Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting the course of ADHD symptoms through the integration of childhood genomic, neural, and cognitive features

Abstract

Childhood attention deficit hyperactivity disorder (ADHD) shows a highly variable course with age: some individuals show improving, others stable or worsening symptoms. The ability to predict symptom course could help individualize treatment and guide interventions. By studying a cohort of 362 youth, we ask if polygenic risk for ADHD, combined with baseline neural and cognitive features could aid in the prediction of the course of symptoms over an average period of 4.8 years. Compared to a never-affected comparison group, we find that participants with worsening symptoms carried the highest polygenic risk for ADHD, followed by those with stable symptoms, then those whose symptoms improved. Participants with worsening symptoms also showed atypical baseline cognition. Atypical microstructure of the cingulum bundle and anterior thalamic radiation was associated with improving symptoms while reduction of thalamic volume was found in those with stable symptoms. Machine-learning algorithms, trained and tested on independent groups, performed well in classifying those never affected against groups with worsening, stable, and improving symptoms (area under the curve >0.79). We conclude that some measures of polygenic risk, cognition, and neuroimaging show significant associations with the future course of ADHD symptoms and may have modest predictive power. These features warrant further exploration as prognostic tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between symptom course groups and cognitive, polygenic risk, white-matter, and anatomic features.
Fig. 2: The importance of each feature type in classification.

Similar content being viewed by others

References

  1. Sibley MH, Mitchell JT, Becker SP. Method of adult diagnosis influences estimated persistence of childhood ADHD: a systematic review of longitudinal studies. Lancet Psychiatry. 2016;3:1157–65.

    Article  PubMed  Google Scholar 

  2. Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med. 2006;36:159–65.

    Article  PubMed  Google Scholar 

  3. Caye A, Spadini AV, Karam RG, Grevet EH, Rovaris DL, Bau CH, et al. Predictors of persistence of ADHD into adulthood: a systematic review of the literature and meta-analysis. Eur Child Adolesc Psychiatry. 2016;25:1151–9.

    Article  PubMed  Google Scholar 

  4. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv. 2017. https://doi.org/10.1101/145581.

  5. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide. Genome Res. 2007;17:1520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pingault JB, Viding E, Galera C, Greven C, Zheng YRP, et al. Genetic and environmental influences on the developmental course of attention-deficit/hyperactivity disorder symptoms from childhood to adolescence. JAMA Psychiatry. 2015. https://doi.org/10.1001/jamapsychiatry.2015.0469T.

  7. Riglin L, Collishaw S, Thapar AK, Dalsgaard S, Langley K, Smith GD, et al. Association of genetic risk variants with attention-deficit/hyperactivity disorder trajectories in the general population. JAMA Psychiatry. 2016;73:1285–92.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, et al. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164:647–55.

    Article  PubMed  Google Scholar 

  9. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.

    Article  PubMed  Google Scholar 

  10. Clarke AR, Barry RJ, Dupuy FE, McCarthy R, Selikowitz M, Heaven PC. Childhood EEG as a predictor of adult attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2011;122:73–80.

    Article  PubMed  Google Scholar 

  11. Whitfield-Gabrieli S, Wendelken C, Nieto-Castañón A, Bailey SK, Anteraper SA, Lee YJ, et al. Association of intrinsic brain architecture with changes in attentional and mood symptoms during development. JAMA Psychiatry. 2020;77:378–86. https://doi.org/10.1001/jamapsychiatry.2019.4208.

    Article  PubMed  Google Scholar 

  12. Martinussen R, Hayden J, Hogg-Johnson S, Tannock R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2005;44:377–84.

    Article  PubMed  Google Scholar 

  13. Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.

    Article  PubMed  Google Scholar 

  14. Cook NE, Braaten EB, Surman CB. Clinical and functional correlates of processing speed in pediatric attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Child Neuropsychol. 2018;24:598–616.

    Article  PubMed  Google Scholar 

  15. Reich W, Welner Z, Herkanic B. Diagnostic interview for children and adolescents (DICA-IV). North Tonawanda, NY: Multi-Health Systems; 1997.

  16. Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2014;31:1466–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. https://doi.org/10.1038/s41588-018-0269-7.

    Article  CAS  PubMed  Google Scholar 

  18. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81.

    Article  PubMed  Google Scholar 

  19. Shaw P, Ishii-Takahashi A, Park MT, Devenyi GA, Zibman C, Kasparek S, et al. A multicohort, longitudinal study of cerebellar development in attention deficit hyperactivity disorder. J Child Psychol Psychiatry. 2018;59:1114–23. https://doi.org/10.1111/jcpp.12920.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. 2019;176:531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoogman M, Buitelaar JK, Faraone SV, Shaw P, Franke B. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults—authors’ reply. Lancet Psychiatry. 2017;4:440–1.

    Article  PubMed  Google Scholar 

  22. Rubia K. Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and Its clinical translation. Front Hum Neurosci. 2018;12:100.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39:336–47.

    Article  PubMed  Google Scholar 

  24. Wechsler, D. Wechsler abbreviated scale of intelligence, Second Edition (WASI-II). San Antonio, TX. NCS Pearson; 2011.

  25. Wechsler D. Wechsler preschool and primary scale of intelligence, Fourth edition. San Antonio, TX: Psychological Corporation; 2012.

  26. Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition. San Antonio, TX. Psychological Corporation; 2003.

  27. Beery KE. Beery VMI: the Beery-Buktenica developmental test of visual-motor integration. Minneapolis, MN: Pearson; 2004.

  28. Woodcock RW, McGrew KS, Mather N. Woodcock-Johnson III: tests of achievement. Itasca, IL. Riverside Publishing Company; 2001.

  29. Hollingshead A. Four factor index of social status. New Haven: Yale University Department of Sociology; 1975.

  30. Rosnow RL, Rosenthal R. Computing contrasts, effect sizes, and counternulls on other people’s published data: General procedures for research consumers. Psychol Methods. 1996;1:331.

    Article  Google Scholar 

  31. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat. 2006;15:651–74.

    Article  Google Scholar 

  32. Vuijk PJ, Martin J, Braaten EB, Genovese G, Capawana MR, O’Keefe SM, et al. Translating Discoveries in Attention-Deficit/Hyperactivity Disorder Genomics to an Outpatient Child and Adolescent Psychiatric Cohort. J Am Acad Child Adolesc Psychiatry. 2020;59:964–77. https://doi.org/10.1016/j.jaac.2019.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nigg JT, Gustafsson HC, Karalunas SL, Ryabinin P, McWeeney SK, Faraone SV, et al. Working memory and vigilance as multivariate endophenotypes related to common genetic risk for attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2018;57:175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sudre G, Frederick J, Sharp W, Ishii-Takahashi A, Mangalmurti A, Choudhury S, et al. Mapping associations between polygenic risks for childhood neuropsychiatric disorders, symptoms of attention deficit hyperactivity disorder, cognition, and the brain. Mol Psychiatry. 2020;25:2482–92. https://doi.org/10.1038/s41380-019-0350-3.

    Article  PubMed  Google Scholar 

  35. Martin J, Hamshere ML, Stergiakouli E, O’Donovan MC, Thapar A. Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population. Biol Psychiatry. 2014;76:664–71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carr LA, Nigg JT, Henderson JM. Attentional versus motor inhibition in adults with attention-deficit/hyperactivity disorder. Neuropsychology. 2006;20:430–41. https://doi.org/10.1037/0894-4105.20.4.430.

    Article  PubMed  Google Scholar 

  37. van Lieshout M, Luman M, Twisk JWR, Faraone SV, Heslenfeld DJ, Hartman CA, et al. Neurocognitive predictors of ADHD outcome: a 6-year follow-up study. J Abnorm Child Psychol. 2017;45:261–72.

    Article  PubMed  Google Scholar 

  38. Sjöwall D, Bohlin G, Rydell A-M, Thorell LB. Neuropsychological deficits in preschool as predictors of ADHD symptoms and academic achievement in late adolescence. Child Neuropsychol. 2017;23:111–28.

    Article  PubMed  Google Scholar 

  39. Karalunas SL, Gustafsson HC, Dieckmann NF, Tipsord J, Mitchell SH, Nigg JT. Heterogeneity in development of aspects of working memory predicts longitudinal attention deficit hyperactivity disorder symptom change. J Abnorm Psychol. 2017;126:774.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, et al. Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections. Cereb Cortex. 2008;18:1210–20.

    Article  PubMed  Google Scholar 

  41. Chiang H-L, Chen Y-J, Lo Y-C, Tseng W-YI, Gau SS-F. Altered white matter tract property related to impaired focused attention, sustained attention, cognitive impulsivity and vigilance in attention-deficit/hyperactivity disorder. J Psychiatry Neurosci. 2015;40:325.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage. 2012;60:340–52.

    Article  CAS  PubMed  Google Scholar 

  43. Kuriyan AB, Pelham WE Jr, Molina BS, Waschbusch DA, Sibley MH, Gnagy EM. Concordance between parent and physician medication histories for children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2014;24:269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Owens EB, Cardoos SL, Hinshaw SP. Developmental progression and gender differences among individuals with ADHD. In: Barkley RA, editor. Attention-deficit hyperactivity disorder: a handbook for diagnosis and treatment. New York, NY. The Guilford Press; 2015.

  45. Dalsgaard S, Mortensen PB, Frydenberg M, Thomsen PH. Conduct problems, gender and adult psychiatric outcome of children with attention-deficit hyperactivity disorder. Br J Psychiatry. 2002;181:416–21.

    Article  PubMed  Google Scholar 

  46. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57:328–49.

    Article  PubMed  Google Scholar 

  47. Kim JW, Sharma V, Ryan ND. Predicting Methylphenidate Response in ADHD Using Machine Learning Approaches. Int J Neuropsychopharmacol. 2015;18:pyv052.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Luo Y, Alvarez TL, Halperin JM, Li X. Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. NeuroImage: Clin. 2020;26:102238. https://doi.org/10.1016/j.nicl.2020.102238.

    Article  Google Scholar 

  49. Caye A, Agnew-Blais J, Arseneault L, Gonçalves H, Kieling C, Langley K, et al. A risk calculator to predict adult attention-deficit/hyperactivity disorder: generation and external validation in three birth cohorts and one clinical sample. Epidemiol Psychiatr Sci. 2019;29:e37. https://doi.org/10.1017/S2045796019000283.

Download references

Acknowledgements

Research is supported by the intramural programs of the National Human Genome Research Institute and National Institute of Mental Health. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudre, G., Sharp, W., Kundzicz, P. et al. Predicting the course of ADHD symptoms through the integration of childhood genomic, neural, and cognitive features. Mol Psychiatry 26, 4046–4054 (2021). https://doi.org/10.1038/s41380-020-00941-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-020-00941-x

This article is cited by

Search

Quick links