Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel role for CAMKIIβ in the regulation of cortical neuron migration: implications for neurodevelopmental disorders

Abstract

Perturbation of CaMKIIβ expression has been associated with multiple neuropsychiatric diseases, highlighting CaMKIIβ as a gene of interest. Yet, in contrast to CaMKIIα, the specific functions of CaMKIIβ in the brain remain poorly explored. Here, we reveal a novel function for this CaMKII isoform in vivo during neuronal development. By using in utero electroporation, we show that CaMKIIβ is an important regulator of radial migration of projection neurons during cerebral cortex development. Knockdown of CaMKIIβ causes accelerated migration of nascent pyramidal neurons, whereas overexpression of CaMKIIβ inhibits migration, demonstrating that precise regulation of CaMKIIβ expression is required for correct neuronal migration. More precisely, CaMKIIβ controls the multipolar–bipolar transition in the intermediate zone and locomotion in the cortical plate through its actin-binding and -bundling activities. In addition, our data indicate that a fine-tuned balance between CaMKIIβ and cofilin activities is necessary to ensure proper migration of cortical neurons. Thus, our findings define a novel isoform-specific function for CaMKIIβ, demonstrating that CaMKIIβ has a major biological function in the developing brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McManus MF, Golden JA. Neuronal migration in developmental disorders. J Child Neurol. 2005;20:280–6.

    Article  Google Scholar 

  2. Muraki K, Tanigaki K. Neuronal migration abnormalities and its possible implications for schizophrenia. Front Neurosci. 2015;9:74.

    Article  Google Scholar 

  3. Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: focus on the cytoskeleton and epilepsy. Neurobiol Disease. 2015;92(Pt A):18–45.

  4. Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol. 2013;29:299–353.

    Article  CAS  Google Scholar 

  5. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7:136–44.

    Article  CAS  Google Scholar 

  6. Kawauchi T. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration. Front Cell Neurosci. 2015;9:394.

    Article  Google Scholar 

  7. Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci. 2005;25:5691–9.

    Article  CAS  Google Scholar 

  8. Schaar BT, McConnell SK. Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci USA. 2005;102:13652–7.

    Article  CAS  Google Scholar 

  9. Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci. 2001;4:143–50.

    Article  CAS  Google Scholar 

  10. Heng JI, Chariot A, Nguyen L. Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci. 2010;33:38–47.

    Article  CAS  Google Scholar 

  11. Kawauchi T, Hoshino M. Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Dev Neurosci. 2008;30:36–46.

    Article  CAS  Google Scholar 

  12. Lian G, Sheen VL. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Front Cell Neurosci. 2015;9:99.

    Article  Google Scholar 

  13. Tsai LH, Gleeson JG. Nucleokinesis in neuronal migration. Neuron. 2005;46:383–8.

    Article  CAS  Google Scholar 

  14. Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, et al. POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep. 2012;2:640–51.

    Article  CAS  Google Scholar 

  15. Norden C, Young S, Link BA, Harris WA. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell. 2009;138:1195–208.

    Article  CAS  Google Scholar 

  16. Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME. Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron. 2009;63:63–80.

    Article  CAS  Google Scholar 

  17. Cooper JA. Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci. 2014;8:386.

    PubMed  PubMed Central  Google Scholar 

  18. Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985;5:3270–7.

    Article  CAS  Google Scholar 

  19. Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron. 2014;81:249–65.

    Article  CAS  Google Scholar 

  20. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.

    Article  CAS  Google Scholar 

  21. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron. 2008;59:914–31.

    Article  CAS  Google Scholar 

  22. Bayer KU, Lohler J, Schulman H, Harbers K. Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res. 1999;70:147–54.

    Article  CAS  Google Scholar 

  23. Lin YC, Redmond L. CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci USA. 2008;105:15791–6.

    Article  CAS  Google Scholar 

  24. Shen K, Teruel MN, Subramanian K, Meyer T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron. 1998;21:593–606.

    Article  CAS  Google Scholar 

  25. Novak G, Seeman P, Tallerico T. Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse. 2006;59:61–68.

    Article  CAS  Google Scholar 

  26. Robison AJ. Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci. 2014;37:653–62.

    Article  CAS  Google Scholar 

  27. Puram SV, Kim AH, Ikeuchi Y, Wilson-Grady JT, Merdes A, Gygi SP, et al. A CaMKIIbeta signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat Neurosci. 2011;14:973–83.

    Article  CAS  Google Scholar 

  28. Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci USA. 2007;104:6418–23.

    Article  CAS  Google Scholar 

  29. Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, et al. Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron. 2011;69:1069–84.

    Article  CAS  Google Scholar 

  30. Pacary E, Guillemot F. Cerebral cortex electroporation to study projection neuron migration. Curr Protoc Neurosci. 2016;77:2 26 21–22 26 18.

    Article  Google Scholar 

  31. Pacary E, Haas MA, Wildner H, Azzarelli R, Bell DM, Abrous DN et al. Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation. J Visualized Exp. 2012;65:e4163.

  32. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  Google Scholar 

  33. Garcez PP, Diaz-Alonso J, Crespo-Enriquez I, Castro D, Bell D, Guillemot F. Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nat Commun. 2015;6:6474.

    Article  CAS  Google Scholar 

  34. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  Google Scholar 

  35. Azzarelli R, Pacary E, Garg R, Garcez P, van den Berg D, Riou P, et al. An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration. Nat Commun. 2014;5:3405.

    Article  Google Scholar 

  36. Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 2010;24:2330–42.

    Article  CAS  Google Scholar 

  37. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007;9:139–48.

    Article  CAS  Google Scholar 

  38. Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, et al. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett. 2016;590:705–15.

    Article  CAS  Google Scholar 

  39. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  Google Scholar 

  40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  41. Nichols AJ, Carney LH, Olson EC. Comparison of slow and fast neocortical neuron migration using a new in vitro model. BMC Neurosci. 2008;9:50.

    Article  Google Scholar 

  42. Insolera R, Shao W, Airik R, Hildebrandt F, Shi SH. SDCCAG8 regulates pericentriolar material recruitment and neuronal migration in the developing cortex. Neuron. 2014;83:805–22.

    Article  CAS  Google Scholar 

  43. Shen K, Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999;284:162–6.

    Article  CAS  Google Scholar 

  44. Kim K, Lakhanpal G, Lu HE, Khan M, Suzuki A, Hayashi MK, et al. A temporary gating of actin remodeling during synaptic plasticity consists of the interplay between the kinase and structural functions of CaMKII. Neuron. 2015;87:813–26.

    Article  CAS  Google Scholar 

  45. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279:870–3.

    Article  CAS  Google Scholar 

  46. Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989;245:862–6.

    Article  CAS  Google Scholar 

  47. Silva AJ, Stevens CF, Tonegawa S, Wang Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257:201–6.

    Article  CAS  Google Scholar 

  48. Fink CC, Bayer KU, Myers JW, Ferrell JE Jr., Schulman H, Meyer T. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron. 2003;39:283–97.

    Article  CAS  Google Scholar 

  49. Hoffman L, Farley MM, Waxham MN. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry. 2013;52:1198–207.

    Article  CAS  Google Scholar 

  50. Saneyoshi T, Hayashi Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton. 2012;69:545–54.

    Article  CAS  Google Scholar 

  51. Saito A, Miyajima K, Akatsuka J, Kondo H, Mashiko T, Kiuchi T, et al. CaMKIIbeta-mediated LIM-kinase activation plays a crucial role in BDNF-induced neuritogenesis. Genes Cells: Devoted Mol Cell Mech. 2013;18:533–43.

    Article  CAS  Google Scholar 

  52. Chai X, Zhao S, Fan L, Zhang W, Lu X, Shao H, et al. Reelin and cofilin cooperate during the migration of cortical neurons: a quantitative morphological analysis. Development. 2016;143:1029–40.

    Article  CAS  Google Scholar 

  53. Kawauchi T, Chihama K, Nabeshima Y, Hoshino M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol. 2006;8:17–26.

    Article  CAS  Google Scholar 

  54. Nagaoka R, Abe H, Obinata T. Site-directed mutagenesis of the phosphorylation site of cofilin: its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskelet. 1996;35:200–9.

    Article  CAS  Google Scholar 

  55. Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E et al. Phosphomimetic S3D-cofilin binds but only weakly severs actin filaments. J Biol Chem. 2017;292:19565–19579.

  56. Shi Y, Pontrello CG, DeFea KA, Reichardt LF, Ethell IM. Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci. 2009;29:8129–42.

    Article  CAS  Google Scholar 

  57. Uenishi E, Shibasaki T, Takahashi H, Seki C, Hamaguchi H, Yasuda T, et al. Actin dynamics regulated by the balance of neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion. J Biol Chem. 2013;288:25851–64.

    Article  CAS  Google Scholar 

  58. Komuro H, Rakic P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron. 1996;17:275–85.

    Article  CAS  Google Scholar 

  59. Rash BG, Ackman JB, Rakic P. Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation. Sci Adv. 2016;2:e1501733.

    Article  Google Scholar 

  60. Ma H, Groth RD, Cohen SM, Emery JF, Li B, Hoedt E, et al. GammaCaMKII shuttles Ca(2)(+)/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 2014;159:281–94.

    Article  CAS  Google Scholar 

  61. Novak G, Fan T, O’Dowd BF, George SR. Postnatal maternal deprivation and pubertal stress have additive effects on dopamine D2 receptor and CaMKII beta expression in the striatum. Int J Dev Neurosci. 2013;31:189–95.

    Article  CAS  Google Scholar 

  62. Greenstein R, Novak G, Seeman P. Amphetamine sensitization elevates CaMKIIbeta mRNA. Synapse. 2007;61:827–34.

    Article  CAS  Google Scholar 

  63. Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F, et al. BetaCaMKII in lateral habenula mediates core symptoms of depression. Science. 2013;341:1016–20.

    Article  CAS  Google Scholar 

  64. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul de Koninck for providing CaMKIIβ, Dr. Azad Bonni for providing CaMKIIβ-ΔFABD, CaMKIIβ-Δasso, CaMKIIβ-K43R and CaMKIIβ-ΔCTS constructs, Dr. Yasunori Hayashi for providing CaMKIIβ-All A and CaMKIIβ-All D. We are also grateful to Drs. Iryna Ethell, Mary Hatten, Mathieu Vermeren and Franck Oury for providing the constructs expressing wild-type or mutated forms of cofilin, pCIG2-Centrin2-Venus, pCA-b-EGFPm5 silencer 3 and the RNA sens and antisense probes for CaMKIIβ, respectively. We gratefully acknowledge Dr. Roberta Azzarelli for comments on the manuscript. Image analysis was partially done in the Bordeaux Imaging Center, a service unit of the CNRS-INSERM and Bordeaux University, member of the national infrastructure France BioImaging. This work benefited from the support of the Transcriptomic facility funded by INSERM and LabEX BRAIN ANR-10-LABX-43 and was supported by INSERM, CNRS, Bordeaux University, Marie Curie Actions (Intra European Fellowship), FRM (grant DEQ20130326468) and institutional funds from the Medical Research Council to F.G.

Author contributions

E.P. and O.N. designed and carried out experiments. E.P. wrote the manuscript. D.M.B. and F.G helped with live imaging experiments. T.L.-L. and H.D. performed PCR analyses. All authors discussed results from experiments and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Pacary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicole, O., Bell, D.M., Leste-Lasserre, T. et al. A novel role for CAMKIIβ in the regulation of cortical neuron migration: implications for neurodevelopmental disorders. Mol Psychiatry 23, 2209–2226 (2018). https://doi.org/10.1038/s41380-018-0046-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-018-0046-0

This article is cited by

Search

Quick links