes by analyzing
methylation profiling data from The Cancer Genome Atlas
(TCGA) Network, and then assessed the diagnostic per-
formances of “minimalist” classifiers, based on small
numbers of these probes, on both fresh primary and
formalin-fixed primary and metastatic cancer samples from
multiple sources, predominantly cases with known primary
origins. To explore the applicability of the minimalistic
classifier methodology to a sequencing-based analysis
platform, a classifier for high-throughput methylation
sequencing (methyl-seq) data was custom-built and applied
to a 15-sample dataset. The results, implications, and lim-
itations are presented below.

Materials and methods

Gathering of publicly-available DNA methylation
array data

TCGA Human Methylation 450K array data from fresh
primary cases were downloaded from the Broad Institute
GDAC website (https://gdac.broadinstitute.org). Since
esophageal adenocarcinomas (EADs) are distinct from
esophageal squamous cell carcinomas (ESCCs), we
separated the esophageal carcinoma (ESCA) dataset into
ESCCs and EADs. Since EADs closely resemble the
chromosome instability subtype of gastric adenocarcino-
mas (STADs) at the molecular level [8—10], we combined
EADs and STADs into a single gastric/esophageal ade-
nocarcinoma (GEAD) class. Since only a few ovarian
serous carcinomas (OV) were profiled using the 450K

array, OV was not included in this study. The TCGA fresh
primary dataset is detailed in Supplementary Table 1 (n =
8537, 28 cancer classes).

Methylation array data from formalin-fixed paraffin
embedded (FFPE) primary and metastatic samples were
obtained from TCGA (via the Broad GDAC website), the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) [3, 11-21], and institutional collaborators (see
next section). The GEO dataset included select CNS tumors
profiled by Capper et al. [3]: glioblastomas [22], low-grade
gliomas corresponding to types studied by TCGA [23],
metastatic melanomas, and primary CNS diffuse large B-
cell lymphomas. The various datasets along with institu-
tional lung cancer primary and metastasis cases (see next
section) are recombined into the FFPE primary (Supple-
mentary Table 2; n= 1016, 12 cancer types), FFPE brain
metastasis (Supplementary Table 3; n = 142, 4 cancer types
including three CUPs), and FFPE lymph node metastasis
cohorts (Supplementary Table 4; n = 29, 2 cancer types) for
classifier training and validation.

Additional publicly-available methylation array data
(450K and 27K) for the gastric versus pancreatic adeno-
carcinoma differential were obtained from GEO [24-30]
and the International Cancer Genome (ICGC; https://dcc.
icgc.org/) for training and validation. Please see Supple-
mentary Table 5 (n =854 fresh frozen and archival cases,
two cancer types).

For this study, the gold-standard reference for tumor
type/primary origin is that specified by TCGA, ICGC,
study authors, or UHN pathologists/research collaborators
(for internal data).

Since the CpG sites included in different datasets varied,
the lists of available probes were “downsized” in some
analyses, such that only highly-ranked probes (see below)
shared across all included datasets for each analysis were
used for classifier training and testing. Beta values from
methylation datasets were converted to M values [31] prior
to feature ranking, and random forest (RF) model training
and validation. Probes containing exclusively NAs or infi-
nite M values and poorly performing probes identified in a
recent published study [32] were removed.

Institutional DNA methylation array and methyl-seq
data

Archival tissues from 133 FFPE primary lung adenocarci-
nomas, 39 lung squamous cell carcinomas, and 14 lung
adenocarcinoma brain metastases were obtained from the
Department of Pathology at UHN. We also obtained FFPE
tissues from a cohort of 15 patients enrolled in the REACT
study that included one bladder cancer, two cervical and
endocervical cancers, six colorectal cancers, two lung ade-
nocarcinomas, two melanomas, and two uterine corpus
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endometrial carcinomas. DNA methylation array analyses
were performed at the Ontario Institute of Cancer Research
as follows: 250 ng of DNA were treated using the Illumina
FFPE DNA Restore Kit, hybridized to the Infinium EPIC
methylation array, and scanned using an iScan instrument;
raw data were processed using the Bioconductor package
minfi v1.30 for normalization (Illumina method) and
extraction of methylation values.

Methyl-seq analyses were also performed in parallel in the
15-patient cohort (REACT study) using a second aliquot of
500 ng of DNA from each sample; after bisulfite conversion,
the DNA was subjected to library construction and targeted
capture using the Illumina TruSeq Methyl Capture EPIC
Library Prep Kit (targeting ~800,000 CpG sites), and
followed by sequencing (Illumina NextSeq550, 70 million x
100 paired-end reads); methylation intensities were calcu-
lated with the Bismark v0.20.0 pipeline.

Identifying the most informative CpG features using
TCGA cases

Seventy percent of randomly selected cases from TCGA
dataset (training dataset, n =5962 involving 28 cancer
types, Supplementary Table 1) were used to identify the
most informative diagnostic probes via two types of fea-
ture ranking studies. The first type (see Fig. 1a, henceforth
X vs. all) selected for markers best able to distinguish one
cancer type from all other cancer types. The second
approach (see Fig. 1b, henceforth pairwise differential)
selected for markers best able to distinguish one cancer
type from a second cancer type, for all possible pairwise
combinations.

For 28 cancer types, there were 28 possible analyses for
the X vs. all, and 378 possible analyses for pairwise dif-
ferentials. For each analysis, all probes on the array were
ranked in descending order by areas under the receiver
operator curves (ROC AUCs). Probes that have the same
AUC were further ranked from most significant to least by
unadjusted p values from Wilcoxon tests. For each analysis,
we also calculated the difference between the median beta
values between the analyzed groups (e.g., cancers X and Y)
for each probe; probes with differences of <0.1 by median
beta were removed after the ROC/Wilcoxon analyses.
The number of remaining probes with AUCs 20.9 and the
AUC of the highest ranked probe from each analysis were
recorded.

Evaluation of pan-cancer random forest (RF)
classifiers using TCGA fresh primary cases

For fresh primary cancers from TCGA, RF classifiers were
trained using TCGA training cases (n = 5962, 28 cancer

types). Series of sequentially larger models were trained
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based on information from the top-one, top-two, top-three,
etc., ranked probes from the (1) 28 X vs. all, (2) 378 pair-
wise differential, or (3) a combination (or hybrid) of the two
types of feature ranking analyses (Fig. la). The hybrid
models was developed manually; we started with the 28 X
vs. all lists, and additional pairwise lists were later incor-
porated corresponding to specific difficult differentials,
defined as those with more than five total errors or an error
rate of >0.05 from the validation confusion matrix for the
smallest X vs. all model.

The remaining 30% of TCGA cases were used for clas-
sifier testing (validation dataset, n = 2575, 28 cancer types,
Supplementary Table 1). We recorded the overall accuracies
and numbers of unique features used for sequentially larger
models, to evaluate the trade-off between the reduction in the
number of features used and the increase in classification
errors. In addition, the sensitivity, specificity, positive and
negative predictive values (PPVs and NPVs), and balanced
accuracies for each of the 28 tumor classes for specific
models were recorded. r-distributed stochastic neighbor
embedding (#-SNE) dimensionality reduction was used to
visualize cancer clusters for the smallest hybrid model.

Since RF is an ensemble machine learning approach,
where classifiers consist of collections of decision trees
(n =500 in this study), we recorded the proportion of trees
that rendered each consensus call (i.e., the most common
prediction from the 500 trees) as a measure of prediction
confidence, for the smallest hybrid model.

Using published methylation-based tumor purity esti-
mates for TCGA cases [33] and performance data for the
smallest hybrid pan-cancer TCGA classifier, we assessed
the association between (1) tumor purity and diagnostic
accuracy using the Wilcoxon test, and (2) purity and
confidence levels using the Spearman test in TCGA
validation cases.

Evaluation of minimalist classifiers on FFPE primary
and FFPE metastasis samples

Models for classifying FFPE primary and metastatic cancers
are summarized in Table 1 (along with the smallest hybrid
pan-cancer classifier). Highly-ranked probes used for clas-
sification were those previously identified from TCGA
pairwise differential analyses (Fig. 1). Briefly, two models
were trained to classify FFPE primary cases. One model
was trained using TCGA training cases only, and another
was trained using a combination of TCGA training and 70%
of randomly selected FFPE primary cases. Both were vali-
dated using the remaining 30% of FFPE primary cases (see
Table 1). A single model was trained using 70% of ran-
domly selected FFPE brain metastasis cases and validated
on the remaining 30% of FFPE brain metastasis cases
(Table 1). +~SNE dimensionality reduction was used to
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visualize brain metastasis cancer clusters for the brain
metastasis model.

For FFPE lymph node metastases, we determined the
optimal cutoff for a single highly-ranked probe from the
TCGA breast carcinoma versus melanoma differential via
the Youden method, and validated this cutoff on a separate
set of TCGA primary and FFPE lymph node metastasis
cases (Table 1).

Evaluation of minimalist classifiers on gastric and
pancreatic cancers

For gastric versus pancreatic adenocarcinomas, we deter-
mined the optimal cutoff for a single highly-ranked probe
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from the TCGA gastric/esophageal versus pancreatic ade-
nocarcinoma differential via the Youden method, and vali-
dated this cutoff using independent cases from (1) TCGA
and (2) ICGC and GEO (Table 1).

Development of a minimalistic classifier for methyl-
seq data

CpG sites in the methyl-seq dataset were annotated based
on EPIC array annotations; CpG sites with >10% missing
values and sites not present on the 450K array were
removed, resulting in a filtered methyl-seq dataset con-
taining 123,783 methylation sites. A classifier was trained
using 24 selected CpG sites and methylation values from
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Fig. 1 Identification of the most informative CpG sites for cancer
tissue-of-origin classification. a To illustrate the feature ranking
methods, consider a hypothetical differential consisting of five cancer
types (T1 through T5). The X vs. all approach seeks to identify the
markers that distinguish each tumor type from all other tumor types.
In this illustration, the corresponding analyses result in five feature
rank lists that prioritize probes for training X vs. all classifiers. The
pairwise differential approach aims to identify the best markers for
differentiating each possible tumor pair (e.g., T1 vs. T2). These ana-
lyses result in ten prioritized lists, which are used in the training of
pairwise classifiers. One disadvantage of the pairwise approach is that
the numbers of analyses increase dramatically with numbers of can-
cer classes (i.e., n = # cancer classes, # analyses = n(n — 1)/2). Hybrid
classifiers start with X vs. all lists, and depending on classifier per-
formance, specific pairwise lists corresponding to difficult differentials
(red; in this example, T3 vs. T4) are subsequently added—ideally,
striking a balance between minimalism and accuracy. The ranked lists
can also be combined in various other combinations, depending on the
specific differential being considered; Table 1 shows examples of
various minimalist classifiers in this study, all developed based on
highly-ranked probes from TCGA analyses. b Example of a highly
informative CpG marker (cg24727122, OSM, chr22: 30662972) from
the X vs. all analysis that accurately separates acute myeloid leukemias
(n =135, red circle) from the other 27 TCGA cancer types (n = 5827,
AUC = 1.00). ¢ Heat map for the AUCs of the top-ranked CpG bio-
marker identified in the 378 pairwise differential analyses; the top
AUCs were above 0.98 for most pairwise differentials in TCGA
training cases (see Supplementary Table 8 for the numerical values).
ACC adrenocortical carcinoma, BLCA bladder carcinoma, BRCA
breast invasive carcinoma, CESC cervical and endocervical cancers,
CHOL cholangiocarcinoma, CORE colorectal adenocarcinoma, DLBC
diffuse large B-cell lymphoma, ESCC esophageal squamous cell car-
cinoma, GBMLGG glioma (glioblastoma and low-grade glioma),
GEAD gastric and esophageal carcinoma, HNSC head and neck
squamous cell carcinoma, KIPAN pan-kidney cohort (clear cell,
chromophobe, and papillary renal cell carcinoma), LAML acute
myeloid leukemia, LIHC liver hepatocellular carcinoma, LUAD lung
adenocarcinoma, LUSC lung squamous cell carcinoma, MESO
mesothelioma, PAAD pancreatic adenocarcinoma, PCPG pheochro-
mocytoma and paraganglioma, PRAD prostate adenocarcinoma,
SARC sarcoma, SKCM skin cutaneous melanoma, TGCT testicular
germ cell tumor, THCA thyroid carcinoma, THYM thymoma, UCEC
uterine corpus endometrial carcinoma, UCS uterine carcinosarcoma,
UVM uveal melanoma.

Overall accuracy (%)
5.2

EPIC array: 93.3

mets: 100.0
Methyl-seq: 73.3

Lymph node
458/2, primary, fresh & archival 90.2

94.5
74.6
97.6
9

(no. cases/no. classes)
2575/28, primary, fresh

267/2, primary, fresh 9/2 lymph Primary: 98.5
15/6, primary, FFPE

339/12, primary FFPE
45%/4, brain mets, FFPE
node mets, FFPE

Validation cases

3803/12, primary, fresh & 677/7, 339/12, primary FFPE

primary, FFPE
1470/6, primary, fresh & 157/2,

621/2, primary, fresh &20/2
primary, FFPE

(no. cases/no. classes)
5962/28, primary, fresh
3803/12, primary, fresh
lymph node mets, FFPE
1070/2, primary, fresh &
archival

Training cases

6 (Suppl. Table 1,5) 97/4, brain mets, FFPE

No. CpG sites
53 (Suppl.
Table 1,1)

55 (Suppl.
Table 1,4)

55 (Suppl.
Table 1,4)

1 (cg22280705)
1 (cg06981182)
24 (Suppl.
Table 1,6)

2 (Suppl. Table 1

4 (Suppl. Table 3)
and 4)

12 (Suppl. Table 2)
12 (Suppl. Table 2)

28 (Suppl. Table 1)

and 5)
6 (Fig. 6)

TCGA fresh primary and FFPE primary methylation array
data (Table 1). This classifier was tested on 15 cases pro-
filed in parallel on methyl-seq and DNA methylation array,
and the correlations of the methylation values for the 24
CpG sites between the two platforms for the 15 cases were
measured.

Classification method No. Cancer types
Single probe cut-off 2 (Suppl. Tables 1

Single probe cut-off

Random forest
Random forest
Random forest
Random forest
Random forest

Gene enrichment analyses

A list of unique genes was generated from the top-10 ranked
CpG sites from 378 pairwise differential lists from TCGA
feature ranking analyses. The genes were analyzed for
enrichment using the Enrichr tool [34, 35], including for
Gene Ontology (GO) biological processes, cellular com-
ponents, and molecular functions.

Table 1 Summary of minimalist classifiers in this study.

“Includes 3 cancers of unknown primaries.

Methyl-seq classifier (Fig. 6)

FFPE lymph node metastasis
adenocarcinoma (Fig. 5)

Pan-cancer (Fig. 3, Table 2)
(Fig. 4e)

FFPE primary #1 (Fig. 4a)
FFPE primary #2 (Fig. 4b)
FFPE brain metastasis
Gastric v. pancreatic

(Figures and Tables)
(Fig. 4c, d)

Classifier type
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Results

There are large numbers of highly informative CpG
sites for cancer classification

TCGA training dataset (70% of randomly selected cases,
n=>5962, 28 cancer types, Supplementary Table 1) was
used to identify the most informative diagnostic probes,
which form the basis for all classifiers (including those for
FFPE primary and metastasis samples, and samples tested
via methyl-seq) in this study. The feature ranking strategies
are described in “Methods” and Fig. 1. For 28 cancer
classes, the analyses produced 28 rank lists of probes that
distinguish each cancer class from the other 27 classes
(X vs. all), and 378 rank lists of probes that distinguish one
cancer class from another for all possible pairwise differ-
entials. For each differential, probes on the array were
ranked by AUCs in ROC analyses and p values.

Several trends were apparent. First, most analyses iden-
tified large numbers of highly informative CpG sites for
their respective differentials, defined as those with AUCs
>0.90 (Fig. 1b, c and Supplementary Tables 6-8); however,
there were a few exceptions; in particular, there were rela-
tively few highly informative probes able to separate some
types of squamous cell carcinomas (SCCs). Second, the
pairwise differential rankings studies generally identified
larger numbers of features with better AUCs than the X vs.
all (Supplementary Tables 6-8); this is not surprising since
biomarkers that work well for separating cancer T1 from T2
may fail to separate T1 from cancer types other than T2.
Finally, many top-ranked probes from the analyses had
AUC:s at or approaching 1.00 across training cases (Fig. 1b,
c and Supplementary Tables 6, 8), implying that small
numbers of these individual probes could be sufficient for
accurate diagnosis.

Small numbers of highly informative CpG sites are
sufficient for accurate classification of TCGA cases

Based on this, RF machine learning models, using informa-
tion limited to small numbers of the most informative probes
from feature ranking analyses, were developed using TCGA
training cases (Figs. 1, 2 and “Methods”). Trained classifiers
were tested on an independent TCGA validation cohort (n =
2575, 28 cancer classes, Supplementary Table 1).

We began by studying the correlation between the num-
bers of features included in RF models and classification
accuracies. For this, we trained sequentially more complex
classifiers using the top-one, top-two, top-three, etc. features
from the (1) X vs. all, (2) pairwise differential, and (3) hybrid
feature rank lists. The accuracies of individual models were
plotted against the number of features included (Fig. 2). The
smallest models used only a single top-ranked CpG marker

A X vs all random forest models

28 unique CpGs

0.751

Accuracy
o

0.00 1

0' EL"\EI 10'00
Number of unique CpG sites

B Pairwise differential random forest models

1.00 1 1 ~

283 unique CpGs

0.751

Accuracy
n

0.00 1

0 300 600 900 1200
Number of unique CpG sites

C Hybrid random forest models
1.00 1

o—0—0 o °

53 unique CpG sites

Accuracy

0.004

0 250 500 750 1000
Number of unique CpG sites

from each feature rank list. As examples, the smallest X vs. all
classifier included just 28 unique probes (one for each cancer
class, listed in Supplementary Table 9), and achieved an
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Fig. 2 Small numbers of the best features are sufficient for accu-
rate cancer classification in TCGA cases: the relationship between
numbers of features and diagnostic accuracies in pan-cancer
models. Each point represents a single classifier from the (a) X vs. all,
(b) pairwise differential, or (c¢) hybrid series. The smallest models are
indicated; the smallest hybrid model is shown in greater detail in
Fig. 3. The colored trend lines for the plots are rectangular hyperbolas
with asymptotes (maximum predicted accuracies) of 94.9% (blue),
96.8% (red), and 96.9% (green) for the X vs. all, pairwise, and hybrid
series, respectively. Overall, little additional accuracy is gained by the
incorporation of additional highly-ranked probes.

overall accuracy of 88.5% on independent validation; the
smallest pairwise differential model used information from
283 unique probes (less than the 378 pairwise differential lists
because some of the top-ranked features were duplicated
across two or more differentials, Supplementary Table 10),
and correctly predicted 96.4% of diagnoses; the smallest
hybrid model included 53 unique probes (see “Methods”, and
Supplementary Table 11), and had an accuracy of 94.5%.
Figure 2 shows that with the incorporation of additional
highly-ranked features, there were only slight improvements
in classifier accuracies for the X vs. all and hybrid series, and
no definite improvements in accuracies for the pairwise series.
Critically, this suggests that minimalist classifiers based on
small numbers of the best features are (almost) as accurate as
more complex models that use information from the entire
array, at least in the fresh primary pan-cancer setting.

Figure 3 highlights the smallest hybrid model in greater
detail, as a simulated example of a pan-cancer test (e.g.,
conceivably, implemented as a targeted next-generation
sequencing test) that balances accuracy against simplicity.
The +SNE plot (Fig. 3a), based on the 53 probes from that
model, showed generally well-separated cancer clusters, with
the exception of some SCC classes. Concordantly, the heat
map of the confusion matrix (Fig. 3b and Supplementary
Table 12) and performance metrics (Tables 1, 2) demonstrated
accurate discrimination of most histologic types, with the
exception of SCCs from different anatomic sites.

Since RF model prediction is based on consensus from
an ensemble of individual decision trees (n =500 for this
study), the proportion of trees behind the consensus is a
measure of confidence. By defining high, moderate, and low
levels of prediction confidence as 20.90, >0.50 and <0.90,
<0.50 of trees behind the consensus call, respectively, we
showed using the smallest hybrid model that high con-
fidence was, as expected, associated with greater accuracy
(Fig. 3c). Not surprisingly, confidence levels varied across
cancer reference classes (Supplementary Table 13); for
example, model predictions of SCC subtypes were asso-
ciated with lower confidence, possibly because carcinomas
with squamous differentiation across multiple anatomic
sites can have similar molecular signatures [9, 10, 37, 38].

Lastly, we assessed the impact of tumor purity on
classifier accuracy and confidence for the smallest hybrid
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model. Tumor cellularity levels based on methylation
signatures were obtained for TCGA cases from a recent
publication [33]. Figure 3d shows that cases correctly
classified by that model had statistically higher
purities, although the magnitude of the difference between
correct and incorrect cases is modest. Figure 3e shows
a direct correlation between purity and confidence
levels, although the strength of the association is weak
(Spearman rho = 0.19).

Minimalist models can accurately classify FFPE
primary and FFPE metastatic cancers

Additional minimalist classifiers were developed for
classifying publicly-available and institutional datasets
[3, 11-21] of FFPE primary and FFPE metastatic cancers.
These classifiers along with the smallest hybrid TCGA
classifier are summarized in Table 1. Highly-ranked probes
used for the classifiers were those identified from analyses
of TCGA data.

Two models were trained to classify FFPE primary cases
limited to information from the same 55 probes (Supple-
mentary Table 14; Table 1; Fig. 4a, b). Interestingly, one
model, trained exclusively on TCGA fresh primary data
fared poorly on validation, while the other, trained on a
combination of TCGA and additional FFPE primary data
performed much better—with overall accuracies of 74.6%
(Fig. 4a) and 97.6% (Fig. 4b), respectively. Concordantly,
the exclusively TCGA-trained model was also less con-
fident on FFPE primary cases than the combined TCGA/
FFPE-trained model.

A single model was trained using FFPE brain metastasis
data to classify independent FFPE brain metastases, limited
to information from six highly-ranked probes (Supplemen-
tary Table 15); this classifier achieved an accuracy of 95.2%
(Table 1; Fig. 4c, d). +-SNE dimensionality reduction
(Fig. 4c), based on information from the six CpG probes,
showed that FFPE brain metastasis cases tend to cluster
with their fresh primary counterparts. The CUPs included
for validation were predicted to originate from the lung,
identical to the original study [11].

For the lymph node metastasis dataset, we identified
an optimal cutoff for a single highly-ranked probe
(cg22280705, GALNT3, chr2: 166650769) from TCGA
breast carcinoma versus melanoma differential; this cutoff
accurately separated both TCGA fresh primary and FFPE
lymph node metastases of breast cancers and melanomas
on validation (Fig. 4e).

These result support the accuracy of minimalist approa-
ches to cancer classification by methylation, at least in some
formalin fixed/metastatic settings. Figure 4 suggests that
retraining of classifiers on new (e.g., FFPE) data may be
required.
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not have sensitive and specific immunohistochemical stains.
An optimal cutoff was determined for a single highly-ranked
CpG probe (cg06981182, RNLS, chrl0: 90343208) pre-
viously identified from TCGA analyses; Fig. 5 shows that
this cutoff accurately separated independent cases of primary
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<« Fig. 3 Minimalist pan-cancer classifier for 28 cancer classes (n =

2575 cases, 53 unique CpG probes, accuracy =94.5%). a t-dis-
tributed stochastic neighbor embedding (-SNE) plot for the smallest
hybrid model based on information from 53 unique CpG sites shows
excellent separation of cancer classes. b Heat map for the confusion
matrix for the smallest hybrid model; see Supplementary Table 12 for
the numbers of cases in each cell. ¢ The relationship between classifier
confidence and accuracy: the numbers of cases/percentages of vali-
dation set/accuracies for the high, moderate, and low confidence
groups are 994 cases/39% of validation cases/100% accuracy, 1147/
45% of cases/98% accuracy, and 434/17% of cases/73% accuracy,
respectively. d Correctly classified cases have statistically higher
tumor purities compared with incorrectly classified cases (Wilcoxon
test p value = 2.8 x 1074), although the difference in the distributions
is modest. e Density scatter plot showing a direct correlation between
purity and prediction confidence (Spearman rho = 0.19); many TCGA
cases have fairly high purities (>50%) and many have high confidence
predictions. Conceivably, these 53 probes could be quantitatively
evaluated via next-generation sequencing. ACC adrenocortical carci-
noma, BLCA bladder carcinoma, BRCA breast invasive carcinoma,
CESC cervical and endocervical cancers, CHOL cholangiocarcinoma,
CORE colorectal adenocarcinoma, DLBC diffuse large B-cell lym-
phoma, ESCC esophageal squamous cell carcinoma, GBMLGG
glioma (glioblastoma and low-grade glioma), GEAD gastric and eso-
phageal carcinoma, HNSC head and neck squamous cell carcinoma,
KIPAN pan-kidney cohort (clear cell, chromophobe, and papillary
renal cell carcinoma), LAML acute myeloid leukemia, LIHC liver
hepatocellular carcinoma, LUAD lung adenocarcinoma, LUSC lung
squamous cell carcinoma, MESO mesothelioma, PAAD pancreatic
adenocarcinoma, PCPG pheochromocytoma and paraganglioma,
PRAD prostate adenocarcinoma, SARC sarcoma, SKCM skin cuta-
neous melanoma, TGCT testicular germ cell tumor, THCA thyroid
carcinoma, THYM thymoma, UCEC uterine corpus endometrial car-
cinoma, UCS uterine carcinosarcoma, UVM uveal melanoma.

gastric and pancreatic adenocarcinomas from TCGA (90.0%
accuracy; n=201) and GEO [24-30)J/ICGC (90.3%; n =
257) on validation.

Minimalistic cancer classifier for high-throughput
methylation sequencing data

Lastly, to extend our minimalist approach to a non-array
platform, we trained a 24-probe classifier (Supplementary
Table 16) using TCGA and FFPE methylation array data,
and tested this on 15 institutional cases profiled in parallel
by methyl-seq and EPIC array (Table 1). This classifier
correctly identified the tumor type with medium or high
levels of confidence in 10 of 15 samples analyzed by
methyl-seq (Fig. 6). The predictions and confidence levels
based on methyl-seq data were generally comparable to
those based on EPIC array data; concordantly, correlations
of methylation values across the 24 CpG sites were high
between the two platforms (Pearson R>0.9) for 13 out of
15 cases. Interestingly, the remaining two samples with
lower correlations (Cases S8, S9; Fig. 6) were correctly
classified based on array data, and incorrectly classified
based on methyl-seq data; we were unable to explain the

SPRINGER NATURE

lower correlations between the two platforms (via assess-
ment of sample quality metrics) for the two cases.

Gene enrichment analysis

From the top-10 ranked entries from the 378 pairwise dif-
ferential lists from TCGA analysis, there were 2188 unique
CpG sites, corresponding to 1176 unique genes. Using
Enrichr [34, 35], we found that the genes were enriched for
specific biological processes, including tissue/organ devel-
opment and morphogenesis, and specific molecular func-
tions, including cell signaling, cell-to-cell interactions, and
transcriptional regulation (See Supplementary Excel Files
for enriched GO biological processes, molecular functions,
and cellular components), thus supporting the idea that the
top-ranked diagnostic features identified from TCGA are
plausible as tissue-of-origin markers.

Discussions

The potential for minimalist approaches to cancer classifi-
cation by DNA methylation is supported by several
considerations.

Notably, minimalist classification can be accurate
(Tables 1, 2 and Figs. 3-6). As examples: the accuracy of
our 53-probe pan-cancer classifiers for TCGA cases (Fig. 3)
is comparable to that for published pan-cancer models,
including those that employed more probes [2, 39]; the
performance of our six-probe brain metastasis classifier is
similar to classifiers published by Orozco et al. [11]. While
minimalist classifiers generally performed well on addi-
tional fresh/FPPE primary/metastatic cases from outside
TCGA [3, 11-21, 24-30], we encountered some challenges
involving FFPE primary (Fig. 4) and methyl-seq cases
(Fig. 6). With respect to FFPE primary cancers, our first
classifier, trained exclusively on data from TCGA fresh
primary samples, performed poorly on FFPE validation
(Fig. 4a). This is problematic from our perspective since the
majority of surgical specimens in pathology undergo for-
malin fixation, which alters DNA methylation patterns [40],
and may contribute to loss of accuracy in methylation-based
classification. We resolved this problem by training a
similar model using combined TCGA and FFPE primary
data limited to the same set of probes as before, and this
new model performed much better (Fig. 4b). This shows
that the informative probes identified from TCGA data
remained robust in the FFPE primary setting, as long as the
classifier was retrained on data that included FFPE cases.
Conceivably, similar retraining using sequencing data could
improve the accuracies and confidence levels of methyl-seq
classifications, since the correlations between the platforms
were often high (Fig. 6); however, we do not have sufficient
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Table 2 Sensitivity, specificity, PPV, and NPV for each of the 28 cancer types for the hybrid model shown in Fig. 3.

Abbreviation  Sensitivity ~ Specificity  Pos pred value = Neg pred value Balanced accuracy
Adrenocortical carcinoma ACC 1.000 1.000 0.960 1.000 1.000
Bladder urothelial carcinoma BLCA 0.895 0.995 0.902 0.995 0.945
Breast invasive carcinoma BRCA 0.979 0.997 0.970 0.998 0.988
Cervical and endocervical cancers CESC 0.848 0.996 0.886 0.994 0.922
Cholangiocarcinoma CHOL 0.727 1.000 1.000 0.999 0.864
Colorectal adenocarcinoma CORE 0.975 0.999 0.983 0.999 0.987
Diffuse large B-cell lymphoma DLBC 0.867 0.999 0.867 0.999 0.933
Esophageal carcinoma ESCC 0.333 1.000 1.000 0.992 0.667
Glioma GBMLGG 0.995 1.000 1.000 1.000 0.997
Gastric/esophageal carcinoma GEAD 0.966 0.997 0.952 0.998 0.981
Head and neck squamous cell carcinoma HNSC 0.918 0.986 0.816 0.995 0.952
Pan-kidney cohort KIPAN 0.975 0.999 0.985 0.998 0.987
Acute myeloid leukemia LAML 1.000 1.000 0.983 1.000 1.000
Liver hepatocellular carcinoma LIHC 0.982 0.999 0.974 0.999 0.991
Lung adenocarcinoma LUAD 0.993 0.999 0.979 1.000 0.996
Lung squamous cell carcinoma LUSC 0.793 0.993 0.830 0.991 0.893
Mesothelioma MESO 0.889 1.000 1.000 0.999 0.944
Pancreatic adenocarcinoma PAAD 0.875 0.998 0.907 0.997 0.937
Pheochromocytoma and paraganglioma PCPG 0.944 0.999 0.962 0.999 0.972
Prostate adenocarcinoma PRAD 1.000 0.999 0.987 1.000 1.000
Sarcoma SARC 0.962 0.996 0.884 0.999 0.979
Skin cutaneous melanoma SKCM 0.813 1.000 0.963 0.998 0.906
Testicular germ cell tumor TGCT 1.000 0.999 0.938 1.000 0.999
Thyroid carcinoma THCA 1.000 1.000 1.000 1.000 1.000
Thymoma THYM 1.000 1.000 1.000 1.000 1.000
Uterine corpus endometrial carcinoma UCEC 0.954 0.994 0.892 0.998 0.974
Uterine carcinosarcoma uCsS 0.778 1.000 0.933 0.998 0.889
Uveal melanoma UvM 1.000 1.000 0.960 1.000 1.000

methyl-seq cases at this time to train a new classifier. The
methyl-seq dataset also proved problematic for a different
reason: a significant proportion of CpG sites had >10%
missing values across cases (see “Methods”), and we only
included ~120,000 out of ~800,000 targeted CpG sites for
the analysis. This means that robust methylation array
biomarkers may not be consistently quantifiable via methyl-
seq. Accordingly, across the various minimalist classifiers
developed for this study (Table 1), general conclusions were
drawn: first, TCGA datasets appear to be ideal for initial
biomarker discovery, since these include large numbers of
cases from diverse cancer types; second, translation of
informatics analyses into robust assays for non-TCGA cases
may require classifier re-training on new sample types (e.g.,
when going from fresh frozen to FFPE); attention to fea-
tures/limitations specific to individual platforms are also
required.

Further investigations along these lines may well
be worthwhile, considering the potential advantages of

minimalist methylation-based tests in comparison to more
established methods in use today. In pathology, tissue-of-
origin information is often obtained via IHC, but the
development of THC stains can be a “hit-and-miss” process.
By comparison, our feature ranking studies of TCGA
methylomes consistently identified large numbers of highly
sensitive and specific epigenetic biomarkers for the vast
majority of cancer differentials (except for those involving
some types of SCCs), including many biomarkers that
exceeded the performances of the best-available ITHCs
(Fig. 1b, ¢ and Supplementary Tables 6-8). Consider a
hypothetical case of metastatic gastric versus pancreatic
adenocarcinoma; while existing ITHC stains would not be
helpful, our ranking analyses identified 187 probes with
AUCs 20.9 for the pancreatic versus GEAD differential.
One of these probes (cg06981182, RNLS, chr10: 90343208)
is specifically highlighted in Fig. 5, to illustrate how the
quantitative interrogation of a single CpG site could help
resolve a potentially difficult differential.

SPRINGER NATURE
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molecularneuropathology.org [3] model, is far smaller
numbers of probe used (i.e., <0.1% of all probes on the
DNA methylation array). Importantly, Fig. 2 suggests that
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<« Fig. 4 Minimalist classifiers for FFPE primary and metastasis cases.

For FFPE primary cases (a, b; n =339, 12 cancer types), the model
trained on TCGA fresh primary data (a) was far less accurate (74.6% vs.
97.6%, left panels) and less confident (right panels) on independent
validation of FFPE primary cancers than the model trained on combined
TCGA and randomly selected FFPE primary cases (b). Since the two
models used the same 55 probes, a, b suggest that probes identified via
TCGA analyses are robust—although classifiers may need to be re-
trained on new data. For FFPE brain metastasis (¢, d; n =45, including
three CUPs, four cancer types): ¢) -SNE plot shows that FFPE brain
metastasis cases (Ys, n =42) are well-separated, and cluster with their
fresh primary counterparts (dots); CUPs are indicated by black open
circles. d The heat map/confusion matrix for the classifier trained on
FFPE brain metastases, validated on the 39 FFPE brain metastases of
known origins (six unique probes, 95.2% accuracy); CUPs are not
shown here. e A single probe (cg22280705) accurately separated all
nine lymph node metastases and 98.5% of 32 melanoma and 235 breast
carcinoma primaries on validation. BLCA bladder carcinoma, BRCA
breast invasive carcinoma, CORE colorectal adenocarcinoma, DLBC
diffuse large B-cell lymphoma, GBMLGG glioma (glioblastoma and
low-grade glioma), GCT germ cell tumor (intracranial), HNSC head and
neck squamous cell carcinoma, KIPAN pan-kidney cohort (clear cell,
chromophobe, and papillary renal cell carcinoma), LUAD lung adeno-
carcinoma, LUSC lung squamous cell carcinoma, PRAD prostate ade-
nocarcinoma, SKCM skin cutaneous melanoma, UCEC uterine corpus
endometrial carcinoma.

minimalist tests could be (almost) as accurate comprehen-
sive profiling—implying that most of the approximately
450 thousand probes on the TCGA arrays are either unin-
formative or informationally redundant, at least for classi-
fication in the fresh primary pan-cancer setting. This
directly supports the idea that methylation-based tests can
be dramatically scaled-down, without significant increases
in classification errors, and thereby adapted for lower
throughput and more popular platforms.

Such minimalist tests would not require array equipment,
and could prove popular for smaller laboratories that have
already invested, or are planning to invest, in NGS

(consider Fig. 3 for a pan-cancer example) and/or quanti-
tative PCR platforms (consider Fig. 5 for as an example
involving 2 cancer types). The College of American
Pathologists 2020 catalog (https://documents.cap.org/
documents/2020-surveys-catalog-mobile-111119-v3.pdf)
for laboratory proficiency testing highlights surveys avail-
able for NGS- and PCR-based platforms, but does not
include a survey specific for methylation array profiling—
reflecting the relative rarity of the latter in the present-day
“clinical space.” With respect to NGS testing, potential
advantages of targeting small numbers of CpG sites also
include higher sequencing depths and greater multiplexing;
the higher depths may produce better data for some CpG
sites in comparison to methyl-seq, which is characterized by
higher sequencing breadth but less depth at individual loci.
Further, for quantitative PCR, one anticipated advantage is
lower costs per sample, at least for limited differentials. For
reference, the reagent cost of methylation array profiling is
~500 Canadian dollars (CAD) per sample at one of our
research laboratories. We estimate that quantitative PCRs
could be significantly less expensive, at ~10-15 CAD for
reagents per reaction/CpG site (see in Fig. 5 as a hypothe-
tical example). However, it should be cautioned that actual
costs and implementation depend on samples per run and
overall volume, and CUPs and other difficult cases are only
small fractions of clinical volumes on most pathology
services.

The final and related consideration is that while poor
quality formalin-fixed and bisulfite converted DNA can be
challenging to work with, lower throughput technologies for
the quantitative interrogation of small numbers of CpG sites
in FFPE samples already exist [11, 41, 42]. For instance,
Orozco et al. [11] described quantitative methylation-
specific PCR assays for distinguishing (1) gliomas from
brain metastases, (2) lung, breast, and melanoma brain

Fig. 5 Quantitative analysis of
a single CpG site (cg06981182)
can distinguish gastric from
pancreatic adenocarcinomas.
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correctly predicted 11 out of 15 diagnoses (73.3%; of which, 10 of 15
had medium or high levels of confidence) based on methyl-seq data,
and 14 out of 15 diagnoses (93.3%) based on array data. Below each
sample, the correlations between methylation levels across the 24
probes for the two platforms are shown (bottom panel). BLCA bladder
carcinoma, CESC cervical and endocervical cancers, CORE colorectal
adenocarcinoma, LUAD lung adenocarcinoma, SKCM skin cutaneous
melanoma, UCEC uterine corpus endometrial carcinoma.

Table 3 Comparison of methylation platforms for research and clinical practice.

Relative Somatic mutation DNA methylation Best suited for

completeness

of testing

High Whole exome and whole =~ Comprehensive genome wide profiling by Research; defining reference molecular
genome sequencing methylation array or sequencing landscapes of cancers

Intermediate  Examples: targeted NGS Examples: smaller arrays or targeted NGS Clinical work and biomarker research; assays for
panels [34-37] panels (e.g., dozens to hundreds of CpG sites) pan-cancer or more limited settings (e.g.,

hematopoietic neoplasms)
Low Examples: PCR-based tests Examples: PCR-based tests (e.g., 1-10 CpG  Clinical work; day-to-day, inexpensive and rapid

(e.g., for BRAF p.V60OE in
melanoma)

sites for resolving limited differentials in
surgical pathology) [11, 32]

testing

It is our intent to draw parallels between the current state of clinical somatic mutation testing and the potential future of clinical DNA methylation

testing, as supported by the high accuracy of our minimalist models and other considerations (italics).

NGS next-generation sequencing.

metastases from one another, and (3) HER2+ from HER2—
breast cancers metastatic to the brain. Van Wesenbeeck
et al. [41] developed a droplet digital PCR protocol for the
quantitative assessment of two CpG sites on FFPE samples
of colonic adenomas. Importantly, correlations between
methylation levels measured by arrays and PCRs were high
[41], supporting the possibility of robust quantitative testing
across multiple platforms—once the most informative bio-
markers are identified. We acknowledge the value of the
relatively few published minimalist tests for specific cancer
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types/applications, and note that our work on generalized
strategies suggest that similar efforts can be applied to a
much broader array of challenging differentials in
pathology.

In terms of limitations, the scope of this study and its
results/conclusions are limited to the types of cancers and
samples included. For additional validation, we attempted to
include diverse fresh/FFPE primary and metastasis cases
mostly from outside TCGA (Figs. 4-6: n = 665 cases across
16 cancer types from 20 publicly-available and two internal
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datasets). While this supports the general robustness of
minimalist approaches, our combined data is limited: there
were few CUPs, relatively few metastases, few cases of some
cancer types, no cases of some potentially important cancer
types, and few cases based on non-array data. Our proof-of-
principle study is therefore not intended to recapitulate
minimalist testing on CUPs, or to address every conceivable
difficult differential across multiple testing platforms. Further,
cancers with low tumor purities, which are not uncommon in
clinical practice, are likely underrepresented because, all else
being equal, those with higher purities are usually pre-
ferentially selected for profiling. While Fig. 3d, e shows
modest correlations between tumor purity and classifier con-
fidence and accuracy, this applies only to TCGA cases.

On balance, a compelling case in support of further
investigations into minimalist approaches to cancer classi-
fication by DNA methylation can be advanced, based on the
generally excellent diagnostic performances of minimalist
classifiers, the present availability of testing platforms, and
considerations pertaining the practical needs and resources
of individual (particularly smaller) laboratories. Consider an
analogy to somatic mutation testing: while comprehensive
whole genome/exome sequencing defined the reference
mutational landscapes of cancers, clinical testing today is
dominated by single gene tests and targeted NGS panels, in
attempts to balance clinical needs and practical considera-
tion against exploratory research potential (Table 3). We
propose that future efforts could focus on the development
of minimalist testing on wide-available platforms for CUPs
and additional strategically-selected differentials in pathol-
ogy subspecialties, particularly for differentials not reliably
classified via traditional methods such as IHCs. Inclusion of
low purity specimens is also advised to help define limits of
detections and analytical sensitivities of assays.

Data availability

Data processing and analyses were completed using R
(version 3.2.3) [36]. Processed data files, R scripts, lists of
top-ranked CpG features, and the results of analyses not
included with this manuscript may be available from the
authors upon request, but could be subject to Material/Data
Transfer Agreement(s).
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