Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sepsis exacerbates Alzheimer’s disease pathophysiology, modulates the gut microbiome, increases neuroinflammation and amyloid burden

A Correction to this article was published on 22 January 2024

This article has been updated

Abstract

While our understanding of the molecular biology of Alzheimer’s disease (AD) has grown, the etiology of the disease, especially the involvement of peripheral infection, remains a challenge. In this study, we hypothesize that peripheral infection represents a risk factor for AD pathology. To test our hypothesis, APP/PS1 mice underwent cecal ligation and puncture (CLP) surgery to develop a polymicrobial infection or non-CLP surgery. Mice were euthanized at 3, 30, and 120 days after surgery to evaluate the inflammatory mediators, glial cell markers, amyloid burden, gut microbiome, gut morphology, and short-chain fatty acids (SCFAs) levels. The novel object recognition (NOR) task was performed 30 and 120 days after the surgery, and sepsis accelerated the cognitive decline in APP/PS1 mice at both time points. At 120 days, the insoluble Aβ increased in the sepsis group, and sepsis modulated the cytokines/chemokines, decreasing the cytokines associated with brain homeostasis IL-10 and IL-13 and increasing the eotaxin known to influence cognitive function. At 120 days, we found an increased density of IBA-1-positive microglia in the vicinity of Aβ dense-core plaques, compared with the control group confirming the predictable clustering of reactive glia around dense-core plaques within 15 μm near Aβ deposits in the brain. In the gut, sepsis negatively modulated the α- and β-diversity indices evaluated by 16S rRNA sequencing, decreased the levels of SCFAs, and significantly affected ileum and colon morphology in CLP mice. Our data suggest that sepsis-induced peripheral infection accelerates cognitive decline and AD pathology in the AD mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cognitive impairment evaluated by novel object recognition (NOR) task in APP/PS1 mice challenged with CLP.
Fig. 2: Effect of polymicrobial sepsis on the insoluble and soluble fraction of Aβ1-40 and Aβ1-42 in the APP/PS1 mice brain.
Fig. 3: Effect of polymicrobial sepsis on microglial, astroglial activation, and Aβ burden in the APP/PS1 mice PFC and hippocampus.
Fig. 4: Assessment of immune activation by measuring the levels of cytokines and chemokines in the APP/PS1 mice brain after CLP challenge.
Fig. 5: Analysis of gut microbiome profile and the relative abundance of phyla and class level difference after polymicrobial infection as measured in the feces of APP/PS1 mice.
Fig. 6: Cecum feces SCFAs levels and morphometric measurement of intestinal villus length and crypt depth after polymicrobial sepsis in APP/PS1 mice.

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Change history

References

  1. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–e125.

  2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 2007;3:186–91.

    Article  Google Scholar 

  3. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Res Therap. 2011;3:1.

    Google Scholar 

  4. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci. 2017;131:2451–68.

    Article  CAS  Google Scholar 

  5. Liao J, Chen G, Liu X, Wei ZZ, Yu SP, Chen Q, et al. C/EBPβ/AEP signaling couples atherosclerosis to the pathogenesis of Alzheimer’s disease. Mol Psychiat. 2022;27:3034–46.

    Article  CAS  Google Scholar 

  6. Licastro F. Special Issue Editorial: "Infections, Inflammation and Neurodegeneration in Alzheimer Disease" Infections, Neuronal Senescence, and Dementia. Int J Mol Sci. 2022;23:5865.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang M, Zhang X, Yan X, Mizutani S, Kashiwazaki H, Ni J, et al. GSK3β is involved in promoting Alzheimer’s disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor protein(NL-F/NL-F) knock-in mice. Brain behav Immun. 2021;98:1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Ackermans NL, Varghese M, Williams TM, Grimaldi N, Selmanovic E, Alipour A, et al. Evidence of traumatic brain injury in headbutting bovids. Acta Neuropathol. 2022;144:5–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron. 2018;99:64–82.e67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY, et al. Anti-herpetic Medications and Reduced Risk of Dementia in Patients with Herpes Simplex Virus Infections-a Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics. 2018;15:417–29.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moreno-Gonzalez I, Morales R, Baglietto-Vargas D, Sanchez-Varo R. Editorial: Risk Factors for Alzheimer’s Disease. Front Agin Neurosci. 2020;12:124.

    Article  Google Scholar 

  13. Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, et al. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res. 2021;164:105314.

    Article  CAS  PubMed  Google Scholar 

  14. Barichello T, Generoso JS, Collodel A, Petronilho F, Dal-Pizzol F. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021;9:1840912.

    Article  PubMed  Google Scholar 

  15. Licinio J, Wong ML. Molecular Psychiatry special issue: advances in Alzheimer’s disease. Mol Psychiat. 2021;26:5467–70.

    Article  Google Scholar 

  16. Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimer’s & Dement. 2018;14:1602–14.

    Article  Google Scholar 

  17. Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature. 2020;586:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holmes C, Cotterell D. Role of infection in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2009;23:993–1002.

    Article  CAS  PubMed  Google Scholar 

  19. Miklossy J. Chronic inflammation and amyloidogenesis in Alzheimer’s disease - role of Spirochetes. J Alzheimer’s Dis. 2008;13:381–91.

    Article  CAS  Google Scholar 

  20. Grant I, Franklin DR Jr, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82:2055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimer’s Dis. 2008;13:393–405.

    Article  CAS  Google Scholar 

  22. Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226–44.

    Article  CAS  PubMed  Google Scholar 

  23. Giridharan VV, Generoso JS, Lence L, Candiotto G, Streck E, Petronilho F, et al. A crosstalk between gut and brain in sepsis-induced cognitive decline. J Neuroinflamm. 2022;19:114.

    Article  CAS  Google Scholar 

  24. Basak JM, Ferreiro A, Cohen LS, Sheehan PW, Nadarajah CJ, Kanan MF, et al. Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;152:105292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giridharan VV, Generoso JS, Collodel A, Dominguini D, Faller CJ, Tardin F, et al. Receptor for Advanced Glycation End Products (RAGE) Mediates Cognitive Impairment Triggered by Pneumococcal Meningitis. Neurotherapeutics. 2021;18:640–53.

    Article  CAS  PubMed  Google Scholar 

  26. Barichello T, Giridharan VV, Comim CM, Morales R. What is the role of microbial infection in Alzheimer’s disease? Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) 2021.

  27. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis. 2006;24:516–24.

    Article  CAS  PubMed  Google Scholar 

  28. Heming N, Mazeraud A, Verdonk F, Bozza FA, Chrétien F, Sharshar T. Neuroanatomy of sepsis-associated encephalopathy. Critic Care. 2017;21:65.

    Article  Google Scholar 

  29. Ehler J, Barrett LK, Taylor V, Groves M, Scaravilli F, Wittstock M, et al. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. Critic Care. 2017;21:262.

    Article  Google Scholar 

  30. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT, et al. Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2 A) receptor mechanisms. Psychopharmacology. 2010;208:23–36.

    Article  CAS  PubMed  Google Scholar 

  32. Scaini G, Fries GR, Valvassori SS, Zeni CP, Zunta-Soares G, Berk M, et al. Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiat. 2017;7:e1111.

    Article  CAS  Google Scholar 

  33. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21:372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnol. 2019;37:852–7.

    Article  CAS  Google Scholar 

  35. Zhao G, Nyman M, Jönsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 2006;20:674–82.

    Article  CAS  PubMed  Google Scholar 

  36. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7:940–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horré K, Van Houtvin T, et al. gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science. 2009;324:639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol. 1999;158:328–37.

    Article  CAS  PubMed  Google Scholar 

  39. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  40. Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nature Rev Neurosci. 2008;9:182–94.

    Article  CAS  Google Scholar 

  41. Sun Q, Zhang J, Li A, Yao M, Liu G, Chen S, et al. Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease. Nature Commun. 2022;13:998.

    Article  CAS  Google Scholar 

  42. Zhurakovskaya E, Ishchenko I, Gureviciene I, Aliev R, Gröhn O, Tanila H. Impaired hippocampal-cortical coupling but preserved local synchrony during sleep in APP/PS1 mice modeling Alzheimer’s disease. Sci Rep. 2019;9:5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Reports. 2017;7:13537.

    Google Scholar 

  44. Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Critic Care. 2020;24:278.

    Article  Google Scholar 

  45. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633–43.

    Article  PubMed  Google Scholar 

  46. Wu L, Han Y, Zheng Z, Peng G, Liu P, Yue S, et al. Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host-Microbe Interplay. Nutrients. 2021;13:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen C, Xie T, Pan K, Deng Y, Zhao Z, Li N, et al. Acetate attenuates perioperative neurocognitive disorders in aged mice. Aging. 2020;12:3862–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yende S, Austin S, Rhodes A, Finfer S, Opal S, Thompson T, et al. Long-Term Quality of Life Among Survivors of Severe Sepsis: Analyses of Two International Trials. Critic Care Med. 2016;44:1461–7.

    Article  CAS  Google Scholar 

  49. Buchman TG, Simpson SQ, Sciarretta KL, Finne KP, Sowers N, Collier M, et al. Sepsis Among Medicare Beneficiaries: 1. The Burdens of Sepsis, 2012-2018. Critic Care Med. 2020;48:276–88.

    Article  Google Scholar 

  50. Gracner T, Agarwal M, Murali KP, Stone PW, Larson EL, Furuya EY, et al. Association of Infection-Related Hospitalization With Cognitive Impairment Among Nursing Home Residents. JAMA Network Open. 2021;4:e217528–e217528.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, et al. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019;76:915–24.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8:340ra372.

    Article  Google Scholar 

  53. Licinio J, Wong M-L. Advances in Molecular Psychiatry – March 2023: mitochondrial function, stress, neuroinflammation – bipolar disorder, psychosis, and Alzheimer’s disease. Mol Psychiat. 2023;28:968–71.

    Article  Google Scholar 

  54. Haage V, De Jager PL. Neuroimmune contributions to Alzheimer’s disease: a focus on human data. Mol Psychiat. 2022;27:3164–81.

    Article  Google Scholar 

  55. Giridharan VV, Masud F, Petronilho F, Dal-Pizzol F, Barichello T. Infection-Induced Systemic Inflammation Is a Potential Driver of Alzheimer’s Disease Progression. Front Agin Neurosci. 2019;11:122.

    Article  CAS  Google Scholar 

  56. Comim CM, Vilela MC, Constantino LS, Petronilho F, Vuolo F, Lacerda-Queiroz N, et al. Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intens Care Med. 2011;37:711–8.

    Article  CAS  Google Scholar 

  57. Barichello T, Generoso JS, Silvestre C, Costa CS, Carrodore MM, Cipriano AL, et al. Circulating concentrations, cerebral output of the CINC-1 and blood–brain barrier disruption in Wistar rats after pneumococcal meningitis induction. Eur J Clin Microbiol Infect Dis. 2012;31:2005–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X, et al. Blood-Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease. Annal Neurol. 2021;90:227–38.

    Article  CAS  PubMed  Google Scholar 

  59. Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, et al. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia. 2004;46:142–52.

    Article  PubMed  Google Scholar 

  60. Barichello T. The role of innate lymphoid cells (ILCs) in mental health. Discov Mental Health. 2022;2:2.

    Article  Google Scholar 

  61. Miao W, Zhao Y, Huang Y, Chen D, Luo C, Su W, et al. IL-13 Ameliorates Neuroinflammation and Promotes Functional Recovery after Traumatic Brain Injury. J Immunol. 2020;204:1486–98.

    Article  CAS  PubMed  Google Scholar 

  62. Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, et al. Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics. 2019;16:1304–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brombacher TM, Nono JK, De Gouveia KS, Makena N, Darby M, Womersley J, et al. IL-13-Mediated Regulation of Learning and Memory. J Immunol. 2017;198:2681–8.

    Article  CAS  PubMed  Google Scholar 

  64. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choi C, Jeong JH, Jang JS, Choi K, Lee J, Kwon J, et al. Multiplex analysis of cytokines in the serum and cerebrospinal fluid of patients with Alzheimer’s disease by color-coded bead technology. J Clin Neurol. 2008;4:84–88.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kong Y, Li HD, Wang D, Gao X, Yang C, Li M, et al. Group 2 innate lymphoid cells suppress the pathology of neuromyelitis optica spectrum disorder. FASEB J. 2021;35:e21856.

    Article  CAS  PubMed  Google Scholar 

  67. Nazarinia D, Behzadifard M, Gholampour J, Karimi R, Gholampour M. Eotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol Belg. 2022;122:865–9.

  68. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, et al. Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. J Alzheimer’s Dis. 2017;60:1241–57.

    Article  CAS  Google Scholar 

  69. Marizzoni M, Cattaneo A, Mirabelli P, Festari C, Lopizzo N, Nicolosi V, et al. Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. J Alzheimer’s Dis. 2020;78:683–97.

    Article  CAS  Google Scholar 

  70. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trend Biotechnol. 2015;33:496–503.

    Article  CAS  Google Scholar 

  71. Stojanov S, Berlec A, Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms. 2020;8:1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, Aitken JD, et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012;12:139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–94.

    Article  CAS  PubMed  Google Scholar 

  74. Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PloS One. 2013;8:e74963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jasper H. Intestinal Stem Cell Aging: Origins and Interventions. Annu Rev Physiol. 2020;82:203–26.

    Article  CAS  PubMed  Google Scholar 

  76. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nature Rev Immunol. 2019;19:184–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge MD Anderson Advanced Microscopy Core Facility, NIH grant (S10RR029552) and Microbiome Insights Inc., Vancouver, Canada (SCFAs analysis), and the infrastructure and support of the Alkek Center for Metagenomics and Microbiome Research – CMMR (16S rRNA sequencing). This work was supported by startup funds from The University of Texas Health Science Center at Houston to RM and TB, Alzheimer’s Association® AARGDNTF-19-619645 and TARCC 2022-24 to TB, NIH/NIA grant 1RF1AG072491 to RM and TB, and FAPESP grant 21/06496-4 to CHRC.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the work, TB, RM, and VVG; acquisition, analysis, interpretation of data, VVG; brain and gut amyloid-beta evaluation, CSGC; gut microbiome analysis, VVG and JL; gut immunofluorescence and analysis, BPG; and have drafted the work TB and VVG; substantively revised the manuscript CHRC, FP, FD, RM, TB and VG.

Corresponding author

Correspondence to Tatiana Barichello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the wrong figure appeared as Fig. 3F and 3J.; the figure should have appeared as shown below.The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giridharan, V.V., Catumbela, C.S.G., Catalão, C.H.R. et al. Sepsis exacerbates Alzheimer’s disease pathophysiology, modulates the gut microbiome, increases neuroinflammation and amyloid burden. Mol Psychiatry 28, 4463–4473 (2023). https://doi.org/10.1038/s41380-023-02172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-023-02172-2

This article is cited by

Search

Quick links