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Antidepressants that increase mitochondrial energetics may
elevate risk of treatment-emergent mania
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Preclinical evidence suggests that antidepressants (ADs) may differentially influence mitochondrial energetics. This study was
conducted to investigate the relationship between mitochondrial function and illness vulnerability in bipolar disorder (BD),

specifically risk of treatment-emergent mania (TEM). Participants with BD already clinically phenotyped as TEM+ (n = 176) or TEM—
(n=516) were further classified whether the TEM associated AD, based on preclinical studies, increased (Mito+, n = 600) or
decreased (Mito—, n = 289) mitochondrial electron transport chain (ETC) activity. Comparison of TEM+ rates between Mito+ and
Mito— ADs was performed using generalized estimating equations to account for participants exposed to multiple ADs while
adjusting for sex, age at time of enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II). A total of 692 subjects
(62.7% female, 91.4% White, mean age 43.0 £+ 14.0 years) including 176 cases (25.3%) of TEM+ and 516 cases (74.7%) of TEM- with
previous exposure to Mito+ and/or Mito- antidepressants were identified. Adjusting for age, sex and BD subtype, TEM+ was more
frequent with antidepressants that increased (24.7%), versus decreased (13.5%) mitochondrial energetics (OR = 2.21; p = 0.000009).
Our preliminary retrospective data suggests there may be merit in reconceptualizing AD classification, not solely based on
monoaminergic conventional drug mechanism of action, but additionally based on mitochondrial energetics. Future prospective
clinical studies on specific antidepressants and mitochondrial activity are encouraged. Recognizing pharmacogenomic investigation

of drug response may extend or overlap to genomics of disease risk, future studies should investigate potential interactions
between mitochondrial mechanisms of disease risk and drug response.
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INTRODUCTION
As the pharmacopoeia for major depressive episodes in bipolar
disorder (BD) is markedly underdeveloped, antidepressants are
invariably used with little evidence base. This clinical practice is of
significant consequence as antidepressant prescriptions for BD in
the USA have more than doubled in the last two decades from
17.9% to 40.9% [1]. In addition to relatively high rates of treatment
non-response, antidepressants have the potential to increase the
likelihood of a switch process, invariably defined as antidepressant-
induced mania (AIM) [2], treatment-emergent mania (TEM+) [3],
and/or cycle acceleration [4]. The increased energy expenditure of
mania associated with impulsivity, poor judgment, psychosis, and/
or loss of insight can drive high risk behaviors often resulting in
hospitalization or incarceration; further, the aftermath of mania can
have enduring negative impact on quality of life [5-7].

A random effects meta-analysis of 35 clinical trials of bipolar
depressed patients reported a switch rate of 12.5% with and 7.5%
without antidepressant use [8]. A Swedish registry study identified

that patients with BD treated with antidepressant (AD) mono-
therapy, in comparison to AD with concurrent mood stabilization,
were at significant increased risk of treatment-emergent mania
(TEM+), most notably, during the first 3 months of treatment
(hazard ratio=2.83, 95% Cl=1.12, 7.19) [9]. The clinical factors
most associated with TEM+ include younger age, female sex,
mixed symptoms, and type | BD [6]. As there is increasing interest
is developing a cumulative risk model of TEM+ based on clinical
and biological markers, when not use an antidepressant is a
focused area of biomarker development with great potential
to impact practice by primary or secondary prevention of
mania [10, 11].

It has long been recognized that the neurobiology of BD is
driven, in part, by mitochondrial dysfunction as exemplified by
reduced expression of electron transport chain (ETC) genes in
frontal cortex and hippocampus [12, 13]. The resulting impaired
oxidative phosphorylation with a shift towards glycolysis and
overall decreased adenosine-5"-triphosphate (ATP) production in
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response to energy demands has been proposed to be one of the
main drivers of BD pathophysiology [14, 15]. Suboptimal
mitochondrial function (SMF) in BD has been operationalized at
several critical time points of illness vulnerability including early
brain development resulting in structural and/or functional
change in plasticity, genetic risk before illness, relapse risk into
mania, psychosis, or depression in established disease, and relapse
based on non-specific symptoms characteristic to mitochondrial
disorders (i.e., fatigue, circadian rhythm disturbance) [16-19].

Targeting antidepressants and mitochondrial function is further
justified based on our preclinical rodent model of ACTH-driven,
imipramine treatment-resistant depression whereby electrode
implantations to the nucleus accumbens elicited mania-like
behavior in a subset of animals (30%). This behavioral phenotype
was associated with increased mitochondrial respiration, specifi-
cally an increased state 3/state 4 respiration control ratio (RCR),
suggestive of increased respiratory efficiency [20]. This finding was
not driven exclusively by imipramine, the tricyclic antidepressant
first shown in controlled evaluations to be associated with a high
incidence of mania [31], but more likely an interaction between
imipramine and an acute inflammatory response associated with
DBS electrode placement in nucleus accumbens [47].

Mechanistically, antidepressants have been shown to differentially
impact ETC complex activity [21-23]. While the specific mechanism of
antidepressant associated increase of ETC activity is not fully
understood, animal models suggest an upregulation of mitochondrial
activity, including cellular respiration, occurring during acute
antidepressant treatment, followed by decreased or unchanged
activity in chronic treatment (=28 days) [24]. The purpose of our study
was to assess whether antidepressants that increase mitochondrial
activity are associated with higher rates of TEM+-.

METHODS AND MATERIALS

A subset of participants from the Mayo Clinic Bipolar Disorder Biobank with
known history of antidepressant exposure and clinical outcome measure
were included in this study [25]. The Biobank sample consists of patients
aged 18 through 80 years of age at time of enrollment with a type | or Il
bipolar disorder or schizoaffective bipolar disorder as confirmed by
structured interview. Participants completed a questionnaire focused on
demographics, illness variables and environmental influences and
provided a blood sample [26]. Exclusion criteria included active psychosis
or active suicidal ideation. Recruitment sites for the Biobank included Mayo
Clinic, Lindner Center of HOPE/University of Cincinnati, University of
Minnesota, Universidad Autdbnoma de Nuevo Leon (Mexico) and Uni-
versidad de los Andes (Chile). Each of the study sites received approval by
their institutional review and every participant provided written informed
consent for inclusion. Further details on study design and phenotyping are
reviewed extensively in earlier work [25].

Through the Bipolar Biobank Clinical Questionnaire (BiB-CQ), research
clinicians assessed and documented comorbid conditions and psycho-
tropics used across lifetime, including antidepressants, as well as history of
TEM+ while on each medication [6]. Based on an earlier meta-analytic
work, which emphasized the importance of standardizing a narrow
phenotype [27], TEM+ was defined as a manic/hypomanic episode by DSM
criteria occurring within 60 days of starting or increasing an antidepressant
dose [6, 28]. TEM— controls were characterized as >60-day exposure to an
antidepressant with no associated manic/hypomanic episode.

Emmerzaal et al. 2021 [22], assessed the impact of psychotropic drugs
on each complex of the ETC (Fig. 1) including state 3 (ADP stimulated
respiration) and state 4 respiration (non-ADP stimulated), citrate synthase
activity (first step of the Krebs cycle and proxy of mitochondrial mass) and
malate dehydrogenase (final step of the Krebs cycle). Based on this recent
preclinical review bupropion, nortriptyline, paroxetine, and venlafaxine
were identified as antidepressants that increased mitochondrial function
(Mito+), while amitriptyline and escitalopram as antidepressants that
decreased mitochondrial function (Mito-). In this line [21], Table 1 reflects
the distribution of biobank antidepressant drug exposure and clinical
outcome (TEM+ vs TEM—).

We first assessed whether rates of TEM-+ were different with respect to
potential confounders such as sex, age, race, BD type, BD illness
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(e.g., psychosis) and psychiatric comorbidities (Table 2). We used chi-
square tests and two-sample t-tests to formally assess these differences for
categorical and continuous variables, respectively, when large differences
were observed. To assess our primary aim of whether TEM+ rates differ
between Mito+ and Mito- antidepressants, we compared the rate of TEM+
between Mito+ and Mito— using generalized estimating equations (using
a logit link and symmetric correlation structure) to account for patients
that took both Mito+ and Mito— Ads during the course of treatment. To
account for the potential confounders of TEM+ rates and based on
previous clinical studies, we adjusted this analysis for sex, age at time of
enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II).
[6, 29, 30] As the analysis was conducted using data from retrospective
assessment of TEM+, it was out of the scope of this analysis to adjust for
other factors that may dynamically influence mitochondrial health, such as
lifestyle factors, childhood trauma, chronic stress, exercise, and dietary
habits.

RESULTS

A total of 692 subjects (62.7% female, 91.4% White, mean age
43.0 £ 14.0 years) including 176 cases (25.3%) of TEM+ and 516
cases (74.7%) of TEM-with previous exposure to Mito+ and/or
Mito— antidepressants were identified. At the time of enrollment
into the biobank, TEM+ participants were significantly younger
than their TEM— counterpart (40.6+13.8 vs. 43.8+13.9;
p =0.009), but there were no significant differences in frequency
of BD type | between groups (TEM + 76.1% vs. 70.9%; p = 0.31). As
shown in Table 2, there were also no large differences in the
frequency of history of psychosis or rates of psychiatric
comorbidities (Table 2).

Participants were further classified based on whether the
specific AD they had been exposed to increased (Mito+ = 600)
or decreased (Mito— = 289) mitochondrial activity; noting that
some participants have been exposed to both types of ADs.
Adjusting for sex and BD subtype, and after accounting for patient
overlap between Mito+ and Mito- groupings, TEM 4 was more
frequent with use of antidepressants that increase mitochondrial
activity versus those that decrease it (Mito+ 24.7% vs. Mito—
13.5%; OR=2.21; p =0.000009) after adjusting for age, sex, and
BD type (Fig. 2 and Table 2).

DISCUSSION

To our knowledge, this is the first study to clinically investigate the
mitochondrial energetics profile of specific antidepressants [20]
and its association with the adverse drug related event of
treatment-emergent mania. When compared to participants
exposed to antidepressants that decrease mitochondrial activity,
treatment-emergent mania was two times more common in
patients exposed to antidepressants that increase mitochondrial
energetics. The higher rates of TEM+ observed with Mito+ ADs
align with clinical evidence suggesting an increased risk of mood
switch with venlafaxine and, to a lesser extent, paroxetine
[2, 31-33].

This study has several strengths, most notably a hypothesis
driven novel classification of antidepressants beyond conventional
drug mechanism of action, and inclusion of a cohort of patients with
clinician-defined treatment-emergent mania. One of the main
findings from an earlier metanalytic review from our group was the
lack of consensus defining the clinical phenotype [26]; the duration
of causality of starting antidepressant and subsequent mania for the
six studies was up to 52 weeks. The narrower time frame of the
phenotype (8 weeks) was a strength of the original study [6, 27]
which was used for this current investigation. An additional strength
of this study is adjusting for gender and bipolar subtype, which are
known risk factors for mood switch [29, 30].

There are a number of study limitations. Due to the retro-
spective nature of the assessment, age at time of TEM+
occurrence was not obtained, and thus not used as a covariate.
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Fig. 1 Global effect of antidepressants on mitochondrial respiratory chain complexes. A Schematic overview of the mitochondrial electron
transport chain (ETC), a cluster of protein complexes and electron transporters in the inner mitochondrial membrane that generate ATP. The
electrons generated during the oxidation of NADH and FADH,, in complexes | and Il, respectively, are transported through coenzyme Q (CoQ),
complex Il (CllI), cytochrome C (Cyt C) and complex IV (CIV or COX). As electrons are transferred through the chain, energy is released to pump
protons (H+), generating an electrochemical gradient across the membrane. Finally, in complex V (CV), also known as ATP synthase, the
electrochemical gradient is used to catalyze the production of ATP from ADP. B Summary of the global effect of the investigated
antidepressants and their effect on each complex of the ETC [22] based on preclinical studies [55-59]: A green box with an upward arrow
indicates an increase in the activity of the specific complex after exposure to an antidepressant, a blue box with a downward arrow indicates a
decrease in the activity of the specific complex after exposure to an antidepressant and a yellow box with a “~" sign indicates no effect
observed. Abbreviations: CI Complex |, NADH:ubiquinone oxidoreductase, NADH reduced nictotinamide adenine dinucleotide, NAD™
nictotinamide adenine dinucleotide, CIl Complex I, succinate-coenzyme Q reductase, CoQ coenzyme Q, FADH reduced flavin adenine
dinucleotide, FAD flavin adenine dinucleotide, Clll Complex Ill, coenzyme Q - cytochrome c reductase, Cyt C cytochrome C, CIV Complex IV,
cytochrome C oxidase, CV Complex V, ATP synthase, ADP adenosine diphosphate, ATP adenosine triphosphate.

These variables should be targeted in future prospective studies
assessing TEM and mitochondrial function. Additional limitations
include data related to psychotropics used at the time of TEM+
which was not uniformly available. While this is a limitation,

Table 1. Participants with history of exposure to the assessed
antidepressants.

Mito+- N TEM+- TEM— previous research has shown the switch rate with antidepressants
antidepressants (n=148) (n=452) is greater for BD-l vs BD-Il patients, despite greater use of
Bupropion 400 68 (17.0%) 332 (83.0%) antimanic mood stabilizers [30, 35]; these new clinical data,
Nortriptyline 29 2 (6.9%) 27 (93.1%) alongside animal models that suggest an upregulation of
Paroxetine 227 49 (21.6%) 178 (78.4%) mitochondrial activity dgrlng acute antidepressant treatment

. [24] may provide plausible rationale as to mechanism for
Venlafaxine 219 45 (20.6%) 174 (784%) antidepressants breaking through antimanic mood stabilization.
Mito— (n=39) (n=250) Finally, the classification of antidepressants increasing and
antidepressants decreasing mitochondrial energetics for this clinical study is based
Amitriptyline 61 5 (8.2%) 56 (91.8%) on a preclinical systematic review [22]. The preclinical studies were
Escitalopram 250 35 (14.0%) 215 (86.0%) highly variable in study design, with the majority of drugs having

mixed results, including the tricyclic imipramine, arguably, after

venlafaxine, the antidepressant with the clearest signal for
Similarly, the study did not control for confounding factors affective switch [36]. While the mixed results category limits
present at the time of study enrollment such as concurrent strength of the aggregate classification, the data for paroxetine,
psychotropic use or comorbid conditions that significantly impact venlafaxine, nortriptyline, bupropion vs escitalopram and ami-
tissue-specific mitochondrial activity (including, but not limited to, triptyline all have preclinical mitochondrial functioning data (state
diet and BMI, type 2 diabetes, tobacco use, trauma, stress) [34]. 3/4 respiration, citrate synthase and malate dehydrogenase
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activity) that are all uniformly positive and negative, respectively.
Clearly, future prospective clinical studies on specific antidepres-
sants and mitochondrial activity are encouraged.

As previously mentioned, electron transport chain activity is
sensitive to a variety of intrinsic and extrinsic stressors, many of
which are common in BD, and to stress mediators (i.e., glucocorti-
coids) that can lead to a mitochondrial allostatic overload [37]. For
instance, early life trauma has been associated with structural and
functional mitochondrial changes and impaired energy production;
chronic stress is linked with decreased ETC activity, including
impaired complex | activity, oxidative stress and mtDNA damage
[17, 38]. As an example, it has been hypothesized that suboptimal
mitochondrial function in the central nervous system (CNS) can lead
to increased likelihood of PTSD through insufficient energy
production to cover the increased energy demands of higher CNS
glucose metabolism, resulting in increased compensatory complex |
activity. Likewise, in the context of PTSD and prolonged stress,
release of cytochrome C from the mitochondrial membrane into the
cytosol triggers the apoptotic pathway resulting in cell death [39]
Within metabolic conditions, obesity and high fat diets reduce
mitochondrial number and respiratory capacity, including reduced
complex IV and cytochrome C activity, due, in part, to an overload of
glucose and fatty acids. The resultant increase in the reduced form
of nictotinamide adenine dinucleotide (NADH) production and
increased electron availability to the ETC complexes increases
reactive oxygen species (ROS) and inflammation [40]. While the
overall net effect of obesity is a decrease in mitochondrial
energetics, different changes occur through the ETC, including an
increase in complexes Il and IV and a decrease in complex | and Ill
and ATP synthase [40]. It is worth noting that the specific effects on
mitochondria vary not only between diseases but by tissues as well;
for instance, in skeletal muscle and adipose tissues, diabetes
mellitus and obesity are associated with reduced total activity of the
ETC [34, 41]. Contrary to the progressive deleterious effects of
metabolic disorders on mitochondrial function, evidence suggests
that healthy dietary patterns, including dietary restrictions with and
without exercise, indirectly improve mitochondrial capacity by
increased expression of genes involved in mitochondrial function
[39] Mitochondria are highly sensitive as well to environmental
toxicants, such as tobacco smoke, that can alter mitochondrial DNA,
oxidant generation and mitochondrial respiration [42]The latter is
partially altered by the susceptibility of ETC complexes to
inactivation by carbon monoxide leading to a diminished ATP
generation. Similar to the impact that healthy lifestyle has on
mitochondrial function, cessation of smoking can lead to a
restoration of the mitochondrial function and health. Hence the
collective relevance of environmental factors that might impact
mitochondrial function that, in consequence, might convey
increased disease susceptibility in the context of bipolar disorders.

Attempts to clarify the directionality of the complex inter-
relationship between mitochondrial function and antidepressants
must take into consideration the influences exerted by drug
combination, duration of treatment and whether there is a cell-
type or tissue-specific effect [24]. For example, in preclinical
models, the combination of olanzapine/fluoxetine has been
shown to increase hippocampal complex | activity both in acute
and chronic treatment phases, compared to fluoxetine alone, that
increased in acute treatment only [43]. Similarly, Abdel-Razaq et al.
(2011) identified, in an in vitro study, that complexes | and IV may
be more sensitive to an acute antidepressant-induced inhibition at
treatment initiation than other ETC complexes [44]. Lithium is
known to increase mitochondrial ETC complex | activity in
leukocytes of subjects with bipolar depression, and mitochondrial
ETC activity was positively associated with plasma lithium levels
[45]. The high rates of polypharmacy in BD may interfere with the
measurement of ETC activity, adding a layer of complexity to the
assessment of the interrelationship of mitochondrial function and
psychotropics [45].

Molecular Psychiatry (2023) 28:1020-1026

M. Gardea-Resendez et al.

Demographic variables and bipolar disorder subtype in participants treated with antidepressants that increase versus decrease mitochondrial activity.

Table 2.

Antidepressants that |

Antidepressants that { mitochondrial activity (Mito+)

mitochondrial activity (Mito—)

=250)

TEM— (n

=39)

TEM+ (n

=452)

TEM— (n

TEM+ (n=148)
96 (64.9%)
41.1+13.6

Variable

173 (69.2%)
43.1+13.8

28 (71.8%)
37.9+£143
36 (92.3%)
4 (10.8%)

278 (61.5%)
447 +£13.7

Sex (female), n (%)

Age, mean (SD)

237 (95.2%)
14 (5.6%)

413 (92.2%)
22 (4.9%)

131 (89.1%)
13 (9.3%)

Race (White), n (%)

Ethnicity (Hispanic), n (%)
SCID diagnosis, n (%)

184 (73.6%)
62 (24.8%)
4 (1.6%)

26 (66.7%)

314 (69.5%)
131 (29.0%)

7 (1.5%)

116 (78.4%)
31 (20.9%)
1 (0.7%)

Type | BD

13 (33.3%)
0 (0.0%)

Type Il BD

Schizoaffective, bipolar

100 (40.7%)
103 (41.5%)
57 (23.2%)

15 (38.5%)
14 (36.8%)
11 (28.2%)
19 (48.7%)
7 (17.9%)

78 (53.4%) 275 (61.7%)

62 (41.9%)
33 (22.8%)

History of psychosis, yes n (%)

124 (51.7%)
41 (16.8%)

162 (36.2%)
109 (24.4%)
73 (50.7%)
68 (15.2%)

217 (48.5%)
8 (12.7%)

History of suicide attempts, yes n (%)
Adult attention deficit disorder, yes n (%)
Generalized anxiety disorder, yes n (%)
Obsessive compulsive disorder, yes n (%)
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Treatment-Induced Mania (TEM+)
No Treatment-Induced Mania (TEM-) 75.3%
24.7%
Antidepressants that Increase Mitochondrial Function (Mito+)
Fig. 2

86.5%

13.5%

Antidepressants that Decrease Mitochondrial Function (Mito-)

Increased rates of TEM+ with antidepressants that increase mitochondrial function. Rates of treatment-induced mania with

antidepressants that increase (Mito+) were two times more frequent than with those that decrease (Mito—) mitochondrial function
[TEM+ Mito+ = 24.7%; TEM+ Mito— = 13.5%; OR = 2.21; p = 0.000009].

Understanding the primary pathophysiology of ETC dysfunction
in BD (i.e., disease risk) may help guide pharmacogenomic studies. A
systematic review of 10 ETC microarray gene expression studies in
BD would suggest a main driver of ETC dysfunction is in complex |,
with reduced gene expression of NDUFV1, NDUFS1, NDUFS8, and
NDUFS7. Importantly, NDUFS7 directly couples electron transfer
between the iron sulfur cluster and ubiquinone, a critical exchange
of electrons for cellular energy production [12, 46]. Assessment of
the ETC complex |, the entry enzyme of oxidative phosphorylation,
and complex IV, the final enzyme with a rate-limiting role in the
cellular respiration, may serve as a proxy of mitochondrial
bioenergetics of the brain in psychiatric disorders, as they are
known to be impacted by psychotropics [47, 48]. This is further
supported by clinical data on upregulation of complex | subunits
during mania compared to depressive episodes and healthy
controls, suggesting mitochondrial complex activation [48, 49].
Our group previously identified, through mtDNA sequence data of
BD-1 patients (n=224), a higher risk of psychosis with U
haplogroup, as well as a variation in ND4 gene, implicated in ETC
energy regulation [50]. Additionally, increased ceramide concentra-
tions, involved in mitochondria-mediated apoptosis and associated
with decreased activity of complexes |, IV and V, have been
demonstrated in individuals with BD [51-53] and are likely
aggravated by certain antidepressant medications (i.e., fluoxetine,
fluvoxamine, paroxetine, escitalopram and amitriptyline) [54].

In conclusion, our study provides early evidence that support
the hypothesis of an amplified response in mitochondrial
energetics of select antidepressants that drive, in part, the
pathophysiology of treatment-emergent mania. In addition, these
data suggest categorizing antidepressants based on mitochondrial
energetics, and not solely monoaminergic conventional drug
mechanism of action (SSRI, SNRI, TCA, MAOI), may be of value and
warrant further consideration for future larger clinical and
pharmacogenomic studies. Recognizing pharmacogenomic inves-
tigation of drug response may extend or overlap to genomics of
disease risk, future clinical studies should investigate potential
interactions between mitochondrial mechanisms of disease risk
that may predispose to antidepressant associated treatment-
emergent mania and may have a clear impact on the manage-
ment and treatment of patients with bipolar disorder.
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