Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene–dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer’s mice

Abstract

High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of Alzheimer’s disease (AD). We have shown recently that FSH directly activates the hippocampal FSH receptors (FSHRs) to drive AD-like pathology and memory loss in mice. To unequivocally establish a role for FSH in memory loss, we depleted the Fshr on a 3xTg background and utilized Morris Water Maze to study deficits in spatial memory. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age. The loss of memory acquisition and retrieval were both rescued in 3xTg;Fshr−/− mice and, to a lesser extent, in 3xTg;Fshr+/− mice—documenting clear gene–dose-dependent prevention of spatial memory loss. Furthermore, at 5 and 8 months, sham-operated 3xTg;Fshr−/− mice showed better memory performance during the learning and/or retrieval phases, further suggesting that Fshr deletion prevents age-related progression of memory deficits. This prevention was not seen when mice were ovariectomized, except in the 8-month-old 3xTg;Fshr−/− mice. There was also a gene–dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels <8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial memory deficits in mice and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of memory loss in post-menopausal women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morris Water Maze to evaluate the effect of genetic Fshr depletion in 5-month-old 3xTg females on acquisition and retrieval of spatial memory.
Fig. 2: Morris Water Maze to evaluate the effect of age, ovariectomy, and genetic Fshr depletion in 3xTg females on acquisition of spatial memory.
Fig. 3: Morris Water Maze to evaluate the effect of age, ovariectomy, and genetic Fshr depletion in 3xTg females on retrieval of spatial memory.
Fig. 4: The effect of Fshr depletion in 8-month-old 3xTg females following sham operation (Sham) or ovariectomy (OVX) on recognition memory in the Novel Object Recognition Test.
Fig. 5: The effect of Fshr depletion in 8-month-old 3xTg females following sham operation (Sham) or ovariectomy (OVX) on the accumulation of amyloid β (Aβ) isoforms, Aβ40 and Aβ42 in whole brain extracts.
Fig. 6: Morris Water Maze to evaluate the effect of elevated FSH in 16-month-old APP/PS1 females on acquisition and retrieval of spatial memory.

Similar content being viewed by others

Data availability

Data are available from the corresponding authors on reasonable request.

References

  1. Andersen K, Launer LJ, Dewey ME, Letenneur L, Ott A, Copeland JR, EURODEM Incidence Research Group, et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. Neurology. 1999;53:1992–7.

    CAS  PubMed  Google Scholar 

  2. Fisher DW, Bennett DA, Dong H. Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiol Aging. 2018;70:308–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Laws KR, Irvine K, Gale TM. Sex differences in cognitive impairment in Alzheimer’s disease. World J Psychiatry. 2016;6:54–65.

    PubMed  PubMed Central  Google Scholar 

  4. Koran MEI, Wagener M, Hohman TJ, Alzheimer’s Neuroimaging I. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017;11:205–13.

    PubMed  PubMed Central  Google Scholar 

  5. Ratnakumar A, Zimmerman SE, Jordan BA, Mar JC. Estrogen activates Alzheimer’s disease genes. Alzheimers Dement. 2019;5:906–17.

    Google Scholar 

  6. Vina J, Lloret A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis. 2010;20:S527–533.

    PubMed  Google Scholar 

  7. Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT. Lifetime estrogen exposure and cognition in late life: the Cache County Study. Menopause. 2019;26:1366–74.

    PubMed  PubMed Central  Google Scholar 

  8. Zandi PP, Carlson MC, Plassman BL, Welsh-Bohmer KA, Mayer LS, Steffens DC, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA. 2002;288:2123–9.

    CAS  PubMed  Google Scholar 

  9. O’Brien J, Jackson JW, Grodstein F, Blacker D, Weuve J. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and Alzheimer’s disease. Epidemiol Rev. 2014;36:83–103.

    PubMed  Google Scholar 

  10. Short RA, Bowen RL, O’Brien PC, Graff-Radford NR. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin Proc. 2001;76:906–9.

    CAS  PubMed  Google Scholar 

  11. Bowen JD, Malter AD, Sheppard L, Kukull WA, McCormick WC, Teri L, et al. Predictors of mortality in patients diagnosed with probable Alzheimer’s disease. Neurology. 1996;47:433–9.

    CAS  PubMed  Google Scholar 

  12. Casadesus G, Atwood CS, Zhu X, Hartzler AW, Webber KM, Perry G, et al. Evidence for the role of gonadotropin hormones in the development of Alzheimer disease. Cell Mol Life Sci. 2005;62:293–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meethal SV, Smith MA, Bowen RL, Atwood CS. The gonadotropin connection in Alzheimer’s disease. Endocrine. 2005;26:317–26.

    CAS  PubMed  Google Scholar 

  14. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Greendale GA, Huang MH, Wight RG, Seeman T, Luetters C, Avis NE, et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology. 2009;72:1850–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Randolph JF Jr, Sowers M, Gold EB, Mohr BA, Luborsky J, Santoro N, et al. Reproductive hormones in the early menopausal transition: relationship to ethnicity, body size, and menopausal status. J Clin Endocrinol Metab. 2003;88:1516–22.

    CAS  PubMed  Google Scholar 

  17. Randolph JF Jr, Zheng H, Sowers MR, Crandall C, Crawford S, Gold EB, et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J Clin Endocrinol Metab. 2011;96:746–54.

    CAS  PubMed  Google Scholar 

  18. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res. 2012;27:111–8.

    PubMed  Google Scholar 

  19. Greendale GA, Sternfeld B, Huang M, Han W, Karvonen-Gutierrez C, Ruppert K, et al. Changes in body composition and weight during the menopause transition. JCI Insight. 2019;4:e124865.

  20. Sowers MR, Finkelstein JS, Ettinger B, Bondarenko I, Neer RM, Cauley JA, et al. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int. 2003;14:44–52.

    CAS  PubMed  Google Scholar 

  21. Sowers MR, Greendale GA, Bondarenko I, Finkelstein JS, Cauley JA, Neer RM, et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int. 2003;14:191–7.

    CAS  PubMed  Google Scholar 

  22. Sowers MR, Jannausch M, McConnell D, Little R, Greendale GA, Finkelstein JS, et al. Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab. 2006;91:1261–7.

    CAS  PubMed  Google Scholar 

  23. Geng W, Yan X, Du H, Cui J, Li L, Chen F. Immunization with FSHbeta fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem Biophys Res Commun. 2013;434:280–6.

    CAS  PubMed  Google Scholar 

  24. Han X, Guan Z, Xu M, Zhang Y, Yao H, Meng F, et al. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology. 2020;148:103–11.

    CAS  PubMed  Google Scholar 

  25. Ji Y, Liu P, Yuen T, Haider S, He J, Romero R, et al. Epitope-specific monoclonal antibodies to FSHbeta increase bone mass. Proc Natl Acad Sci USA. 2018;115:2192–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. 2017;546:107–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly regulates bone mass. Cell. 2006;125:247–60.

    CAS  PubMed  Google Scholar 

  28. Araujo AB, Wittert GA. Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab. 2011;25:303–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong J, Kang SS, Wang Z, Liu X, Kuo TC, Korkmaz F, et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature. 2022;603:470–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gera S, Sant D, Haider S, Korkmaz F, Kuo TC, Mathew M, et al. First-in-class humanized FSH blocking antibody targets bone and fat. Proc Natl Acad Sci USA. 2020;117:28971–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu LL, Blair H, Cao J, Yuen T, Latif R, Guo L, et al. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc Natl Acad Sci USA. 2012;109:14574–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu LL, Tourkova I, Yuen T, Robinson LJ, Bian Z, Zaidi M, et al. Blocking FSH action attenuates osteoclastogenesis. Biochem Biophys Res Commun. 2012;422:54–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiong J, Kang SS, Wang M, Wang Z, Xia Y, Liao J, et al. FSH and ApoE4 contribute to Alzheimer’s disease-like pathogenesis via C/EBPbeta/delta-secretase in female mice. Nat Commun. 2023;14:6577.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryu V, Gumerova A, Korkmaz F, Kang SS, Katsel P, Miyashita S, et al. Brain atlas for glycoprotein hormone receptors at single-transcript level. Elife. 2022;11:e79612.

  35. Webster SJ, Bachstetter AD, Van Eldik LJ. Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer’s disease. Alzheimers Res Ther. 2013;5:28.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Minkeviciene R, Ihalainen J, Malm T, Matilainen O, Keksa-Goldsteine V, Goldsteins G, et al. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J Neurochem. 2008;105:584–94.

    CAS  PubMed  Google Scholar 

  37. Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, et al. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci. 2023;1525:61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Palm R, Chang J, Blair J, Garcia-Mesa Y, Lee HG, Castellani RJ, et al. Down-regulation of serum gonadotropins but not estrogen replacement improves cognition in aged-ovariectomized 3xTg AD female mice. J Neurochem. 2014;130:115–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Casadesus G, Milliken EL, Webber KM, Bowen RL, Lei Z, Rao CV, et al. Increases in luteinizing hormone are associated with declines in cognitive performance. Mol Cell Endocrinol. 2007;269:107–11.

    CAS  PubMed  Google Scholar 

  40. Berry A, Tomidokoro Y, Ghiso J, Thornton J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-beta levels in female rats. Horm Behav. 2008;54:143–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sims S, Barak O, Ryu V, Miyashita S, Kannangara H, Korkmaz F, et al. Absent LH signaling rescues the anxiety phenotype in aging female mice. Mol Psychiatry. 2023;28:3324–31.

    PubMed  Google Scholar 

  42. Naz MSG, Rahnemaei FA, Tehrani FR, Sayehmiri F, Ghasemi V, Banaei M, et al. Possible cognition changes in women with polycystic ovary syndrome: a narrative review. Obstet Gynecol Sci. 2023;66:347–63.

    PubMed  PubMed Central  Google Scholar 

  43. Karamitrou EK, Anagnostis P, Vaitsi K, Athanasiadis L, Goulis DG. Early menopause and premature ovarian insufficiency are associated with increased risk of dementia: a systematic review and meta-analysis of observational studies. Maturitas. 2023;176:107792.

    CAS  PubMed  Google Scholar 

  44. Slopien R. Neurological health and premature ovarian insufficiency - pathogenesis and clinical management. Prz Menopauzalny. 2018;17:120–3.

    PubMed  PubMed Central  Google Scholar 

  45. Pearre DC, Bota DA. Chemotherapy-related cognitive dysfunction and effects on quality of life in gynecologic cancer patients. Expert Rev Qual Life Cancer Care. 2018;3:19–26.

    PubMed  PubMed Central  Google Scholar 

  46. Gera S, Kuo TC, Gumerova AA, Korkmaz F, Sant D, DeMambro V, et al. FSH-blocking therapeutic for osteoporosis. Elife. 2022;11:e78022.

  47. Rojekar S, Pallapati AR, Gimenez-Roig J, Korkmaz F, Sultana F, Sant D, et al. Development and biophysical characterization of a humanized FSH-blocking monoclonal antibody therapeutic formulated at an ultra-high concentration. Elife. 2023;12:e88898.

  48. Nerattini M, Rubino F, Jett S, Andy C, Boneu C, Zarate C, et al. Elevated gonadotropin levels are associated with increased biomarker risk of Alzheimer’s disease in midlife women. Front. Dement. 2023;2:1303256.

  49. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    CAS  PubMed  Google Scholar 

  50. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work at Icahn School of Medicine at Mount Sinai carried at the Center for Translational Medicine and Pharmacology was supported by R01 AG071870, R01 AG074092 and U01 AG073148 to TY and MZ; U19 AG060917 to CJR and MZ; and R01 DK113627 to MZ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T Yuen, M Zaidi. Supervision: T Yuen, T Frolinger, M Zaidi. Scientific input: K Goosens, CJ Rosen, K Ye, V Ryu. Neurobehavioral studies: T Frolinger, F Korkmaz, S Sims, A Liu, R Chen. ELISA: F Korkmaz, A Gumerova. qPCR: A Pallapati, G Burganova. Data analysis: F Korkmaz, F Sultana, V Laurencin, L Cullen, S Rojekar, D Lizneva, T Yuen. Animal maintenance: F Korkmaz, F Sen, U Cheliadinova, D Vasilyeva. Methodology: T Frolinger, T Yuen. Quality assurance: G Pevnev, A Macdonald, M Saxena, O Barak. Manuscript preparation: F Korkmaz, T Yuen, T Frolinger, M Zaidi. Funding acquisition: CJ Rosen, T Yuen, M Zaidi.

Corresponding authors

Correspondence to Tony Yuen, Tal Frolinger or Mone Zaidi.

Ethics declarations

Competing interests

MZ is inventor on issued and pending patients on the use of FSH as a target for osteoporosis, obesity and Alzheimer’s disease. MZ, SR and TY are inventors on a pending patent on an FSH antibody that is formulated at ultrahigh concentration. The patents will be held by the Icahn School of Medicine at Mount Sinai, and MZ, SR and TY would be recipient of royalties, per institutional policy. The other authors declare no competing financial interests.

Ethics approval

All methods were performed in accordance with the relevant guidelines and regulations. Animal handling and use were compliant with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals, and approved by the Icahn School of Medicine at Mount Sinai Institutional Animal Care and Use Committee (IACUC Approval # 2018-0047).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, F., Sims, S., Sen, F. et al. Gene–dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer’s mice. Mol Psychiatry 30, 2119–2126 (2025). https://doi.org/10.1038/s41380-024-02824-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02824-x

This article is cited by

Search

Quick links