Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy

Abstract

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    Article  PubMed  Google Scholar 

  2. Morelli E, Moore H, Rebello TJ, Gray N, Steele K, Esposito E, et al. Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction. J Neurosci. 2011;31:15742–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cassano P, Fava M. Tolerability issues during long-term treatment with antidepressants. Ann Clin Psychiatry. 2004;16:15–25.

    Article  PubMed  Google Scholar 

  4. Preskorn SH, Ross R, Stanga CY Selective serotonin reuptake inhibitors. In: Preskorn SH, Feighner HP, Stanga CY, Ross R (eds). Antidepressants: past, present and future. Springer: Berlin, 2004, pp. 241–62.

  5. Settle EC Jr. Antidepressant drugs: disturbing and potentially dangerous adverse effects. J Clin Psychiatry. 1998;59(Suppl 16):25–30. discussion 40–22

    CAS  PubMed  Google Scholar 

  6. Damsa C, Bumb A, Bianchi-Demicheli F, Vidailhet P, Sterck R, Andreoli A, et al. “Dopamine-dependent” side effects of selective serotonin reuptake inhibitors: a clinical review. J Clin Psychiatry. 2004;65:1064–8.

    Article  CAS  PubMed  Google Scholar 

  7. Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195:211–7.

    Article  PubMed  Google Scholar 

  8. Sansone RA, Sansone LA. SSRI-induced indifference. Psychiatry. 2010;7:14–18.

    PubMed  PubMed Central  Google Scholar 

  9. Di Matteo V, Di Giovanni G, Pierucci M, Esposito E. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res. 2008;172:7–44.

    Article  PubMed  CAS  Google Scholar 

  10. Di Giovanni G, Di Matteo V, Pierucci M, Esposito E. Serotonin-dopamine interaction: electrophysiological evidence. Prog Brain Res. 2008;172:45–71.

    Article  PubMed  CAS  Google Scholar 

  11. Hawthorne JM, Caley CF. Extrapyramidal reactions associated with serotonergic antidepressants. Ann Pharmacother. 2015;49:1136–52.

    Article  CAS  PubMed  Google Scholar 

  12. Papakostas GI. Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J Clin Psychiatry. 2009;70(Suppl 6):16–25.

    Article  CAS  PubMed  Google Scholar 

  13. De Deurwaerdere P, Di Giovanni G Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol. 2016.

  14. Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 5-HT2C receptors in psychiatric disorders: a review. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:120–35.

    Article  CAS  PubMed  Google Scholar 

  15. Prisco S, Esposito E. Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol. 1995;116:1923–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grottick AJ, Fletcher PJ, Higgins GA. Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther. 2000;295:1183–91.

    CAS  PubMed  Google Scholar 

  17. Zeeb FD, Higgins GA, Fletcher PJ. The serotonin 2C receptor agonist lorcaserin attenuates intracranial self-stimulation and blocks the reward-enhancing effects of nicotine. ACS Chem Neurosci. 2015;6:1231–40.

    Article  CAS  PubMed  Google Scholar 

  18. Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, et al. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry. 2011;69:928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bailey MR, Williamson C, Mezias C, Winiger V, Silver R, Balsam PD, et al. The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacol (Berl). 2016;233:615–24.

    Article  CAS  Google Scholar 

  20. Browne CJ, Fletcher PJ. Decreased incentive motivation following knockout or acute blockade of the serotonin transporter: role of the 5-HT2C receptor. Neuropsychopharmacology. 2016.

  21. Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH, et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry. 2003;54:960–71.

    Article  CAS  PubMed  Google Scholar 

  22. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998;95:14476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994;265:1875–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23:8836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, et al. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci. 2004;24:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunney BS, Walters JR, Roth RH, Aghajanian GK. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973;185:560–71.

    CAS  PubMed  Google Scholar 

  27. Grace AA, Bunney BS. Nigral dopamine neurons: intracellular recording and identification with L-dopa injection and histofluorescence. Science. 1980;210:654–6.

    Article  CAS  PubMed  Google Scholar 

  28. Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry. 2014;19:688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science. 2004;306:879–81.

    Article  CAS  PubMed  Google Scholar 

  30. Sun P, Wang F, Wang L, Zhang Y, Yamamoto R, Sugai T, et al. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci. 2011;31:16464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller JM, Morelli E, Ansorge M, Gingrich JA. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks. Genes Brain Behav. 2011;10:166–75.

    Article  CAS  PubMed  Google Scholar 

  32. Valentine G, Dow A, Banasr M, Pittman B, Duman R. Differential effects of chronic antidepressant treatment on shuttle box escape deficits induced by uncontrollable stress. Psychopharmacology (Berl). 2008;200:585–96.

    Article  CAS  Google Scholar 

  33. Hoffman BJ, Mezey E. Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain. FEBS Lett. 1989;247:453–62.

    Article  CAS  PubMed  Google Scholar 

  34. Mengod G, Nguyen H, Le H, Waeber C, Lubbert H, Palacios JM. The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience. 1990;35:577–91.

    Article  CAS  PubMed  Google Scholar 

  35. Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF. Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol. 1997;384:233–47.

    Article  CAS  PubMed  Google Scholar 

  36. Hajos M, Greenfield SA. Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res. 1994;660:216–24.

    Article  CAS  PubMed  Google Scholar 

  37. Stanford IM, Lacey MG. Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci. 1996;16:7566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ward RP, Dorsa DM. Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol. 1996;370:405–14.

    Article  CAS  PubMed  Google Scholar 

  39. Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A et al. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife. 2017;13:6.

  40. Freeman AS, Meltzer LT, Bunney BS. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 1985;36:1983–94.

    Article  CAS  PubMed  Google Scholar 

  41. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4:2877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cooper DC. The significance of action potential bursting in the brain reward circuit. Neurochem Int. 2002;41:333–40.

    Article  CAS  PubMed  Google Scholar 

  43. Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem. 2003;87:1284–95.

    Article  CAS  PubMed  Google Scholar 

  44. Tepper JM, Martin LP, Anderson DR. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci. 1995;15:3092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paladini CA, Tepper JM. GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse. 1999;32:165–76.

    Article  CAS  PubMed  Google Scholar 

  46. Dremencov E, El Mansari M, Blier P. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci. 2009;34:223–9.

    PubMed  PubMed Central  Google Scholar 

  47. Prisco S, Pagannone S, Esposito E. Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther. 1994;271:83–90.

    CAS  PubMed  Google Scholar 

  48. Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology. 1998;37:265–72.

    Article  PubMed  Google Scholar 

  49. Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U. Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience. 1999;91:587–97.

    Article  PubMed  Google Scholar 

  50. Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E. Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse. 2000;35:53–61.

    Article  PubMed  Google Scholar 

  51. Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology. 1999;38:1195–205.

    Article  PubMed  Google Scholar 

  52. Abdallah L, Bonasera SJ, Hopf FW, O’Dell L, Giorgetti M, Jongsma M, et al. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function. J Neurosci. 2009;29:8156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bailey MR, Goldman O, Bello EP, Chohan MO, Jeong N, Winiger V, et al. An interaction between serotonin receptor signaling and dopamine enhances goal-directed vigor and persistence in mice. J Neurosci. 2018;38:2149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus--from silver stainings to a role in depression. Brain Res Rev. 2007;55:329–42.

    Article  PubMed  Google Scholar 

  55. Dray A, Davies J, Oakley NR, Tongroach P, Vellucci S. The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res. 1978;151:431–42.

    Article  CAS  PubMed  Google Scholar 

  56. Miller JJ, Richardson TL, Fibiger HC, McLennan H. Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res. 1975;97:133–6.

    Article  CAS  PubMed  Google Scholar 

  57. Imai H, Steindler DA, Kitai ST. The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol. 1986;243:363–80.

    Article  CAS  PubMed  Google Scholar 

  58. Vertes RP. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol. 1991;313:643–68.

    Article  CAS  PubMed  Google Scholar 

  59. Moukhles H, Bosler O, Bolam JP, Vallee A, Umbriaco D, Geffard M, et al. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience. 1997;76:1159–71.

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 2014;8:1105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cohen JY. Dopamine and serotonin signals for reward across time scales. Science. 2015;350:47.

    Article  PubMed  Google Scholar 

  62. Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RA, et al. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep. 2014;8:1857–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanders AC, Hussain AJ, Hen R, Zhuang X. Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward. Neuropsychopharmacology. 2007;32:2321–9.

    Article  CAS  PubMed  Google Scholar 

  65. Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology. 2011;61:524–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron. 2014;83:645–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, et al. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron. 2015;88:774–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG, et al. Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci. 1998;18:6914–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou FC, Lesch KP, Murphy DL. Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 2002;942:109–19.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 2005;46:65–74.

    Article  CAS  PubMed  Google Scholar 

  72. Arya DK. Extrapyramidal symptoms with selective serotonin reuptake inhibitors. Br J Psychiatry. 1994;165:728–33.

    Article  CAS  PubMed  Google Scholar 

  73. Leo RJ. Movement disorders associated with the serotonin selective reuptake inhibitors. J Clin Psychiatry. 1996;57:449–54.

    Article  CAS  PubMed  Google Scholar 

  74. Hedenmalm K, Guzey C, Dahl ML, Yue QY, Spigset O. Risk factors for extrapyramidal symptoms during treatment with selective serotonin reuptake inhibitors, including cytochrome P-450 enzyme, and serotonin and dopamine transporter and receptor polymorphisms. J Clin Psychopharmacol. 2006;26:192–7.

    Article  CAS  PubMed  Google Scholar 

  75. Lane RM. SSRI-induced extrapyramidal side-effects and akathisia: implications for treatment. J Psychopharmacol. 1998;12:192–214.

    Article  CAS  PubMed  Google Scholar 

  76. Caley CF. Extrapyramidal reactions and the selective serotonin-reuptake inhibitors. Ann Pharmacother. 1997;31:1481–9.

    Article  CAS  PubMed  Google Scholar 

  77. Madhusoodanan S, Alexeenko L, Sanders R, Brenner R. Extrapyramidal symptoms associated with antidepressants--a review of the literature and an analysis of spontaneous reports. Ann Clin Psychiatry. 2010;22:148–56.

    PubMed  Google Scholar 

  78. Gill HS, DeVane CL, Risch SC. Extrapyramidal symptoms associated with cyclic antidepressant treatment: a review of the literature and consolidating hypotheses. J Clin Psychopharmacol. 1997;17:377–89.

    Article  CAS  PubMed  Google Scholar 

  79. Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  81. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78:69–74.

    Article  PubMed  Google Scholar 

  82. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.

    Article  CAS  PubMed  Google Scholar 

  83. Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166:664–74.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.

    Article  CAS  PubMed  Google Scholar 

  85. Beard E, Shahab L, Cummings DM, Michie S, West R. New Pharmacological agents to aid smoking cessation and tobacco harm reduction: what has been investigated, and what is in the pipeline? CNS Drugs. 2016;30:951-83.

  86. Higgins GA, Fletcher PJ. Therapeutic potential of 5-HT2C receptor agonists for addictive disorders. ACS Chem Neurosci. 2015;6:1071–88.

    Article  CAS  PubMed  Google Scholar 

  87. Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D, et al. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry. 2014;19:1106–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Sackler Institute for Developmental Psychobiology, a Sackler Award (M.S.A.), and the National Institute of Mental Health (R01 MH099118, R01 MH068073). M.S.A., E.Y.D., D.S., E.M., D.M., N.C., C.T., D.S., H.M, J.A.G., P.B., and S.R. conceived the experiments. M.S.A., E.Y.D., D.S., E.M., D.M., N.C., C.T., D.S., A.Z., M.H., J.F., S.B., and A.C. performed the experiments. M.S.A., E.Y.D., D.S. and D.M., wrote the paper. We thank Christoph Kellendonk and Eleanor Simpson for their critical review of this manuscript. Rene Hen generously contributed several 5-HT receptor deficient mouse lines for these studies. Correspondence should be addressed to Mark S. Ansorge, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NT 10032. ma2362@cumc.columbia.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ansorge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demireva, E.Y., Suri, D., Morelli, E. et al. 5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy. Mol Psychiatry 25, 3304–3321 (2020). https://doi.org/10.1038/s41380-018-0227-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-018-0227-x

This article is cited by

Search

Quick links