Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

D1 receptor-expressing neurons in ventral tegmental area alleviate mouse anxiety-like behaviors via glutamatergic projection to lateral septum

Abstract

Dopamine (DA) acts as a key regulator in controlling emotion, and dysfunction of DA signal has been implicated in the pathophysiology of some psychiatric disorders, including anxiety. Ventral tegmental area (VTA) is one of main regions with DA-producing neurons. VTA DAergic projections in mesolimbic brain regions play a crucial role in regulating anxiety-like behaviors, however, the function of DA signal within VTA in regulating emotion remains unclear. Here, we observe that pharmacological activation/inhibition of VTA D1 receptors will alleviate/aggravate mouse anxiety-like behaviors, and knockdown of VTA D1 receptor expression also exerts anxiogenic effect. With fluorescence in situ hybridization and electrophysiological recording, we find that D1 receptors are functionally expressed in VTA neurons. Silencing/activating VTA D1 neurons bidirectionally modulate mouse anxiety-like behaviors. Furthermore, knocking down D1 receptors in VTA DA and glutamate neurons elevates anxiety-like state, but in GABA neurons has the opposite effect. In addition, we identify the glutamatergic projection from VTA D1 neurons to lateral septum is mainly responsible for the anxiolytic effect induced by activating VTA D1 neurons. Thus, our study not only characterizes the functional expression of D1 receptors in VTA neurons, but also uncovers the pivotal role of DA signal within VTA in mediating anxiety-like behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manipulating VTA D1 receptors bidirectionally regulates mouse anxiety-like behaviors.
Fig. 2: Functional expression of D1 receptors in VTA neurons.
Fig. 3: Optogenetic activation of VTA D1 neurons relieves mouse anxiety-like behaviors.
Fig. 4: Chemogenetic manipulation of VTA D1 neurons and blocking synaptic transmission of VTA D1 neurons change mouse anxiety-like behaviors.
Fig. 5: Lowering D1 receptor expression in VTA DA, GABA, and glutamate neurons differently changes mouse anxiety-like behaviors.
Fig. 6: Glutamatergic projection of VTA D1 neurons to LS is responsible for alleviating mouse anxiety-like behaviors.

Similar content being viewed by others

References

  1. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021;398:1700–12.

    Article  Google Scholar 

  2. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16:317–31.

    Article  CAS  Google Scholar 

  3. Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TMK, et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci. 2011;14:620–8.

    Article  CAS  Google Scholar 

  4. Qi G, Zhang P, Li T, Li M, Zhang Q, He F, et al. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun. 2022;13:577.

    Article  CAS  Google Scholar 

  5. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell 2014;157:1535–51.

    Article  CAS  Google Scholar 

  6. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10:223.

    Article  Google Scholar 

  7. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku M, Koo JW, et al. Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons. Nature 2013;493:532–6.

    Article  CAS  Google Scholar 

  8. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 2014;344:313–9.

    Article  CAS  Google Scholar 

  9. Xu XR, Xiao Q, Hong YC, Liu YH, Liu Y, Tu J. Activation of dopaminergic VTA inputs to the mPFC ameliorates chronic stress-induced breast tumor progression. CNS Neurosci Ther. 2021;27:206–19.

    Article  Google Scholar 

  10. Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    Article  CAS  Google Scholar 

  11. Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry. 2011;16:1024–38.

    Article  CAS  Google Scholar 

  12. Nguyen C, Mondoloni S, Le Borgne T, Centeno I, Come M, Jehl J, et al. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron 2021;109:2604–15.e9.

    Article  CAS  Google Scholar 

  13. Adell A, Artigas F. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev. 2004;28:415–31.

    Article  CAS  Google Scholar 

  14. Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc B Biol Sci. 2015;370:20140185.

    Article  Google Scholar 

  15. Missale C, Russel Nash S, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    Article  CAS  Google Scholar 

  16. Nord M, Farde L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther. 2011;17:97–103.

    Article  Google Scholar 

  17. Ainsworth K, Smith SE, Zetterström TSC, Pei Q, Franklin M, Sharp T. Effect of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat. Psychopharmacology 1998;140:470–7.

    Article  CAS  Google Scholar 

  18. Hayden EP, Klein DN, Dougherty LR, Olino TM, Laptook RS, Dyson MW, et al. The dopamine D2 receptor gene and depressive and anxious symptoms in childhood: associations and evidence for gene-environment correlation and gene-environment interaction. Psychiatr Genet. 2010;20:304–10.

    Article  Google Scholar 

  19. Lawford BR, Young R, Noble EP, Kann B, Ritchie T. The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur Psychiatry. 2006;21:180–5.

    Article  Google Scholar 

  20. Zhang YQ, Lin WP, Huang LP, Zhao B, Zhang CC, Yin DM. Dopamine D2 receptor regulates cortical synaptic pruning in rodents. Nat Commun. 2021;12:6444.

    Article  CAS  Google Scholar 

  21. Tu G, Ying L, Ye L, Zhao J, Liu N, Li J, et al. Dopamine D1 and D2 receptors differentially regulate Rac1 and Cdc42 signaling in the nucleus accumbens to modulate behavioral and structural plasticity after repeated methamphetamine treatment. Biol Psychiatry. 2019;86:820–35.

    Article  CAS  Google Scholar 

  22. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009;323:800–2.

    Article  CAS  Google Scholar 

  23. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology 2004;174:3–16.

    Article  CAS  Google Scholar 

  24. Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25:2742–58.

    Article  Google Scholar 

  25. Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, et al. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry. 2020;25:1229–44.

    Article  CAS  Google Scholar 

  26. DeGroot SR, Zhao-Shea R, Chung L, Klenowski PM, Sun F, Molas S, et al. Midbrain dopamine controls anxiety-like behavior by engaging unique interpeduncular nucleus microcircuitry. Biol Psychiatry. 2020;88:855–66.

    Article  CAS  Google Scholar 

  27. Khlghatyan J, Quintana C, Parent M, Beaulieu J-M. High sensitivity mapping of cortical dopamine D2 receptor expressing neurons. Cereb Cortex. 2019;29:3813–27.

    Article  Google Scholar 

  28. Paladini CA, Robinson S, Morikawa H, Williams JT, Palmiter RD. Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism. Proc Natl Acad Sci USA. 2003;100:2866–71.

    Article  CAS  Google Scholar 

  29. Anzalone A, Lizardi-Ortiz JE, Ramos M, De Mei C, Hopf FW, Iaccarino C, et al. Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci. 2012;32:9023–34.

    Article  CAS  Google Scholar 

  30. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014;282:13–22.

    Article  CAS  Google Scholar 

  31. De Jong JW, Roelofs TJM, Mol FMU, Hillen AEJ, Meijboom KE, Luijendijk MCM, et al. Reducing ventral tegmental dopamine D2 receptor expression selectively boosts incentive motivation. Neuropsychopharmacology 2015;40:2085–95.

    Article  Google Scholar 

  32. Peng B, Xu Q, Liu J, Guo S, Borgland SL, Liu S. Corticosterone attenuates reward-seeking behavior and increases anxiety via D2 receptor signaling in ventral tegmental area dopamine neurons. J Neurosci. 2021;41:1566–81.

    Article  CAS  Google Scholar 

  33. Schilström B, Yaka R, Argilli E, Suvarna N, Schumann J, Chen BT, et al. Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. J Neurosci. 2006;26:8549–58.

    Article  Google Scholar 

  34. Langlois LD, Dacher M, Nugent FS. Dopamine receptor activation is required for GABAergic spike timing-dependent plasticity in response to complex spike pairing in the ventral tegmental area. Front Synaptic Neurosci. 2018;10:32.

    Article  CAS  Google Scholar 

  35. Ranaldi R, Wise RA. Blockade of D1 dopamine receptors in the ventral tegmental area decreases cocaine reward: possible role for dendritically released dopamine. J Neurosci. 2001;21:5841–6.

    Article  CAS  Google Scholar 

  36. Matini T, Haghparast A, Rezaee L, Salehi S, Tehranchi A, Haghparast A. Role of dopaminergic receptors within the ventral tegmental area in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of orofacial pain. J Pain Res. 2020;13:1449–60.

    Article  CAS  Google Scholar 

  37. Moradi M, Fatahi Z, Haghparast A. Blockade of D1-like dopamine receptors within the ventral tegmental area and nucleus accumbens attenuates antinociceptive responses induced by chemical stimulation of the lateral hypothalamus. Neurosci Lett. 2015;599:61–6.

    Article  CAS  Google Scholar 

  38. Yung KKL, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 1995;65:709–30.

    Article  CAS  Google Scholar 

  39. Dawson TM, Gehlert DR, Tyler McCabe R, Barnett A, Wamsley JK. D-1 dopamine receptors in the rat brain: a quantitative autoradiographic analysis. J Neurosci. 1986;6:2352–65.

    Article  CAS  Google Scholar 

  40. Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, et al. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: Differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA. 1991;88:7491–5.

    Article  CAS  Google Scholar 

  41. Higa KK, Young JW, Ji B, Nichols DE, Geyer MA, Zhou X. Striatal dopamine D1 receptor suppression impairs reward-associative learning. Behav Brain Res. 2017;323:100–10.

    Article  CAS  Google Scholar 

  42. Ji B, Higa K, Soontornniyomkij V, Miyanohara A, Zhou X. A novel animal model for neuroinflammation and white matter degeneration. PeerJ. 2017;5:e3905.

    Article  Google Scholar 

  43. Xiao L, Priest MF, Kozorovitskiy Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. Elife 2018;7:e33892.

    Article  Google Scholar 

  44. Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 2017;95:368–84.e5.

    Article  CAS  Google Scholar 

  45. Chen S, Xu H, Dong S, Xiao L. Morpho-electric properties and diversity of oxytocin neurons in paraventricular nucleus of hypothalamus in female and male mice. J Neurosci. 2022;42:2885–904.

    Article  CAS  Google Scholar 

  46. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  Google Scholar 

  47. Trudeau LE, Hnasko TS, Wallén-Mackenzie Å, Morales M, Rayport S, Sulzer D. The multilingual nature of dopamine neurons. Prog Brain Res. 2014;211:141–64.

    Article  CAS  Google Scholar 

  48. Zell V, Steinkellner T, Hollon NG, Jin X, Zweifel LS, Hnasko TS, et al. VTA glutamate neuron activity drives positive reinforcement absent dopamine co-release. Neuron 2020;107:864–873.e4.

    Article  CAS  Google Scholar 

  49. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    Article  CAS  Google Scholar 

  50. Durcan MJ, Lister RG. Time course of ethanol’s effects on locomotor activity, exploration and anxiety in mice. Psychopharmacology 1988;96:67–72.

    Article  CAS  Google Scholar 

  51. Schrader AJ, Taylor RM, Lowery-Gionta EG, Moore NLT. Repeated elevated plus maze trials as a measure for tracking within-subjects behavioral performance in rats (Rattus norvegicus). PLoS ONE. 2018;13:e0207804.

    Article  Google Scholar 

  52. Zhou M, Liu Z, Melin MD, Ng YH, Xu W, Südhof TC. A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nat Neurosci. 2018;21:1515–9.

    Article  CAS  Google Scholar 

  53. Bergquist F, Niazi HS, Nissbrandt H. Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain Res. 2002;950:245–53.

    Article  CAS  Google Scholar 

  54. Liu C, Kaeser PS. Mechanisms and regulation of dopamine release. Curr Opin Neurobiol. 2019;57:46–53.

    Article  CAS  Google Scholar 

  55. Whitton PS, Britton P, Bowery NG. Tetanus toxin alters 5-hydroxytryptamine, dopamine, and their metabolites in rat hippocampus measured by in vivo microdialysis. Neurosci Lett. 1992;144:95–8.

    Article  CAS  Google Scholar 

  56. Barbano MF, Wang HL, Zhang S, Miranda-Barrientos J, Estrin DJ, Figueroa-González A, et al. VTA glutamatergic neurons mediate innate defensive behaviors. Neuron 2020;107:368–82.e8.

    Article  CAS  Google Scholar 

  57. Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22:106–19.

    Article  CAS  Google Scholar 

  58. Qi J, Zhang S, Wang H-L, Barker DJ, Miranda-Barrientos J, Morales M. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci. 2016;19:725–33.

    Article  CAS  Google Scholar 

  59. Han Y, Xia G, He Y, He Y, Farias M, Xu Y, et al. A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation. Sci Adv. 2021;7:eabf8719.

    Article  CAS  Google Scholar 

  60. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 2015;162:622–34.

    Article  CAS  Google Scholar 

  61. Khan S, Stott SRW, Chabrat A, Truckenbrodt AM, Spencer-Dene B, Nave KA, et al. Survival of a novel subset of midbrain dopaminergic neurons projecting to the lateral septum is dependent on neurod proteins. J Neurosci. 2017;37:2305–16.

    Article  CAS  Google Scholar 

  62. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012;491:212–7.

    Article  CAS  Google Scholar 

  63. Poulin J, Caronia G, Hofer C, Cui Q, Helm B, Awatramani R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018;21:1260–71.

    Article  CAS  Google Scholar 

  64. Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin. 2008;40:426–36.

    Article  CAS  Google Scholar 

  65. Surmeier DJ, Shen W, Day M, Gertler T, Chan S, Tian X, et al. The role of dopamine in modulating the structure and function of striatal circuits. Prog Brain Res. 2010;183:148–67.

    Article  Google Scholar 

  66. Keeler JF, Pretsell DO, Robbins TW. Functional implications of dopamine D1 vs. D2 receptors: a ‘prepare and select’ model of the striatal direct vs. indirect pathways. Neuroscience 2014;282:156–75.

    Article  CAS  Google Scholar 

  67. Beier KT, Gao XJ, Xie S, DeLoach KE, Malenka RC, Luo L. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations. Cell Rep. 2019;26:159–67.e6.

    Article  CAS  Google Scholar 

  68. Radke AK, Gewirtz JC. Increased dopamine receptor activity in the nucleus accumbens shell ameliorates anxiety during drug withdrawal. Neuropsychopharmacology 2012;37:2405–15.

    Article  CAS  Google Scholar 

  69. Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 2014;156:522–36.

    Article  CAS  Google Scholar 

  70. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 2017;42:1715–28.

    Article  Google Scholar 

  71. Huang T, Guan F, Licinio J, Wong ML, Yang Y. Activation of septal OXTr neurons induces anxiety- but not depressive-like behaviors. Mol Psychiatry. 2021;26:7270–9.

    Article  CAS  Google Scholar 

  72. Wirtshafter HS, Wilson MA. Lateral septum as a nexus for mood, motivation, and movement. Neurosci Biobehav Rev. 2021;126:544–59.

    Article  Google Scholar 

  73. Mahadevia D, Saha R, Manganaro A, Morgan AA, Dumitriu D, Rayport S, et al. Dopamine promotes aggression in mice via ventral tegmental area to lateral septum projections. Nat Commun. 2021;12:6796.

    Article  CAS  Google Scholar 

  74. Chen Y, Yang J, Gao T, Chen Y, Wu J, Hu N, et al. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Investig. 2021;131:e145692.

    Article  Google Scholar 

  75. Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: Implications for neuropsychiatry. Brain Res Rev. 2004;46:71–117.

    Article  Google Scholar 

  76. Root DH, Mejias-Aponte CA, Qi J, Morales M. Role of glutamatergic projections from ventral tegmental area to lateral Habenula in aversive conditioning. J Neurosci. 2014;34:13906–10.

    Article  Google Scholar 

  77. Wang HL, Qi J, Zhang S, Wang H, Morales M. Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons. J Neurosci. 2015;35:15948–54.

    Article  CAS  Google Scholar 

  78. Montardy Q, Zhou Z, Lei Z, Liu X, Zeng P, Chen C, et al. Characterization of glutamatergic VTA neural population responses to aversive and rewarding conditioning in freely-moving mice. Sci Bull. 2019;64:1167–78.

    Article  Google Scholar 

  79. Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011;70:855–62.

    Article  CAS  Google Scholar 

  80. de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, Kim CK, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron. 2019;101:133–51.e7.

    Article  Google Scholar 

  81. Zhu X, Ottenheimer D, DiLeone RJ. Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front Behav Neurosci. 2016;10:66.

    Article  Google Scholar 

  82. Jang JK, Kim WY, Cho BR, Lee JW, Kim JH. Locomotor sensitization is expressed by ghrelin and D1 dopamine receptor agonist in the nucleus accumbens core in amphetamine pre-exposed rat. Addict Biol. 2018;23:849–56.

    Article  CAS  Google Scholar 

  83. Kalivas PW, Duffy P. D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci. 1995;15:5379–88.

    Article  CAS  Google Scholar 

  84. Nagatomo K, Suga S, Saitoh M, Kogawa M, Kobayashi K, Yamamoto Y, et al. Dopamine D1 receptor immunoreactivity on fine processes of GFAP-positive astrocytes in the substantia nigra pars reticulata of adult mouse. Front Neuroanat. 2017;11:3.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ping Zheng for D1-Cre mice, Dr. Xiaohong Xu for DAT-Cre mice, Dr. Miao He for Vgat-Cre and Vglut2-Cre mice, and the members of Xiao laboratory for their valuable input. We thank Dr. Lan Ma, Dr. Yevgenia Kozorovitskiy, Dr. Xin Jin, Dr. Qingjian Han, and Dr. Ting Lu for feedback on this manuscript. This work was supported by grants from the National Natural Science Foundation of China (81970727, 31900738, 31970908), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology.

Author information

Authors and Affiliations

Authors

Contributions

LX designed and supervised the study. QT and LX planned the experiments and analyzed the data. QT, XC, and XZ performed the behavioral experiments. QT and XC carried out FISH experiments. LX, HX, and SH carried out the electrophysiology experiments. QT, FH, and LX wrote the manuscript, and all of the authors helped with the revision of the manuscript.

Corresponding author

Correspondence to Lei Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q., Cui, X., Xu, H. et al. D1 receptor-expressing neurons in ventral tegmental area alleviate mouse anxiety-like behaviors via glutamatergic projection to lateral septum. Mol Psychiatry 28, 625–638 (2023). https://doi.org/10.1038/s41380-022-01809-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-022-01809-y

This article is cited by

Search

Quick links