Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psychedelics and schizophrenia: a double-edged sword

Abstract

Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span ‘50s-‘60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological targets of psychedelics.
Fig. 2: Protocol flowchart; expected biological and clinical changes; and murine model: translational findings.

Similar content being viewed by others

References

  1. Dyck E. Flashback: psychiatric experimentation with LSD in historical perspective. Can J Psychiatry. 2005;50:381–8.

    PubMed  Google Scholar 

  2. Hofman A. LSD - my problem child. New York: McGraw-Hill Book Company; 1980.

  3. Huxley A. The doors of perception. 1 edition. New York: Harper & Row; 1954.

  4. Carhart-Harris RL, Goodwin GM. The therapeutic potential of psychedelic drugs: past, present, and future. Neuropsychopharmacology. 2017;42:2105–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Krebs TS, Johansen PØ. Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J Psychopharmacol. 2012;26:994–1002.

    PubMed  Google Scholar 

  6. Rucker JJH, Jelen LA, Flynn S, Frowde KD, Young AH. Psychedelics in the treatment of unipolar mood disorders: a systematic review. J Psychopharmacol. 2016;30:1220–9.

    PubMed  CAS  Google Scholar 

  7. Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, et al. Psychedelic therapy’s transdiagnostic effects: a research domain criteria (RDoC) perspective. Front Psychiatry. 2021;12:800072.

    PubMed  PubMed Central  Google Scholar 

  8. Leger RF, Unterwald EM. Assessing the effects of methodological differences on outcomes in the use of psychedelics in the treatment of anxiety and depressive disorders: a systematic review and meta-analysis. J Psychopharmacol. 2022;36:20–30.

    PubMed  CAS  Google Scholar 

  9. Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27.

    PubMed  Google Scholar 

  10. Goldberg SB, Pace BT, Nicholas CR, Raison CL, Hutson PR. The experimental effects of psilocybin on symptoms of anxiety and depression: a meta-analysis. Psychiatry Res. 2020;284:112749.

    PubMed  CAS  Google Scholar 

  11. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9.

    PubMed  Google Scholar 

  12. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11.

    PubMed  CAS  Google Scholar 

  13. Galvão-Coelho NL, Marx W, Gonzalez M, Sinclair J, de Manincor M, Perkins D, et al. Classic serotonergic psychedelics for mood and depressive symptoms: a meta-analysis of mood disorder patients and healthy participants. Psychopharmacology. 2021;238:341–54.

    PubMed  PubMed Central  Google Scholar 

  14. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Vargas AS, Luís Â, Barroso M, Gallardo E, Pereira L. Psilocybin as a new approach to treat depression and anxiety in the context of life-threatening diseases-a systematic review and meta-analysis of clinical trials. Biomedicines. 2020;8:331.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Holze F, Gasser P, Müller F, Dolder PC, Liechti ME. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol Psychiatry. 2023;93:215–23.

    PubMed  CAS  Google Scholar 

  18. Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. The therapeutic potential of psilocybin. Molecules. 2021;26:2948.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. de Veen BTH, Schellekens AFA, Verheij MMM, Homberg JR. Psilocybin for treating substance use disorders? Expert Rev Neurother. 2017;17:203–12.

    PubMed  Google Scholar 

  20. Vann Jones SA, O’Kelly A. Psychedelics as a treatment for alzheimer’s disease dementia. Front Synaptic Neurosci. 2020;12:34.

    PubMed  PubMed Central  Google Scholar 

  21. Spriggs MJ, Kettner H, Carhart-Harris RL. Positive effects of psychedelics on depression and wellbeing scores in individuals reporting an eating disorder. Eat Weight Disord. 2021;26:1265–70.

    PubMed  CAS  Google Scholar 

  22. Spriggs MJ, Douglass HM, Park RJ, Read T, Danby JL, de Magalhães FJC, et al. Study protocol for ‘psilocybin as a treatment for anorexia nervosa: a pilot study. Front Psychiatry. 2021;12:735523.

    PubMed  PubMed Central  Google Scholar 

  23. Andersen KAA, Carhart-Harris R, Nutt DJ, Erritzoe D. Therapeutic effects of classic serotonergic psychedelics: a systematic review of modern-era clinical studies. Acta Psychiatr Scand. 2021;143:101–18.

    PubMed  Google Scholar 

  24. Garcia-Romeu A, Darcy S, Jackson H, White T, Rosenberg P. Psychedelics as novel therapeutics in Alzheimer’s disease: rationale and potential mechanisms. Curr Top Behav Neurosci. 2022;56:287–317.

    PubMed  CAS  Google Scholar 

  25. Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat Med. 2021;27:1025–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Bosia M, Spangaro M, Cocchi F, Sapienza J, Tonet L, Martini F, et al. Psychotic disorders. In: Cavallaro R, Colombo C, editors. Fundamentals of psychiatry for health care professionals, 1st ed. Springer; 2022. p. 456.

  27. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull. 2009;35:549–62.

    PubMed  PubMed Central  Google Scholar 

  28. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, ‘just the facts’ 4. Clinical features and conceptualization. Schizophr Res. 2009;110:1–23.

    PubMed  Google Scholar 

  29. Bechi M, Spangaro M, Agostoni G, Bosinelli F, Buonocore M, Bianchi L, et al. Intellectual and cognitive profiles in patients affected by schizophrenia. J Neuropsychol. 2019;13:589–602.

    PubMed  Google Scholar 

  30. Loch AA. Schizophrenia, not a psychotic disorder: bleuler revisited. Front Psychiatry. 2019;10:328.

    PubMed  PubMed Central  Google Scholar 

  31. Tonna M, Ossola P, Marchesi C, Bettini E, Lasalvia A, Bonetto C, et al. Dimensional structure of first episode psychosis. Early Interv Psychiatry. 2019;13:1431–8.

    PubMed  Google Scholar 

  32. Marchesi C, Affaticati A, Monici A, De Panfilis C, Ossola P, Tonna M. Predictors of symptomatic remission in patients with first-episode schizophrenia: a 16years follow-up study. Compr Psychiatry. 2014;55:778–84.

    PubMed  Google Scholar 

  33. Kirkpatrick B, Galderisi S. Deficit schizophrenia: an update. World Psychiatry. 2008;7:143–7.

    PubMed  PubMed Central  Google Scholar 

  34. Taylor MA, Shorter E, Vaidya NA, Fink M. The failure of the schizophrenia concept and the argument for its replacement by hebephrenia: applying the medical model for disease recognition. Acta Psychiatr Scand. 2010;122:173–83.

    PubMed  Google Scholar 

  35. Zanardi R, Spangaro M, Attanasio F, Sapienza J, Martini F, Fregna L, et al. Psychopharmacology. In: Cavallaro R, Colombo C, editors. Fundam. Psychiatry Heal. Care Prof., 1st ed. Springer; 2022. p. 456.

  36. Mouchlianitis E, Bloomfield MAP, Law V, Beck K, Selvaraj S, Rasquinha N, et al. Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophr Bull. 2016;42:744–52.

    PubMed  Google Scholar 

  37. Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, et al. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology. 2012;37:2515–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19:15–33.

    PubMed  PubMed Central  Google Scholar 

  39. Mcqueen G, Sendt K-V, Gillespie A, Avila A, Lally J, Vallianatou K, et al. Changes in brain glutamate on switching to clozapine in treatment-resistant schizophrenia. Schizophr Bull. 2021;47:662–71.

    PubMed  PubMed Central  Google Scholar 

  40. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, ‘Just the Facts’ 5. Treatment and prevention Past, present, and future. Schizophr Res. 2010;122:1–23.

    PubMed  Google Scholar 

  41. Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020;172:107704.

    PubMed  CAS  Google Scholar 

  42. Andén NE, Corrodi H, Fuxe K, Hökfelt T. Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol. 1968;34:1–7.

    PubMed  PubMed Central  Google Scholar 

  43. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.

    PubMed  CAS  Google Scholar 

  44. Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998;9:3897–902.

    PubMed  CAS  Google Scholar 

  45. MačiIulaitis R, Kontrimavičiute V, Bressolle FMM, Briedis V. Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Hum Exp Toxicol. 2008;27:181–94.

    Google Scholar 

  46. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11:642–51.

    PubMed  CAS  Google Scholar 

  47. Dean BV, Stellpflug SJ, Burnett AM, Engebretsen KM. 2C or not 2C: phenethylamine designer drug review. J Med Toxicol. 2013;9:172–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Steiner U, Leistner E. Ergot alkaloids and their hallucinogenic potential in morning glories. Planta Med. 2018;84:751–8.

    PubMed  CAS  Google Scholar 

  49. Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Curr Mol Pharmacol. 2019;12:184–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, et al. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy participants. Int J Neuropsychopharmacol. 2023;26:97–106.

    PubMed  CAS  Google Scholar 

  51. Holze F, Avedisian I, Varghese N, Eckert A, Liechti ME. Role of the 5-HT2A receptor in acute effects of LSD on empathy and circulating oxytocin. Front Pharmacol. 2021;12:711255.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Sapienza J. The key role of intracellular 5-HT2A receptors: a turning point in psychedelic research? Psychoactives. 2023;2:287–93.

    Google Scholar 

  54. Kyzar EJ, Nichols CD, Gainetdinov RR, Nichols DE, Kalueff AV. Psychedelic drugs in biomedicine. Trends Pharmacol Sci. 2017;38:992–1005.

    PubMed  CAS  Google Scholar 

  55. De Gregorio D, Enns JP, Nuñez NA, Posa L, Gobbi G. d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. Prog Brain Res. 2018;242:69–96.

    PubMed  Google Scholar 

  56. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol Rev. 2021;73:202–77.

    PubMed  CAS  Google Scholar 

  57. Vamvakopoulou IA, Narine KAD, Campbell I, Dyck JRB, Nutt DJ. Mescaline: the forgotten psychedelic. Neuropharmacology. 2023;222:109294.

    PubMed  CAS  Google Scholar 

  58. Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26:1327–37.

    PubMed  CAS  Google Scholar 

  59. Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stämpfli P, et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol. 2017;27:451–7.

    PubMed  CAS  Google Scholar 

  60. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31:1091–120.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2021;46:537–44.

    PubMed  CAS  Google Scholar 

  62. Duerler P, Schilbach L, Stämpfli P, Vollenweider FX, Preller KH. LSD-induced increases in social adaptation to opinions similar to one’s own are associated with stimulation of serotonin receptors. Sci Rep. 2020;10:12181.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Canal CE, Murnane KS. The serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens. J Psychopharmacol. 2017;31:127–43.

    PubMed  CAS  Google Scholar 

  64. De Gregorio D, Comai S, Posa L, Gobbi G. D-Lysergic Acid Diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int J Mol Sci. 2016;17:1953.

    PubMed  PubMed Central  Google Scholar 

  65. De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S, Comai S, et al. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors. Pharmacol Res. 2016;113:81–91.

    PubMed  Google Scholar 

  66. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA. 2001;98:8966–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA. 2011;108:8485–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Lindemann L, Hoener MC. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci. 2005;26:274–81.

    PubMed  CAS  Google Scholar 

  69. Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME. In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J Pharmacol Exp Ther. 2016;357:134–44.

    PubMed  CAS  Google Scholar 

  70. Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velázquez-Sánchez C, Sotnikova TD, et al. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry. 2012;72:934–42.

    PubMed  CAS  Google Scholar 

  71. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry. 2013;18:543–56.

    PubMed  CAS  Google Scholar 

  72. Gharami K, Biswas SC. Glutamate treatment mimics LTP- and LTD-like biochemical activity in viable synaptosome preparation. Neurochem Int. 2020;134:104655.

    PubMed  CAS  Google Scholar 

  73. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci. 2021;42:929–42.

    PubMed  CAS  Google Scholar 

  74. Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology. 1997;36:589–99.

    PubMed  CAS  Google Scholar 

  75. Aghajanian GK, Marek GJ. Serotonin, via 5-HT(2A) receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 1999;825:161–71.

    PubMed  CAS  Google Scholar 

  76. Scruggs JL, Schmidt D, Deutch AY. The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett. 2003;346:137–40.

  77. Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 2004;1023:134–40.

    PubMed  CAS  Google Scholar 

  78. Lambe EK, Aghajanian GK. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology. 2006;31:1682–9.

    PubMed  CAS  Google Scholar 

  79. Chen YH, Stone-Howell B, Edgar JC, Huang M, Wootton C, Hunter MA, et al. Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. Br J Psychiatry. 2016;208:160–7.

    PubMed  PubMed Central  Google Scholar 

  80. Townsend L, Pillinger T, Selvaggi P, Veronese M, Turkheimer F, Howes O. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med. 2022;53:1–18.

  81. Sapienza J, Agostoni G, Dall’Acqua S, Sut S, Nasini S, Martini F, et al. The kynurenine pathway in treatment-resistant schizophrenia at the crossroads between pathophysiology and pharmacotherapy. Schizophr Res. 2024;264:71–80.

    PubMed  CAS  Google Scholar 

  82. Domercq M, Etxebarria E, Pérez-Samartín A, Matute C. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia. 2005;52:36–46.

    PubMed  Google Scholar 

  83. Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, et al. Excitotoxic damage to white matter. J Anat. 2007;210:693–702.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15:1382–402.

    PubMed  CAS  Google Scholar 

  85. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17:319–34.

    PubMed  Google Scholar 

  86. Hoffman RE, Dobscha SK. Cortical pruning and the development of schizophrenia: a computer model. Schizophr Bull. 1989;15:477–90.

    PubMed  CAS  Google Scholar 

  87. Li Y, Li S, Liu J, Huo Y, Luo XJ. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry. 2021;26:7102–4.

    PubMed  CAS  Google Scholar 

  88. Li W, Lv L, Luo XJ. In vivo study sheds new light on the dendritic spine pathology hypothesis of schizophrenia. Mol Psychiatry. 2022;27:1866–8.

    PubMed  Google Scholar 

  89. Chadha R, Meador-Woodruff JH. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology. 2020;45:1059–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Chadha R, Alganem K, Mccullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain. Mol Psychiatry. 2021;26:6868–79.

    PubMed  CAS  Google Scholar 

  91. de Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci USA. 2021;118:e2020705118.

    PubMed  PubMed Central  Google Scholar 

  92. Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharmacol Transl Sci. 2021;4:452–60.

    PubMed  CAS  Google Scholar 

  93. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–2544.e4.

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Lu J, Tjia M, Mullen B, Cao B, Lukasiewicz K, Shah-Morales S, et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol Psychiatry. 2021;26:6237–52.

    PubMed  PubMed Central  Google Scholar 

  95. Sapienza J, Bosia M, Spangaro M, Martini F, Agostoni G, Cuoco F, et al. Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry. 2023;28:59–67.

    PubMed  Google Scholar 

  96. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    PubMed  CAS  Google Scholar 

  97. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    PubMed  CAS  Google Scholar 

  98. Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry. 2023;28:1–14.

  99. Onwordi EC, Whitehurst T, Shatalina E, Mansur A, Arumuham A, Osugo M, et al. Synaptic terminal density early in the course of schizophrenia: an in vivo UCB-J positron emission tomographic imaging study of synaptic vesicle glycoprotein 2A (SV2A). Biol Psychiatry. 2023;95:1–8.

  100. Olson DE. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J Exp Neurosci. 2018;12:1179069518800508.

    PubMed  PubMed Central  Google Scholar 

  101. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2:258–70.

    PubMed  PubMed Central  Google Scholar 

  102. Khansari PS, Sperlagh B. Inflammation in neurological and psychiatric diseases. Inflammopharmacology. 2012;20:103–7.

    PubMed  CAS  Google Scholar 

  103. Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155:101–8.

    PubMed  Google Scholar 

  104. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44:75–83.

    PubMed  Google Scholar 

  106. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry. 2016;21:1696–709.

  107. Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what’s next? Mol Psychiatry. 2020;25:114–30.

    PubMed  CAS  Google Scholar 

  108. Yilmaz M, Yalcin E, Presumey J, Aw E, Ma M, Whelan CW, et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat Neurosci. 2021;24:214–24.

    PubMed  CAS  Google Scholar 

  109. Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci. 2013;35:102–29.

    PubMed  CAS  Google Scholar 

  110. Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, et al. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173:666–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44:973–82.

    PubMed  PubMed Central  Google Scholar 

  112. Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a mendelian randomization study. JAMA Psychiatry. 2022;79:498–507.

    PubMed  PubMed Central  Google Scholar 

  113. Szabo A, Kovacs A, Frecska E, Rajnavolgyi E. Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells. PLoS One. 2014;9:e106533.

    PubMed  PubMed Central  Google Scholar 

  114. Nau F, Yu B, Martin D, Nichols CD. Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PLoS One. 2013;8:e75426.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Flanagan TW, Sebastian MN, Battaglia DM, Foster TP, Maillet EL, Nichols CD. Activation of 5-HT2 receptors reduces inflammation in vascular tissue and cholesterol levels in high-fat diet-fed apolipoprotein E knockout mice. Sci Rep. 2019;9:13444.

    PubMed  PubMed Central  Google Scholar 

  116. Yu B, Becnel J, Zerfaoui M, Rohatgi R, Boulares AH, Nichols CD. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J Pharmacol Exp Ther. 2008;327:316–23.

    PubMed  CAS  Google Scholar 

  117. Flanagan TW, Nichols CD. Psychedelics as anti-inflammatory agents. Int Rev Psychiatry. 2018;30:363–75.

    PubMed  Google Scholar 

  118. Flanagan TW, Nichols CD. Psychedelics and anti-inflammatory activity in animal models. Curr Top Behav Neurosci. 2022;56:229–45.

    PubMed  CAS  Google Scholar 

  119. Holloway T, González-Maeso J. Epigenetic mechanisms of serotonin signaling. ACS Chem Neurosci. 2015;6:1099–109.

    PubMed  CAS  Google Scholar 

  120. Song M, Martinowich K, Lee FS. BDNF at the synapse: why location matters. Mol Psychiatry. 2017;22:1370–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011;16:960–72.

    PubMed  CAS  Google Scholar 

  122. Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry. 2015;20:1108–19.

    PubMed  CAS  Google Scholar 

  123. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med. 2019;49:1971–9.

    PubMed  Google Scholar 

  124. Pan S, Feng W, Li Y, Huang J, Chen S, Cui Y, et al. The microRNA-195 - BDNF pathway and cognitive deficits in schizophrenia patients with minimal antipsychotic medication exposure. Transl Psychiatry. 2021;11:117.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Jefsen OH, Elfving B, Wegener G, Müller HK. Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J Psychopharmacol. 2021;35:483–93.

    PubMed  CAS  Google Scholar 

  126. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci. 1997;17:2785–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  127. de Vos CMH, Mason NL, Kuypers KPC. Psychedelics and neuroplasticity: a systematic review unraveling the biological underpinnings of psychedelics. Front Psychiatry. 2021;12:724606.

    PubMed  PubMed Central  Google Scholar 

  128. Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology. 2023;48:104–12.

    PubMed  Google Scholar 

  129. Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Low doses of LSD acutely increase BDNF blood plasma levels in healthy volunteers. ACS Pharmacol Transl Sci. 2020;4:461–6.

    PubMed  PubMed Central  Google Scholar 

  130. Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, et al. Acute effects of psilocybin after escitalopram or placebo pretreatment in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Clin Pharmacol Ther. 2022;111:886–95.

    PubMed  CAS  Google Scholar 

  131. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47:1180–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry. 2021;178:509–21.

    PubMed  PubMed Central  Google Scholar 

  133. Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr Bull. 2013;39:33–42.

    PubMed  Google Scholar 

  134. Hadley JA, Nenert R, Kraguljac NV, Bolding MS, White DM, Skidmore FM, et al. Ventral tegmental area/midbrain functional connectivity and response to antipsychotic medication in schizophrenia. Neuropsychopharmacology. 2014;39:1020–30.

    PubMed  CAS  Google Scholar 

  135. Giordano GM, Stanziano M, Papa M, Mucci A, Prinster A, Soricelli A, et al. Functional connectivity of the ventral tegmental area and avolition in subjects with schizophrenia: a resting state functional MRI study. Eur Neuropsychopharmacol. 2018;28:589–602.

    PubMed  CAS  Google Scholar 

  136. Robison AJ, Thakkar KN, Diwadkar VA. Cognition and reward circuits in schizophrenia: synergistic, not separate. Biol Psychiatry. 2020;87:204–14.

    PubMed  CAS  Google Scholar 

  137. Fan F, Tan Y, Wang Z, Yang F, Fan H, Xiang H, et al. Functional fractionation of default mode network in first episode schizophrenia. Schizophr Res. 2019;210:115–21.

    PubMed  Google Scholar 

  138. Fan F, Tan S, Huang J, Chen S, Fan H, Wang Z, et al. Functional disconnection between subsystems of the default mode network in schizophrenia. Psychol Med. 2020;52:1–11.

  139. De Leeuw M, Kahn RS, Vink M. Fronto-striatal dysfunction during reward processing in unaffected siblings of schizophrenia patients. Schizophr Bull. 2015;41:94–103.

    PubMed  Google Scholar 

  140. De Leeuw M, Bohlken MM, Mandl RCW, Kahn RS, Vink M. Reduced fronto-striatal white matter integrity in schizophrenia patients and unaffected siblings: a DTI study. NPJ Schizophr. 2015;1:15001.

    PubMed  PubMed Central  Google Scholar 

  141. Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophr Res. 2016;176:83–94.

    PubMed  PubMed Central  Google Scholar 

  142. Sapienza J, Pacchioni F, Spangaro M, Bosia M. Dysconnection in schizophrenia: Filling the dots from old to new evidence. Clin Neurophysiol. 2024;162:226–8.

    PubMed  Google Scholar 

  143. Avram M, Rogg H, Korda A, Andreou C, Müller F, Borgwardt S. Bridging the gap? Altered thalamocortical connectivity in psychotic and psychedelic states. Front Psychiatry. 2021;12:1–13.

    Google Scholar 

  144. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018;7:e35082.

    PubMed  PubMed Central  Google Scholar 

  145. Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Effective connectivity of functionally anticorrelated networks under lysergic acid diethylamide. Biol Psychiatry. 2023;93:224–32.

    PubMed  CAS  Google Scholar 

  146. Tonna M, Lucarini V, Borrelli DF, Parmigiani S, Marchesi C. Disembodiment and language in schizophrenia: an integrated psychopathological and evolutionary perspective. Schizophr Bull. 2023;49:161–71.

    PubMed  Google Scholar 

  147. Barrett FS, Krimmel SR, Griffiths R, Seminowicz DA, Mathur BN. Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. Neuroimage. 2020;218:116980.

    PubMed  CAS  Google Scholar 

  148. Barnett L, Muthukumaraswamy SD, Carhart-Harris RL, Seth AK. Decreased directed functional connectivity in the psychedelic state. Neuroimage. 2020;209:116462.

    PubMed  CAS  Google Scholar 

  149. Atasoy S, Roseman L, Kaelen M, Kringelbach ML, Deco G, Carhart-Harris RL. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci Rep. 2017;7:17661.

    PubMed  PubMed Central  Google Scholar 

  150. Harvey PD, Bosia M, Cavallaro R, Howes OD, Kahn RS, Leucht S, et al. Cognitive dysfunction in schizophrenia: An expert group paper on the current state of the art. Schizophr Res Cogn. 2022;29:100249.

    PubMed  PubMed Central  Google Scholar 

  151. Bender L, Goldschmidt L, Sankar DV. Treatment of autistic schizophrenic children with LSD-25 and UML-491. Recent Adv Biol Psychiatry. 1961;4:170–9.

    PubMed  CAS  Google Scholar 

  152. Bender L. D-lysergic acid in the treatment of the biological features of childhood schizophrenia. Dis Nerv Syst. 1966;7:43–46.

    PubMed  Google Scholar 

  153. Freedman AM, Ebin EV, Wilson EA. Autistic Schizophrenic Children. An experiment in the use of d-lysergic acid diethylamide (LSD-25). Arch Gen Psychiatry. 1962;6:203–13.

  154. Cheeck FE, Holstein CM. LSD-25 dosage levels, group differences, and social interaction - 1971. J Nerv Ment Dis. 1971;153:133–47.

    Google Scholar 

  155. Busch AK, Johnson WC. L.S.D. 25 as an aid in psychotherapy; preliminary report of a new drug. Dis Nerv Syst. 1950;11:241–3.

    PubMed  CAS  Google Scholar 

  156. Abramson HA, Hewitt MP, Lennard H, Turner WJ, O’neill FJ, Merlis S. The stablemate concept of therapy as affected by LSD in schizophrenia. J Psychol Interdiscip Appl. 1958;45:75–84.

    Google Scholar 

  157. Nichols DE. Entactogens: how the name for a novel class of psychoactive agents originated. Front Psychiatry. 2022;13:863088.

    PubMed  PubMed Central  Google Scholar 

  158. Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78:544–53.

    PubMed  CAS  Google Scholar 

  159. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs. 1986;18:305–13.

    PubMed  CAS  Google Scholar 

  160. Oeri HE. Beyond ecstasy: alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J Psychopharmacol. 2021;35:512–36.

    PubMed  CAS  Google Scholar 

  161. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168:458–70.

    PubMed  CAS  Google Scholar 

  162. Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023;618:790–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Preller KH, Schilbach L, Pokorny T, Flemming J, Seifritz E, Vollenweider FX. Role of the 5-HT2A receptor in self- and other-initiated social interaction in lysergic acid diethylamide-induced states: a pharmacological fMRI study. J Neurosci. 2018;38:3603–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Denber HCB, Merlis S. Studies on mescaline. VI. Therapeutic aspects of the mescaline-chlorpromazine combination. J Nerv Ment Dis. 1955;122:463–9.

    PubMed  CAS  Google Scholar 

  165. Sandison RA, Whitelaw JD. Further studies in the therapeutic value of lysergic acid diethylamide in mental illness. J Ment Sci. 1957;103:332–43.

    PubMed  CAS  Google Scholar 

  166. Steeds H, Carhart-Harris RL, Stone JM. Drug models of schizophrenia. Ther Adv Psychopharmacol. 2015;5:43–58.

    PubMed  PubMed Central  Google Scholar 

  167. Nichols DE. Psychedelics. Pharmacol Rev. 2016;68:264–355.

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Nichols DE, Johnson MW, Nichols CD. Psychedelics as medicines: an emerging new paradigm. Clin Pharmacol Ther. 2017;101:209–19.

    PubMed  CAS  Google Scholar 

  169. Rucker JJH, Iliff J, Nutt DJ. Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology. 2018;142:200–18.

    PubMed  CAS  Google Scholar 

  170. Tewari T, Mukherjee S. Microdosing: concept, application and relevance. Perspect Clin Res. 2010;1:61–63.

    PubMed  PubMed Central  Google Scholar 

  171. Hamill J, Hallak J, Dursun SM, Baker G. Ayahuasca: psychological and physiologic effects, pharmacology and potential uses in addiction and mental illness. Curr Neuropharmacol. 2019;17:108–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Johnson MW, Richards WA, Griffiths RR. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008;22:603–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Martinotti G, Santacroce R, Pettorruso M, Montemitro C, Spano MC, Lorusso M, et al. Hallucinogen persisting perception disorder: etiology, clinical features, and therapeutic perspectives. Brain Sci. 2018;8:47.

    PubMed  PubMed Central  Google Scholar 

  174. Gouzoulis-Mayfrank E, Habermeyer E, Hermle L, Steinmeyer AM, Kunert HJ, Sass H. Hallucinogenic drug induced states resemble acute endogenous psychoses: results of an empirical study. Eur Psychiatry. 1998;13:399–406.

    PubMed  CAS  Google Scholar 

  175. Weil-Malherbe H, Szara SI. The biochemistry of functional and experimental psychoses. 1 ed. Thomas CC. Springfield: Pub Ltd; 1971.

  176. Liechti ME. Modern clinical research on LSD. Neuropsychopharmacology. 2017;42:2114–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Tucker GJ, Quinlan D, Harrow M. Chronic hallucinogenic drug use and thought disturbance. Arch Gen Psychiatry. 1972;27:443–7.

    PubMed  CAS  Google Scholar 

  178. Cholden LS, Kurland A, Savage C. Clinical reactions and tolerance to lsd in chronic schizophrenia. J Nerv Ment Dis. 1955;122:211–21.

    PubMed  CAS  Google Scholar 

  179. Hoch PH, Cattell JP, Pennes HH. Effects of mescaline and lysergic acid (d-LSD-25). Am J Psychiatry. 1952;108:579–84.

    PubMed  CAS  Google Scholar 

  180. Williams GV, Rao SG, Goldman-Rakic PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci. 2002;22:2843–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Goldberger L. Cognitive test performance under LSD-25, placebo and isolation. J Nerv Ment Dis. 1966;142:4–9.

    PubMed  CAS  Google Scholar 

  182. Lea T, Amada N, Jungaberle H, Schecke H, Klein M. Microdosing psychedelics: Motivations, subjective effects and harm reduction. Int J Drug Policy. 2020;75:102600.

    PubMed  Google Scholar 

  183. Johnstad PG. Powerful substances in tiny amounts: an interview study of psychedelic microdosing. Nordisk Alkohol Nark. 2018;35:39–51.

    PubMed  PubMed Central  Google Scholar 

  184. Anderson T, Petranker R, Christopher A, Rosenbaum D, Weissman C, Dinh-Williams LA, et al. Psychedelic microdosing benefits and challenges: an empirical codebook. Harm Reduct J. 2019;16:43.

    PubMed  PubMed Central  Google Scholar 

  185. Hutten NRPW, Mason NL, Dolder PC, Kuypers KPC. Self-rated effectiveness of microdosing with psychedelics for mental and physical health problems among microdosers. Front Psychiatry. 2019;10:672.

    PubMed  PubMed Central  Google Scholar 

  186. Petranker R, Anderson T, Maier LJ, Barratt MJ, Ferris JA, Winstock AR. Microdosing psychedelics: Subjective benefits and challenges, substance testing behavior, and the relevance of intention. J Psychopharmacol. 2022;36:85–96.

    PubMed  Google Scholar 

  187. Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Mood and cognition after administration of low LSD doses in healthy volunteers: a placebo controlled dose-effect finding study. Eur Neuropsychopharmacol. 2020;41:81–91.

    PubMed  CAS  Google Scholar 

  188. Wießner I, Olivieri R, Falchi M, Palhano-Fontes F, Oliveira Maia L, Feilding A, et al. LSD, afterglow and hangover: Increased episodic memory and verbal fluency, decreased cognitive flexibility. Eur Neuropsychopharmacol. 2022;58:7–19.

    PubMed  Google Scholar 

  189. Rastelli C, Greco A, Kenett YN, Finocchiaro C, De Pisapia N. Simulated visual hallucinations in virtual reality enhance cognitive flexibility. Sci Rep. 2022;12:4027.

    PubMed  PubMed Central  CAS  Google Scholar 

  190. Carhart-Harris RL, Kaelen M, Bolstridge M, Williams TM, Williams LT, Underwood R, et al. The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol Med. 2016;46:1379–90.

    PubMed  CAS  Google Scholar 

  191. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018;23:3170–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Magaraggia I, Kuiperes Z, Schreiber R. Improving cognitive functioning in major depressive disorder with psychedelics: A dimensional approach. Neurobiol Learn Mem. 2021;183:107467.

    PubMed  CAS  Google Scholar 

  193. Lukasiewicz K, Baker JJ, Zuo Y, Lu J. Serotonergic psychedelics in neural plasticity. Front Mol Neurosci. 2021;14:748359.

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Savalia NK, Shao LX, Kwan AC. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 2021;44:260–75.

    PubMed  CAS  Google Scholar 

  195. Morales-garcia JA, Calleja-conde J, Lopez-moreno JA, Sanz-sancristobal M, Riba J, Perez-castillo AN. N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331.

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacol Rev. 2019;71:316–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Luppi AI, Carhart-Harris RL, Roseman L, Pappas I, Menon DK, Stamatakis EA. LSD alters dynamic integration and segregation in the human brain. Neuroimage. 2021;227:117653.

    PubMed  Google Scholar 

  198. Girn M, Mills C, Roseman L, Carhart-Harris RL, Christoff K. Updating the dynamic framework of thought: Creativity and psychedelics. Neuroimage. 2020;213:117653.

    Google Scholar 

  199. Mason NL, Kuypers KPC, Reckweg JT, Müller F, Tse DHY, Da Rios B, et al. Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl Psychiatry. 2021;11:209.

    PubMed  PubMed Central  CAS  Google Scholar 

  200. Broager B, Hertz H. Klinische Erfahrungen An Geisteskranken Mit Lysergsäure - Diäthylamid. Acta Psychiatr Scand. 1949;24:1–8.

    Google Scholar 

  201. De Giacomo U. Catatonie Toxique Expérimental. Acta Neurol. 1951;1:5–10.

    Google Scholar 

  202. Hock PH. Comments. Am J Psychiatry. 1955;111:787–91.

    Google Scholar 

  203. Szigeti B, Kartner L, Blemings A, Rosas F, Feilding A, Nutt DJ, et al. Self-blinding citizen science to explore psychedelic microdosing. Elife. 2021;10:e62878.

    PubMed  PubMed Central  CAS  Google Scholar 

  204. Webb M, Copes H, Hendricks PS. Narrative identity, rationality, and microdosing classic psychedelics. Int J Drug Policy. 2019;70:33–39.

    PubMed  Google Scholar 

  205. Murphy RJ, Sumner R, Evans W, Ponton R, Ram S, Godfrey K, et al. Acute mood-elevating properties of microdosed lysergic acid diethylamide in healthy volunteers: a home-administered randomized controlled trial. Biol Psychiatry. 2023;94:511–21.

    PubMed  CAS  Google Scholar 

  206. Prochazkova L, Lippelt DP, Colzato LS, Kuchar M, Sjoerds Z, Hommel B. Exploring the effect of microdosing psychedelics on creativity in an open-label natural setting. Psychopharmacology. 2018;235:3401–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  207. Bershad AK, Schepers ST, Bremmer MP, Lee R, de Wit H. Acute subjective and behavioral effects of microdoses of lysergic acid diethylamide in healthy human volunteers. Biol Psychiatry. 2019;86:792–800.

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Kuypers KPC, Ng L, Erritzoe D, Knudsen GM, Nichols CD, Nichols DE, et al. Microdosing psychedelics: More questions than answers? An overview and suggestions for future research. J Psychopharmacol. 2019;33:1039–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  209. Preller KH. The effects of low doses of lysergic acid diethylamide in healthy humans: demystifying the microdosing of psychedelics. Biol Psychiatry. 2019;86:736–7.

    PubMed  Google Scholar 

  210. Kaertner LS, Steinborn MB, Kettner H, Spriggs MJ, Roseman L, Buchborn T, et al. Positive expectations predict improved mental-health outcomes linked to psychedelic microdosing. Sci Rep. 2021;11:1941.

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Murphy RJ, Sumner RL, Evans W, Menkes D, Lambrecht I, Ponton R, et al. MDLSD: study protocol for a randomised, double-masked, placebo-controlled trial of repeated microdoses of LSD in healthy volunteers. Trials. 2021;22:302.

    PubMed  PubMed Central  Google Scholar 

  212. Rouaud A, Calder AE, Hasler G. Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins. J Psychopharmacol. 2024;38:217–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  213. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R. The risk of chronic psychedelic and MDMA microdosing for valvular heart disease. J Psychopharmacol. 2023;37:876–90.

    PubMed  Google Scholar 

  214. McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry. 2018;175:225–31.

    PubMed  Google Scholar 

  215. Nunes MV, Adelino MPM, Ajub E, Quarantini LC, Lacerda ALT. Efficacy of esketamine in the treatment of negative symptoms in schizophrenia - A case series. Schizophr Res. 2018;202:394–6.

    PubMed  Google Scholar 

  216. Krogmann A, Peters L, Von Hardenberg L, Bödeker K, Nöhles VB, Correll CU. Keeping up with the therapeutic advances in schizophrenia: a review of novel and emerging pharmacological entities. CNS Spectr. 2019;24:41–68.

    Google Scholar 

  217. Kane JM. Tools to assess negative symptoms in schizophrenia. J Clin Psychiatry. 2013;74:e12.

    PubMed  Google Scholar 

  218. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    PubMed  CAS  Google Scholar 

  219. Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68:283–97.

    PubMed  Google Scholar 

  220. Nuechterlein KH, Green MF, Kern RS. The MATRICS consensus cognitive battery: an update. Curr Top Behav Neurosci. 2023;63:1–18.

    PubMed  CAS  Google Scholar 

  221. Kirkpatrick B, Buchanan RW, McKenny PD, Alphs LD, Carpenter WT. The Schedule for the Deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res. 1989;30:119–23.

    PubMed  CAS  Google Scholar 

  222. Bugarski-Kirola D, Arango C, Fava M, Nasrallah H, Liu IY, Abbs B, et al. Pimavanserin for negative symptoms of schizophrenia: results from the ADVANCE phase 2 randomised, placebo-controlled trial in North America and Europe. Lancet Psychiatry. 2022;9:46–58.

    PubMed  Google Scholar 

  223. Fleischhacker WW, Podhorna J, Gröschl M, Hake S, Zhao Y, Huang S, et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry. 2021;8:191–201.

    PubMed  Google Scholar 

  224. Agostoni G, Bambini V, Bechi M, Buonocore M, Spangaro M, Repaci F, et al. Communicative-pragmatic abilities mediate the relationship between cognition and daily functioning in schizophrenia. Neuropsychology. 2021;35:42–56.

    PubMed  Google Scholar 

  225. Bambini V, Agostoni G, Buonocore M, Tonini E, Bechi M, Ferri I, et al. It is time to address language disorders in schizophrenia: A RCT on the efficacy of a novel training targeting the pragmatics of communication (PragmaCom). J Commun Disord. 2022;97:106196.

    PubMed  Google Scholar 

  226. Cuoco F, Agostoni G, Lesmo S, Sapienza J, Buonocore M, Bechi M, et al. Get up! Functional mobility and metabolic syndrome in chronic schizophrenia: effects on cognition and quality of life. Schizophr Res Cogn. 2022;28:100245.

    PubMed  PubMed Central  Google Scholar 

  227. Begemann MJ, Brand BA, C¨určić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020;50:2465–86.

    PubMed  PubMed Central  Google Scholar 

  228. Matsuda Y, Makinodan M, Morimoto T, Kishimoto T. Neural changes following cognitive remediation therapy for schizophrenia. Psychiatry Clin Neurosci. 2019;73:676–84.

    PubMed  Google Scholar 

  229. Bechi M, Bosia M, Spangaro M, Buonocore M, Cavedoni S, Agostoni G, et al. Exploring functioning in schizophrenia: Predictors of functional capacity and real-world behaviour. Psychiatry Res. 2017;251:118–24.

    PubMed  Google Scholar 

  230. Bosia M, Spangaro M, Sapienza J, Martini F, Civardi S, Buonocore M, et al. Cognition in schizophrenia: modeling the interplay between Interleukin-1β C-511T polymorphism, metabolic syndrome, and sex. Neuropsychobiology. 2021;80:321–32.

    PubMed  CAS  Google Scholar 

  231. Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Lauro LJR. Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex. 2018;28:1132–40.

    PubMed  Google Scholar 

  232. Mellow ML, Goldsworthy MR, Coussens S, Smith AE. Acute aerobic exercise and neuroplasticity of the motor cortex: A systematic review. J Sci Med Sport. 2020;23:408–14.

    PubMed  Google Scholar 

  233. Nitsche MA, Koschack J, Pohlers H, Hullemann S, Paulus W, Happe S. Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front Psychiatry. 2012;3:58.

    PubMed  PubMed Central  CAS  Google Scholar 

  234. Yu L, Fang X, Chen Y, Wang Y, Wang D, Zhang C. Efficacy of transcranial direct current stimulation in ameliorating negative symptoms and cognitive impairments in schizophrenia: a systematic review and meta-analysis. Schizophr Res. 2020;224:2–10.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by The Zardi-Gori Foundation, to DDG.

Author information

Authors and Affiliations

Authors

Contributions

JS: Conceptualization; Writing original draft; Writing – review & editing; Methodology, literature review. FM: Writing – review & editing; Supervision; Methodology, literature review. SC: Writing – review & editing; Supervision. RC: Validation. MS: Validation. DDG: Conceptualization; Writing – review & editing; Validation; Funding acquisition. MB: Conceptualization; Writing – review & editing; Validation. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Francesca Martini.

Ethics declarations

Competing interests

DDG has a provisional patent on the therapeutic use of LSD to treat anxiety disorders. The other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapienza, J., Martini, F., Comai, S. et al. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 30, 679–692 (2025). https://doi.org/10.1038/s41380-024-02743-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02743-x

Search

Quick links