Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole exome sequencing identified six novel genes for depressive symptoms

Abstract

Previous genome-wide association studies of depression have primarily focused on common variants, limiting our comprehensive understanding of the genetic architecture. In contrast, whole–exome sequencing can capture rare coding variants, helping to explore the phenotypic consequences of altering protein-coding genes. Here, we conducted a large-scale exome-wide association study on 296,199 participants from the UK Biobank, assessing their depressive symptom scores through the Patient Health Questionnaire-4. We identified 22 genes associated with depressive symptoms, including 6 newly discovered genes (TRIM27, UBD, SVOP, ADGRB2, IRF2BPL, and ANKRD12). Both ontology enrichment analysis and plasma proteomics association analysis consistently revealed that the identified genes were associated with immune responses. Furthermore, we identified associations between these genes and brain regions related to depression, such as anterior cingulate cortex and orbitofrontal cortex. Additionally, phenome-wide association analysis demonstrated that TRIM27 and UBD were associated with neuropsychiatric, cognitive, biochemistry, and inflammatory traits. Our findings offer new insights into the potential mechanisms and genetic architecture of depressive symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the study.
Fig. 2: Exome-wide tests for depressive symptoms.
Fig. 3: Biological functions of genes associated with depressive symptoms.
Fig. 4: Associations of identified genes with neuroimaging.
Fig. 5: Associations of identified genes with proteomics.
Fig. 6: Phenome-wide association analysis.

Similar content being viewed by others

Data availability

The main data used in this study, including individual-level phenotypic and genetic data, were accessed from UK Biobank under application number 19,542 and were available through UK Biobank (https://www.ukbiobank.ac.uk/) by application. GWAS summary results of depressive symptoms were obtained from the previous study (https://doi.org/10.1038/ng.3552). GWAS summary results of depression in FinnGen were obtained through https://r11.finngen.fi/. The single-cell sequencing data of human brain were obtained from GEO database (GSE173731).

Code availability

The code used for single-variant and gene-based analysis is an adaptation of the R package SAIGE-GENE+ v.1.1.6.2 (https://github.com/saigegit/SAIGE/). Quality control of individual-level data was performed using Hail v.0.2 (https://hail.is) and PLINK v.2.0 (https://www.cog-genomics.org/plink/2.0/). Variant annotation was performed using SnpEff v.5.1 (https://pcingola.github.io/SnpEff/). Burden heritability estimation was performed using BHR v.0.1.0 (https://github.com/ajaynadig/bhr/). Analysis and visualization of single-cell RNA sequencing data was performed using Seurat v.4.3.0 (https://github.com/satijalab/seurat/). Ontology enrichment analysis was performed using Enrichr (https://maayanlab.cloud/Enrichr/). Tissue expression enrichment analysis was performed using FUMA v.1.5.6 (https://fuma.ctglab.nl/).

References

  1. Marwaha S, Palmer E, Suppes T, Cons E, Young AH, Upthegrove R. Novel and emerging treatments for major depression. Lancet. 2023;401:141–53.

    CAS  PubMed  Google Scholar 

  2. Herrman H, Kieling C, McGorry P, Horton R, Sargent J, Patel V. Reducing the global burden of depression: a Lancet-World Psychiatric Association Commission. Lancet. 2019;393:e42–e43.

    PubMed  Google Scholar 

  3. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    CAS  PubMed  Google Scholar 

  4. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.

    CAS  PubMed  Google Scholar 

  5. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Sluis S, Posthuma D, Nivard MG, Verhage M, Dolan CV. Power in GWAS: lifting the curse of the clinical cut-off. Mol Psychiatry. 2013;18:2–3.

    PubMed  Google Scholar 

  9. Ayuso-Mateos JL, Nuevo R, Verdes E, Naidoo N, Chatterji S. From depressive symptoms to depressive disorders: the relevance of thresholds. Br J Psychiatry. 2010;196:365–71.

    PubMed  Google Scholar 

  10. Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48:624–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Story Jovanova O, Nedeljkovic I, Spieler D, Walker RM, Liu C, Luciano M, et al. DNA Methylation Signatures of Depressive Symptoms in Middle-aged and Elderly Persons: Meta-analysis of Multiethnic Epigenome-wide Studies. JAMA Psychiatry. 2018;75:949–59.

    PubMed  PubMed Central  Google Scholar 

  12. Arnau-Soler A, Macdonald-Dunlop E, Adams MJ, Clarke TK, MacIntyre DJ, Milburn K, et al. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Transl Psychiatry. 2019;9:14.

    PubMed  PubMed Central  Google Scholar 

  13. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer MP, et al. Multivariate genome-wide analyses of the well-being spectrum. Nat Genet. 2019;51:445–51.

    CAS  PubMed  Google Scholar 

  14. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Park K, Do AR, Chung Y, Kim MJ, Rhee SJ, Yoon DH, et al. Genome-wide association study implicates the role of TBXAS1 in the pathogenesis of depressive symptoms among the Korean population. Transl Psychiatry. 2024;14:80.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pelzer EA, Stürmer S, Feis DL, Melzer C, Schwartz F, Scharge M, et al. Clustering of Parkinson subtypes reveals strong influence of DRD2 polymorphism and gender. Sci Rep. 2022;12:6038.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020;586:749–56.

    PubMed  PubMed Central  Google Scholar 

  18. Shah SB, Peddada TN, Song C, Mensah M, Sung H, Yavi M, et al. Exome-wide association study of treatment-resistant depression suggests novel treatment targets. Sci Rep. 2023;13:12467.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng S, Cheng B, Liu L, Yang X, Meng P, Yao Y, et al. Exome-wide screening identifies novel rare risk variants for major depression disorder. Mol Psychiatry. 2022;27:3069–74.

    CAS  PubMed  Google Scholar 

  20. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire. JAMA. 1999;282:1737–44.

    CAS  PubMed  Google Scholar 

  21. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lambert MJ, Hatch DR, Kingston MD, Edwards BC. Zung, Beck, and Hamilton Rating Scales as measures of treatment outcome: a meta-analytic comparison. J Consult Clin Psychol. 1986;54:54–59.

    CAS  PubMed  Google Scholar 

  23. Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599:628–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurgens SJ, Choi SH, Morrill VN, Chaffin M, Pirruccello JP, Halford JL, et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet. 2022;54:240–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.

    CAS  PubMed  Google Scholar 

  27. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20.

    PubMed  Google Scholar 

  28. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19:1553–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.

    CAS  PubMed  Google Scholar 

  30. Zhou W, Bi W, Zhao Z, Dey KK, Jagadeesh KA, Karczewski KJ, et al. SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests. Nat Genet. 2022;54:1466–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012;13:762–75.

    PubMed  PubMed Central  Google Scholar 

  33. Ripke S, Wray N, Lewis C, Hamilton S, Weissman M, Breen G, et al. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.

    CAS  PubMed  Google Scholar 

  34. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    PubMed  PubMed Central  Google Scholar 

  35. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiner DJ, Nadig A, Jagadeesh KA, Dey KK, Neale BM, Robinson EB, et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature. 2023;614:492–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021;1:e90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Consortium G. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Google Scholar 

  40. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    PubMed  PubMed Central  Google Scholar 

  41. Garcia FJ, Sun N, Lee H, Godlewski B, Mathys H, Galani K, et al. Single-cell dissection of the human brain vasculature. Nature. 2022;603:893–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020;206:116189.

    PubMed  Google Scholar 

  44. Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J. 2019;40:2290–2300.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun BB, Chiou J, Traylor M, Benner C, Hsu Y-H, Richardson TG et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.06.17.496443v1.

  46. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–D646.

    CAS  PubMed  Google Scholar 

  47. Giannakopoulou O, Lin K, Meng X, Su MH, Kuo PH, Peterson RE, et al. The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry. 2021;78:1258–69.

    PubMed  Google Scholar 

  48. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian R, Ge T, Kweon H, Rocha DB, Lam M, Liu JZ, et al. Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression. Nat Commun. 2024;15:1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Als TD, Kurki MI, Grove J, Voloudakis G, Therrien K, Tasanko E, et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat Med. 2023;29:1832–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Silveira PP, Pokhvisneva I, Howard DM, Meaney MJ. A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol Psychiatry. 2023;28:2469–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Okajima D, Kudo G, Yokota H. Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res. 2010;30:143–53.

    CAS  PubMed  Google Scholar 

  53. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al. The impact of rare protein coding genetic variation on adult cognitive function. Nat Genet. 2023;55:927–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fei CJ, Li ZY, Ning J, Yang L, Wu BS, Kang JJ, et al. Exome sequencing identifies genes associated with sleep-related traits. Nat Hum Behav. 2024;8:576–89.

    PubMed  Google Scholar 

  57. Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, et al. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet. 2018;103:245–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Marcogliese PC, Dutta D, Ray SS, Dang NDP, Zuo Z, Wang Y, et al. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. Sci Adv. 2022;8:eabl5613.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sinha Ray S, Dutta D, Dennys C, Powers S, Roussel F, Lisowski P, et al. Mechanisms of IRF2BPL-related disorders and identification of a potential therapeutic strategy. Cell Rep. 2022;41:111751.

    CAS  PubMed  Google Scholar 

  60. Okbay A, Wu Y, Wang N, Jayashankar H, Bennett M, Nehzati SM, et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat Genet. 2022;54:437–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K, et al. Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. Schizophr Bull. 2019;45:824–34.

    PubMed  Google Scholar 

  62. Zhao B, Zhang J, Ibrahim JG, Luo T, Santelli RC, Li Y, et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol Psychiatry. 2021;26:3943–55.

    PubMed  Google Scholar 

  63. Wickersham A, Dickson H, Jones R, Pritchard M, Stewart R, Ford T, et al. Educational attainment trajectories among children and adolescents with depression, and the role of sociodemographic characteristics: longitudinal data-linkage study. Br J Psychiatry. 2021;218:151–7.

    PubMed  PubMed Central  Google Scholar 

  64. Beurel E, Toups M, Nemeroff CB. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020;107:234–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cruz-Pereira JS, Rea K, Nolan YM, O’Leary OF, Dinan TG, Cryan JF. Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu Rev Psychol. 2020;71:49–78.

    PubMed  Google Scholar 

  66. Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci. 2021;24:954–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zurek B, Schoultz I, Neerincx A, Napolitano LM, Birkner K, Bennek E, et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One. 2012;7:e41255.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cai J, Chen HY, Peng SJ, Meng JL, Wang Y, Zhou Y, et al. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. FASEB J. 2018;32:5238–49.

    CAS  PubMed  Google Scholar 

  69. Miao X, Xiang Y, Mao W, Chen Y, Li Q, Fan B. TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells. Am J Physiol Cell Physiol. 2020;318:C272–C281.

    CAS  PubMed  Google Scholar 

  70. Ocklenburg F, Moharregh-Khiabani D, Geffers R, Janke V, Pfoertner S, Garritsen H, et al. UBD, a downstream element of FOXP3, allows the identification of LGALS3, a new marker of human regulatory T cells. Lab Invest. 2006;86:724–37.

    CAS  PubMed  Google Scholar 

  71. Li M, Liu Y, Xu C, Zhao Q, Liu J, Xing M, et al. Ubiquitin-binding domain in ABIN1 is critical for regulating cell death and inflammation during development. Cell Death Differ. 2022;29:2034–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawamoto A, Nagata S, Anzai S, Takahashi J, Kawai M, Hama M, et al. Ubiquitin D is Upregulated by Synergy of Notch Signalling and TNF-alpha in the Inflamed Intestinal Epithelia of IBD Patients. J Crohns Colitis. 2019;13:495–509.

    PubMed  Google Scholar 

  73. Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet. 2012;8:e1002559.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmaal L, Veltman DJ, van Erp TG, Samann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12.

    CAS  PubMed  Google Scholar 

  75. Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

    CAS  PubMed  Google Scholar 

  76. Coloigner J, Batail JM, Commowick O, Corouge I, Robert G, Barillot C, et al. White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study. Neuroimage Clin. 2019;22:101710.

    PubMed  PubMed Central  Google Scholar 

  77. Wu G, Mei B, Hou X, Wang F, Zang C, Zhang X, et al. White matter microstructure changes in adults with major depressive disorder: evidence from diffusion magnetic resonance imaging. BJPsych Open. 2023;9:e101.

    PubMed  PubMed Central  Google Scholar 

  78. Winter NR, Leenings R, Ernsting J, Sarink K, Fisch L, Emden D, et al. Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities. JAMA Psychiatry. 2022;79:879–88.

    PubMed  PubMed Central  Google Scholar 

  79. Karlsson Linnér R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019;51:245–57.

    PubMed  Google Scholar 

  80. Ballmaier M, Toga AW, Blanton RE, Sowell ER, Lavretsky H, Peterson J, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry. 2004;161:99–108.

    PubMed  Google Scholar 

  81. Cheng W, Rolls ET, Ruan H, Feng J. Functional Connectivities in the Brain That Mediate the Association Between Depressive Problems and Sleep Quality. JAMA Psychiatry. 2018;75:1052–61.

    PubMed  PubMed Central  Google Scholar 

  82. Kroenke K, Spitzer RL, Williams JB, Lowe B. An ultra-brief screening scale for anxiety and depression: the PHQ-4. Psychosomatics. 2009;50:613–21.

    PubMed  Google Scholar 

  83. Lowe B, Wahl I, Rose M, Spitzer C, Glaesmer H, Wingenfeld K, et al. A 4-item measure of depression and anxiety: validation and standardization of the Patient Health Questionnaire-4 (PHQ-4) in the general population. J Affect Disord. 2010;122:86–95.

    PubMed  Google Scholar 

  84. Ju D, Hui D, Hammond DA, Wonkam A, Tishkoff SA. Importance of Including Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine. Annu Rev Biomed Data Sci. 2022;5:321–39.

    PubMed  PubMed Central  Google Scholar 

  85. Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. Cell. 2019;177:26–31.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study used the UK Biobank Resource under application number 19542. We gratefully thank all UK Biobank participants for their time and UK Biobank team members for collating the data. We gratefully thank the participants and investigators of the FinnGen study. This work was supported by grants from the National Natural Sciences Foundation of China (82472055, 82071997) [to WC], the National Key Research and Development Program of China (2023YFC3605400) [to WC], and the Shanghai Rising-Star Program (21QA1408700) [to WC]; the Science and Technology Innovation 2030 Major Projects (2022ZD0211600) [to JTY], National Natural Science Foundation of China (82071201, 81971032, 92249305) [to JTY], Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) [to JTY], Research Start-up Fund of Huashan Hospital (2022QD002) [to JTY], Excellence 2025 Talent Cultivation Program at Fudan University (3030277001) [to JTY], Shanghai Talent Development Funding for The Project (2019074) [to JTY], and ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University; National Key R&D Program of China (2018YFC1312904, 2019YFA0709502) [to JFF], the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) [to JFF], and the 111 Project (B18015) [to JFF], Shanghai Center for Brain Science and Brain-Inspired Technology and Zhangjiang Lab.

Author information

Authors and Affiliations

Authors

Contributions

WC and JTY designed the study. ZYL, CJF, RYY, and JJK conducted main analyses. ZYL and CJF drafted the manuscript. YJZ, BSW, and LY contributed to the data collection. QM, XYH, XRW, WZ, and WSL contributed to the data analyses. WC, JTY, JFF, and YZ critically revised the manuscript. All authors reviewed and approved the final version.

Corresponding authors

Correspondence to Jin-Tai Yu or Wei Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZY., Fei, CJ., Yin, RY. et al. Whole exome sequencing identified six novel genes for depressive symptoms. Mol Psychiatry 30, 1925–1936 (2025). https://doi.org/10.1038/s41380-024-02804-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02804-1

Search

Quick links