Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

The association between maternal immune activation and brain structure and function in human offspring: a systematic review

Abstract

Maternal immune activation (MIA) during pregnancy, as a result of infectious or inflammatory stimuli, has gained increasing attention for its potential role in adverse child neurodevelopment, with studies focusing on associations in children born preterm. This systematic review summarizes research on the link between several types of prenatal MIA and subsequent child structural and/or functional brain development outcomes. We identified 111 neuroimaging studies in five MIA areas: inflammatory biomarkers (n = 13), chorioamnionitis (n = 18), other types of infections (n = 18), human immunodeficiency virus (HIV) (n = 42), and Zika virus (n = 20). Overall, there was large heterogeneity in the type of MIA exposure examined and in study methodology. Most studies had a prospective single cohort design and mainly focused on potential effects on the brain up to one year after birth. The median sample size was 53 participants. Severe infections, i.e., HIV and Zika virus, were associated with various types of cerebral lesions (e.g., microcephaly, atrophy, or periventricular leukomalacia) that were consistently identified across studies. For less severe infections and chronic inflammation, findings were generally inconsistent and mostly included deviations in white matter structure/function. Current findings have been mainly observed in the infants’ brain, presenting an opportunity for future studies to investigate whether these associations persist throughout development. Additionally, the inconsistent findings, encompassing both regions of interest and null results, call into question whether prenatal exposure to less severe infections and chronic inflammation exerts a small effect or no effect on child brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prisma Flow Diagram.
Fig. 2: Distribution of included cohort/case-control studies.
Fig. 3: Neuroimaging findings within a modality type observed in the same direction in at least two studies for the exposure ‘inflammatory biomarkers’.
Fig. 4: Neuroimaging findings within a modality type observed in the same direction in at least two studies for the exposure ‘chorioamnionitis’.
Fig. 5: Neuroimaging findings within a modality type observed in the same direction in at least two studies for the exposure ‘infections’ other than HIV and Zika virus.

Similar content being viewed by others

References

  1. Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–79.

    PubMed  Google Scholar 

  2. Han VX, Patel S, Jones HF, Nielsen TC, Mohammad SS, Hofer MJ, et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Transl Psychiatry. 2021;11:71.

    PubMed  PubMed Central  Google Scholar 

  3. Marques AH, Bjørke-Monsen AL, Teixeira AL, Silverman MN. Maternal stress, nutrition and physical activity: impact on immune function, CNS development and psychopathology. Brain Res. 2015;1617:28–46.

    PubMed  CAS  Google Scholar 

  4. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Johnson CY, Rocheleau CM, Howley MM, Chiu SK, Arnold KE, Ailes EC. Characteristics of women with urinary tract infection in pregnancy. J Womens Health 2002. 2021;30:1556–64.

    Google Scholar 

  7. Abdullahi H, Elnahas A, Konje JC. Seasonal influenza during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2021;258:235–9.

    PubMed  Google Scholar 

  8. Chin TL, MacGowan AP, Jacobson SK, Donati M. Viral infections in pregnancy: advice for healthcare workers. J Hosp Infect. 2014;87:11–24.

    PubMed  CAS  Google Scholar 

  9. Jamieson DJ, Rasmussen SA. An update on COVID-19 and pregnancy. Am J Obstet Gynecol. 2022;226:177–86.

    PubMed  CAS  Google Scholar 

  10. Agha M, Agha R. The rising prevalence of obesity: part A: impact on public health. Int J Surg Oncol. 2017;2:e17.

    Google Scholar 

  11. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021;12:706978.

    Google Scholar 

  12. Janssens S, Schotsaert M, Karnik R, Balasubramaniam V, Dejosez M, Meissner A, et al. Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. mSystems. 2018;3:e00219–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol. 2018;299:241–51.

    PubMed  CAS  Google Scholar 

  14. Weber-Stadlbauer U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl Psychiatry. 2017;7:e1113–e1113.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Richetto J, Massart R, Weber-Stadlbauer U, Szyf M, Riva MA, Meyer U. Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders. Biol Psychiatry. 2017;81:265–76.

    PubMed  CAS  Google Scholar 

  16. Piontkewitz Y, Arad M, Weiner I. Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry. 2011;70:842–51.

    PubMed  Google Scholar 

  17. Crum WR, Sawiak SJ, Chege W, Cooper JD, Williams SCR, Vernon AC. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: a longitudinal in vivo MRI study. Brain Behav Immun. 2017;63:50–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Nakagawa Y. Development of the thalamus: From early patterning to regulation of cortical functions. Wiley Interdiscip Rev Dev Biol. 2019;8:e345.

    PubMed  Google Scholar 

  19. Kreitz S, Zambon A, Ronovsky M, Budinsky L, Helbich TH, Sideromenos S, et al. Maternal immune activation during pregnancy impacts on brain structure and function in the adult offspring. Brain Behav Immun. 2020;83:56–67.

    PubMed  CAS  Google Scholar 

  20. Guma E, Plitman E, Chakravarty MM. The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: a translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev. 2019;104:141–57.

    PubMed  Google Scholar 

  21. Fung SG, Fakhraei R, Condran G, Regan AK, Dimanlig-Cruz S, Ricci C, et al. Neuropsychiatric outcomes in offspring after fetal exposure to maternal influenza infection during pregnancy: a systematic review. Reprod Toxicol. 2022;113:155–69.

    PubMed  CAS  Google Scholar 

  22. Antoun S, Ellul P, Peyre H, Rosenzwajg M, Gressens P, Klatzmann D, et al. Fever during pregnancy as a risk factor for neurodevelopmental disorders: results from a systematic review and meta-analysis. Mol Autism. 2021;12:60.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Radaelli G, Lahorgue Nunes M, Bernardi Soder R, de Oliveira JM, Thays Konat Bruzzo F, Kalil Neto F, et al. Review of neuroimaging findings in congenital Zika virus syndrome and its relation to the time of infection. Neuroradiol J. 2020;33:152–7.

    PubMed  PubMed Central  Google Scholar 

  24. Martín-Bejarano M, Ruiz-Saez B, Martinez-de-Aragón A, Melero H, Zamora B, Malpica NA, et al. A Systematic Review of Magnetic Resonance Imaging Studies in Perinatally HIV-Infected Individuals. AIDS Rev. 2021;23:167–85.

    PubMed  Google Scholar 

  25. Hoare J, Ransford GL, Phillips N, Amos T, Donald K, Stein DJ. Systematic review of neuroimaging studies in vertically transmitted HIV positive children and adolescents. Metab Brain Dis. 2014;29:221–9.

    PubMed  Google Scholar 

  26. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10:89.

    PubMed  PubMed Central  Google Scholar 

  27. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    PubMed  PubMed Central  Google Scholar 

  28. Mustafa RA, Santesso N, Brozek J, Akl EA, Walter SD, Norman G, et al. The GRADE approach is reproducible in assessing the quality of evidence of quantitative evidence syntheses. J Clin Epidemiol. 2013;66:736–742.e5.

    PubMed  Google Scholar 

  29. Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, et al. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun. 2023;110:322–38.

    PubMed  CAS  Google Scholar 

  30. Duggan P, Maalouf E, Watts T, Sullivan M, Counsell S, Allsop J, et al. Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. The Lancet. 2001;358:1699–700.

    CAS  Google Scholar 

  31. Graham A, Rasmussen J, Rudolph M, Heim C, Gilmore J, et al. Maternal systemic interleukin-6 during pregnancy is associated with newborn amygdala phenotypes and subsequent behavior at 2 years of age. Biol Psychiatry. 2018;83:109–19.

    PubMed  CAS  Google Scholar 

  32. Rasmussen JM, Graham AM, Gyllenhammer LE, Entringer S, Chow DS, O’Connor TG, et al. Neuroanatomical correlates underlying the association between maternal interleukin 6 concentration during pregnancy and offspring fluid reasoning performance in early childhood. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:24–33.

    PubMed  Google Scholar 

  33. Rasmussen JM, Graham AM, Entringer S, Gilmore JH, Styner M, Fair DA, et al. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. NeuroImage. 2019;185:825–35.

    PubMed  CAS  Google Scholar 

  34. Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci. 2018;21:765–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Spann MN, Monk C, Scheinost D, Peterson BS. Maternal immune activation during the third trimester is associated with neonatal functional connectivity of the salience network and fetal to toddler behavior. J Neurosci. 2018;38:2877–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Tian C, Cheng L, Gu X. Cord blood TNF-α and IL-6 levels as diagnostic indicators of brain damage in neonates with non-asphyxia fetal distress. Arch Gynecol Obstet. 2017;295:337–42.

    PubMed  CAS  Google Scholar 

  37. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177:19–26.

    PubMed  CAS  Google Scholar 

  38. Sanders AFP, Tirado B, Seider NA, Triplett RL, Lean RE, Neil JJ, et al. Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure. Transl Psychiatry. 2024;14:72.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Suleri A, Blok E, Durkut M, Rommel AS, Witte Lde, Jaddoe V, et al. The long-term impact of elevated C-reactive protein levels during pregnancy on brain morphology in late childhood. Brain Behav Immun. 2022;103:63–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res. 2010;121:46–54.

    PubMed  PubMed Central  Google Scholar 

  41. Goldstein JM, Cohen JE, Mareckova K, Holsen L, Whitfield-Gabrieli S, Gilman SE, et al. Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci USA. 2021;118:e2014464118.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213:S29–52.

    PubMed  PubMed Central  Google Scholar 

  43. Tita ATN, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37:339–54.

    PubMed  PubMed Central  Google Scholar 

  44. Anblagan D, Pataky R, Evans MJ, Telford EJ, Serag A, Sparrow S, et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci Rep. 2016;6:37932.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Basu S, Dewangan S, Barman S, Anupurba S, Shukla RC, Kumar A. Cerebral blood flow velocity in asymptomatic premature neonates exposed to clinical chorioamnionitis. Clin Epidemiol Glob Health. 2014;2:61–5.

    Google Scholar 

  46. Baud O, Emilie D, Pelletier E, Lacaze‐Masmonteil T, Zupan V, Fernandez H, et al. Amniotic fluid concentrations of Interleukin‐1β, Interleukin‐6 and TNF‐α in chorioamnionitis before 32 weeks of gestation: histological associations and neonatal outcome. BJOG Int J Obstet Gynaecol. 1999;106:72–7.

    CAS  Google Scholar 

  47. Budal EB, Ebbing C, Kessler J, Bains S, Haugen OH, Aukland SM, et al. Placental histology predicted adverse outcomes in extremely premature neonates in Norway—population‐based study. Acta Paediatr. 2022;111:546–53.

    PubMed  Google Scholar 

  48. Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, et al. Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol. 2009;66:155–64.

    PubMed  Google Scholar 

  49. Gaudet LM, Flavin M, Islam O, Smith GN. Diffusion MRI brain findings in neonates exposed to chorioamnionitis: a case series. J Obstet Gynaecol Can. 2009;31:497–503.

    PubMed  Google Scholar 

  50. Granger C, Spittle AJ, Walsh J, Pyman J, Anderson PJ, Thompson DK, et al. Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age. BMC Pediatr. 2018;18:63.

    PubMed  PubMed Central  Google Scholar 

  51. Jain VG, Kline JE, He L, Kline-Fath BM, Altaye M, Muglia LJ, et al. Acute histologic chorioamnionitis independently and directly increases the risk for brain abnormalities seen on magnetic resonance imaging in very preterm infants. Am J Obstet Gynecol. 2022;227:623.e1–623.e13.

    PubMed  CAS  Google Scholar 

  52. Jenster M, Bonifacio SL, Ruel T, Rogers EE, Tam EW, Partridge JC, et al. Maternal or neonatal infection: association with neonatal encephalopathy outcomes. Pediatr Res. 2014;76:93–9.

    PubMed  PubMed Central  Google Scholar 

  53. Johnson CB, Jenkins DD, Bentzley JP, Lambert D, Hope K, Rollins LG, et al. Proton magnetic resonance spectroscopy and outcome in term neonates with chorioamnionitis. J Perinatol. 2015;35:1030–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Nosaka R, Ushida T, Kidokoro H, Kawaguchi M, Shiraki A, Iitani Y, et al. Intrauterine exposure to chorioamnionitis and neuroanatomical alterations at term-equivalent age in preterm infants. Arch Gynecol Obstet. 2023. https://link.springer.com/10.1007/s00404-023-07064-y.

  55. Paz-Levy D, Schreiber L, Erez O, Goshen S, Richardson J, Drunov Vi, et al. Inflammatory and vascular placental lesions are associated with neonatal amplitude integrated EEG recording in early premature neonates. PLOS ONE. 2017;12:e0179481.

    PubMed  PubMed Central  Google Scholar 

  56. Xu LP, Ren RN, Zhu SB, Zhuang HM, Huang ZL, Yang H. Effect of chorioamnionitis on brain injury in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi. 2012;14:661–3.

  57. Reiman M, Kujari H, Maunu J, Parkkola R, Rikalainen H, Lapinleimu H, et al. Does placental inflammation relate to brain lesions and volume in preterm infants? J Pediatr. 2008;152:642–647.e2.

    PubMed  Google Scholar 

  58. Xu L, Ren R, Zhu S, Zhuang H, Huang Z, Yang H. Effect of chorioamnionitis on brain injury in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi. 2012;14:661–3.

    PubMed  Google Scholar 

  59. Pogribna U, Yu X, Burson K, Zhou Y, Lasky RE, Narayana PA, et al. Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. Zhan W, editor. PLoS ONE. 2013;8:e72974.

  60. Hatfield T, Wing DA, Buss C, Head K, Muftuler LT, Davis EP. Magnetic resonance imaging demonstrates long-term changes in brain structure in children born preterm and exposed to chorioamnionitis. Am J Obstet Gynecol. 2011;205:384.e1–8.

    PubMed  Google Scholar 

  61. Shevell A, Wintermark P, Benini R, Shevell M, Oskoui M. Chorioamnionitis and cerebral palsy: Lessons from a patient registry. Eur J Paediatr Neurol. 2014;18:301–7.

    PubMed  Google Scholar 

  62. Alves De Araujo Junior D, Motta F, Fernandes GM, Castro MECD, Sasaki LMP, Luna LP, et al. Neuroimaging assessment of pediatric cerebral changes associated with SARS-CoV-2 infection during pregnancy. Front Pediatr. 2023;11:1194114.

    PubMed  PubMed Central  Google Scholar 

  63. Kurokawa M, Kurokawa R, Lin AY, Capizzano AA, Baba A, Kim J, et al. Neurological and neuroradiological manifestations in neonates born to mothers with coronavirus disease 2019. Pediatr Neurol. 2023;141:9–17.

    PubMed  Google Scholar 

  64. Yan K, Xiao FF, Jiang YW, Xiao TT, Zhang DJ, Yuan WH, et al. Effects of SARS-CoV-2 infection on neuroimaging and neurobehavior in neonates. World J Pediatr. 2021;17:171–9.

    PubMed  CAS  Google Scholar 

  65. Zeng LK, Zhu HP, Xiao TT, Peng SC, Yuan WH, Shao JB, et al. Short-term developmental outcomes in neonates born to mothers with COVID-19 from Wuhan, China. World J Pediatr. 2021;17:253–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. McKissic D, Perez FA, Puia-Dumitrescu M, Ryan R, Hendrixson DT, Billimoria Z, et al. Maternal COVID-19 infection associated with fetal systemic inflammatory complications in COVID-19-negative neonates: a case-series. Am J Perinatol. 2024;41:e1451–8.

  67. Capretti MG, Lanari M, Tani G, Ancora G, Sciutti R, Marsico C, et al. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection. Brain Dev. 2014;36:203–11.

    PubMed  Google Scholar 

  68. Oosterom N, Nijman J, Gunkel J, Wolfs TFW, Groenendaal F, Verboon-Maciolek MA, et al. Neuro-imaging findings in infants with congenital cytomegalovirus infection: relation to trimester of infection. Neonatology. 2015;107:289–96.

    PubMed  Google Scholar 

  69. Roee B, Adi W, Michael B, Igal W, Karina KH, Liat B, et al. Subtle findings on fetal brain imaging in CMV infected pregnancies: What is the clinical significance? A retrospective analysis with outcome correlation. Prenat Diagn. 2020;40:447–53.

    PubMed  CAS  Google Scholar 

  70. Virkola K, Lappalainen M, Valanne L, Koskiniemi M. Radiological signs in newborns exposed to primary Toxoplasma infection in utero. Pediatr Radiol. 1997;27:133–8.

    PubMed  CAS  Google Scholar 

  71. Diebler C, Dusser A, Dulac O. Congenital toxoplasmosis: Clinical and neuroradiological evaluation of the cerebral lesions. Neuroradiology. 1985;27:125–30.

    PubMed  CAS  Google Scholar 

  72. Takei N, Lewis S, Jones P, Harvey I, Murray RM. Prenatal exposure to influenza and increased cerebrospinal fluid spaces in schizophrenia. Schizophr Bull. 1996;22:521–34.

    PubMed  CAS  Google Scholar 

  73. Dammann O, Allred EN, Genest DR, Kundsin RB, Leviton A. Antenatal mycoplasma infection, the fetal inflammatory response and cerebral white matter damage in very‐low‐birthweight infants. Paediatr Perinat Epidemiol. 2003;17:49–57.

    PubMed  Google Scholar 

  74. Jain S, Baer RJ, McCulloch CE, Rogers E, Rand L, Jelliffe-Pawlowski L, et al. Association of maternal immune activation during pregnancy and neurologic outcomes in offspring. J Pediatr. 2021;238:87–93.e3.

    PubMed  CAS  Google Scholar 

  75. Lee I, Neil JJ, Huettner PC, Smyser CD, Rogers CE, Shimony JS, et al. The impact of prenatal and neonatal infection on neurodevelopmental outcomes in very preterm infants. J Perinatol. 2014;34:741–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Turner MA, Vause S, Howell L, Wood D, Herbert E, Rimmer S, et al. Isolated parenchymal lesions on cranial ultrasound in very preterm infants in the context of maternal infection. Early Hum Dev. 2007;83:63–8.

    PubMed  CAS  Google Scholar 

  77. Brown AS, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Penner JD, et al. Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr Res. 2009;108:285–7.

    PubMed  PubMed Central  Google Scholar 

  78. Suleri A, Gaiser C, Cecil CAM, Dijkzeul A, Neumann A, Labreque JA, et al. Examining longitudinal associations between prenatal exposure to infections and child brain morphology. Brain Behav Immun. 2024;S0889-1591:00402–1.

    Google Scholar 

  79. Suleri A, Cecil C, Rommel AS, Hillegers M, White T, de Witte LD, et al. Long-term effects of prenatal infection on the human brain: a prospective multimodal neuroimaging study. Transl Psychiatry. 2023;13:306.

    PubMed  PubMed Central  Google Scholar 

  80. Hoare J, Fouche JP, Spottiswoode B, Donald K, Philipps N, Bezuidenhout H, et al. A diffusion tensor imaging and neurocognitive study of HIV-positive children who are HAART-naïve “slow progressors. J Neurovirol. 2012;18:205–12.

    PubMed  Google Scholar 

  81. Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, et al. A neurometabolic pattern of elevated myo-inositol in children who are HIV-exposed and uninfected: a South African Birth Cohort Study. Front Immunol. 2022;13:800273.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Cortey A, Jarvik J, Lenkinski R, Grossman R, Frank I, Delivoria-Papadopoulos M. Proton MR spectroscopy of brain abnormalities in neonates born to HIV-positive mothers. Am J Neuroradiol. 1994;15:1853–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Graham AS, Holmes MJ, Little F, Dobbels E, Cotton MF, Laughton B, et al. MRS suggests multi-regional inflammation and white matter axonal damage at 11 years following perinatal HIV infection. NeuroImage Clin. 2020;28:102505.

    PubMed  PubMed Central  Google Scholar 

  84. Iqbal Z, Wilson NE, Keller MA, et al. Pilot assessment of brain metabolism in perinatally HIV-infected youths using accelerated 5D echo planar J-resolved spectroscopic imaging. PLoS ONE. 2016;11:e0162810.

  85. Tran LT, Roos A, Fouche JP, Koen N, Woods RP, Zar HJ, et al. White matter microstructural integrity and neurobehavioral outcome of HIV-exposed uninfected neonates. Medicine. 2016;95:e2577.

    PubMed  PubMed Central  Google Scholar 

  86. Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, et al. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med. 2024;22:129.

    PubMed  PubMed Central  Google Scholar 

  87. Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375:2321–34.

    PubMed  PubMed Central  Google Scholar 

  88. Cavalheiro S, Lopez A, Serra S, Da Cunha A, Da Costa MDS, Moron A, et al. Microcephaly and Zika virus: neonatal neuroradiological aspects. Childs Nerv Syst. 2016;32:1057–60.

    PubMed  PubMed Central  Google Scholar 

  89. Daza M, Mercado M, Moore CA, Valencia D, Lengua MF, Newton S, et al. Clinical and neurodevelopmental outcomes based on brain imaging studies in a Colombian cohort of children with probable antenatal Zika virus exposure. Birth Defects Res. 2021;113:1299–312.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Arraes De Alencar Ximenes R, De Barros Miranda-Filho D, Brickley EB, Barreto De Araújo TV, Montarroyos UR, Abtibol-Bernardino MR, et al. Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts Consortium. Lancet Reg Health - Am. 2023;17:100395.

    Google Scholar 

  91. Esper NB, Franco AR, Soder RB, Bomfim RC, Nunes ML, Radaelli G, et al. Zika virus congenital microcephaly severity classification and the association of severity with neuropsychomotor development. Pediatr Radiol. 2022;52:941–50.

    PubMed  Google Scholar 

  92. Hcini N, Kugbe Y, Rafalimanana ZHL, Lambert V, Mathieu M, Carles G, et al. Association between confirmed congenital Zika infection at birth and outcomes up to 3 years of life. Nat Commun. 2021;12:3270.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Honein MA, Dawson AL, Petersen EE, Jones AM, Lee EH, Yazdy MM, et al. Birth Defects Among Fetuses and Infants of US Women With Evidence of Possible Zika Virus Infection During Pregnancy. JAMA. 2017;317:59.

    PubMed  Google Scholar 

  94. C. Lage ML, Carvalho A, Ventura P, Taguchi T, Fernandes A, Pinho S, et al. Clinical, neuroimaging, and neurophysiological findings in children with microcephaly related to congenital Zika virus infection. Int J Environ Res Public Health. 2019;16:309.

    PubMed  PubMed Central  Google Scholar 

  95. Meneses JDA, Ishigami AC, De Mello LM, De Albuquerque LL, De Brito CAA, Cordeiro MT, et al. Lessons learned at the epicenter of Brazil’s congenital Zika epidemic: evidence from 87 confirmed cases. Clin Infect Dis. 2017;64:1302–8.

    PubMed  Google Scholar 

  96. Mulkey SB, Bulas DI, Vezina G, Fourzali Y, Morales A, Arroyave-Wessel M, et al. Sequential neuroimaging of the fetus and newborn with in utero Zika virus exposure. JAMA Pediatr. 2019;173:52.

    PubMed  Google Scholar 

  97. Ribeiro BNDF, Muniz BC, Marchiori E. Evaluation of the frequency of neuroimaging findings in congenital infection by Zika virus and differences between computed tomography and magnetic resonance imaging in the detection of alterations. Rev Soc Bras Med Trop. 2020;53:e20190557.

    PubMed  PubMed Central  Google Scholar 

  98. Soares De Oliveira-Szejnfeld P, Levine D, Melo ASDO, Amorim MMR, Batista AGM, Chimelli L, et al. Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally. Radiology. 2016;281:203–18.

    PubMed  Google Scholar 

  99. Ximenes ASFC, Pires P, Werner H, Jungmann PM, Rolim Filho EL, Andrade EP, et al. Neuroimaging findings using transfontanellar ultrasound in newborns with microcephaly: a possible association with congenital Zika virus infection. J Matern Fetal Neonatal Med. 2019;32:493–501.

    PubMed  Google Scholar 

  100. Fields RD. Neuroscience. Change in the brain’s white matter. Science. 2010;330:768–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Kjelkenes R, Wolfers T, Alnæs D, Norbom LB, Voldsbekk I, Holm M, et al. Deviations from normative brain white and gray matter structure are associated with psychopathology in youth. Dev Cogn Neurosci. 2022;58:101173.

    PubMed  PubMed Central  Google Scholar 

  102. Pleasure D, Soulika A, Singh SK, Gallo V, Bannerman P. Inflammation in white matter: clinical and pathophysiological aspects. Ment Retard Dev Disabil Res Rev. 2006;12:141–6.

    PubMed  Google Scholar 

  103. Jarmund AH, Giskeødegård GF, Ryssdal M, Steinkjer B, Stokkeland LMT, Madssen TS, et al. Cytokine patterns in maternal serum from first trimester to term and beyond. Front Immunol. 2021;12:752660.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J RStat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  105. Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604:525–33.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the medical library of the Erasmus MC for their help during the search strategy process and for performing the systematic search. Moreover, this project was funded by NIH grant: 1R01MH124776.

Author information

Authors and Affiliations

Authors

Contributions

Anna Suleri: conceptualization, data curation, investigation, visualization, writing – original draft, project administration. Anna-Sophie Rommel: conceptualization, validation, writing – review & editing. Olga Dmitrichenko: conceptualization, investigation, validation, writing – review & editing. Ryan Muetzel: conceptualization, writing – review & editing. Charlotte Cecil: writing – review & editing. Lot de Witte: conceptualization, writing – review & editing, funding acquisition. Veerle Bergink: conceptualization, supervision, validation, writing – review & editing, project administration, funding acquisition.

Corresponding author

Correspondence to Veerle Bergink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleri, A., Rommel, AS., Dmitrichenko, O. et al. The association between maternal immune activation and brain structure and function in human offspring: a systematic review. Mol Psychiatry 30, 722–735 (2025). https://doi.org/10.1038/s41380-024-02760-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02760-w

Search

Quick links