Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale proteomic analyses of incident Alzheimer’s disease reveal new pathophysiological insights and potential therapeutic targets

Abstract

Pathophysiological evolutions in early-stage Alzheimer’s disease (AD) are not well understood. We used data of 2923 Olink plasma proteins from 51,296 non-demented middle-aged adults. During a follow-up of 15 years, 689 incident AD cases occurred. Cox-proportional hazard models were applied to identify AD-associated proteins in different time intervals. Through linking to protein categories, changing sequences of protein z-scores can reflect pathophysiological evolutions. Mendelian randomization using blood protein quantitative loci data provided causal evidence for potentially druggable proteins. We identified 48 AD-related proteins, with CEND1, GFAP, NEFL, and SYT1 being top hits in both near-term (HR:1.15–1.77; P:9.11 × 10−65–2.78 × 10−6) and long-term AD risk (HR:1.20-1.54; P:2.43 × 10−21–3.95 × 10−6). These four proteins increased 15 years before AD diagnosis and progressively escalated, indicating early and sustained dysfunction in synapse and neurons. Proteins related to extracellular matrix organization, apoptosis, innate immunity, coagulation, and lipid homeostasis showed early disturbances, followed by malfunctions in metabolism, adaptive immunity, and final synaptic and neuronal loss. Combining CEND1, GFAP, NEFL, and SYT1 with demographics generated desirable predictions for 10-year (AUC = 0.901) and over-10-year AD (AUC = 0.864), comparable to full model. Mendelian randomization supports potential genetic link between CEND1, SYT1, and AD as outcome. Our findings highlight the importance of exploring the pathophysiological evolutions in early stages of AD, which is essential for the development of early biomarkers and precision therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study overview.
Fig. 2: Proteins associated with incident AD and their functional highlights.
Fig. 3: Temporal evolutions of plasma proteins before diagnosis of AD and their trajectory clustering.
Fig. 4: Associations between AD-related proteins and brain structures.
Fig. 5: ROC curves for the prediction of future AD.

Similar content being viewed by others

Data availability

The main data, including the individual-level phenotypic and genetic data used in this study were accessed from the UK Biobank under the application number 19542 and are available through UKB (https://www.ukbiobank.ac.uk/).

Code availability

Analyses were performed using R software (v4.3.1). We considered the two-tailed P < 0.05 significant. Code is available from the corresponding author by request.

References

  1. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, et al. Proteomic landscape of Alzheimer’s Disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80:1347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hampel H, Cummings J, Blennow K, Gao P, Jack CR Jr, Vergallo A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol. 2021;17:580–9.

    Article  PubMed  Google Scholar 

  5. Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature. 2023;622:329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walker KA, Chen J, Zhang J, Fornage M, Yang Y, Zhou L, et al. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat Aging. 2021;1:473–89.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Higginbotham L, Ping L, Dammer EB, Duong DM, Zhou M, Gearing M, et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Science Advances. 2020;6:eaaz9360%L 9361.

    Article  Google Scholar 

  8. Johnson ECB, Bian S, Haque RU, Carter EK, Watson CM, Gordon BA, et al. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease. Nat Med. 2023;29:1979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, et al. Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression. Neuron. 2020;105:975–991 e977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson ECB, Carter EK, Dammer EB, Duong DM, Gerasimov ES, Liu Y, et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci. 2022;25:213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Zhou X, Ip FC, Chan P, Chen Y, Lai NCH, et al. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging. Alzheimers Dement. 2022;18:88–102.

    Article  CAS  PubMed  Google Scholar 

  13. Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15:eadf5681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka T, Lavery R, Varma V, Fantoni G, Colpo M, Thambisetty M. et al. Plasma proteomic signatures predict dementia and cognitive impairment. Alzheimers Dement (N Y.). 2020;6:e12018.

    Article  PubMed  Google Scholar 

  15. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain. 2006;129:3042–50.

    Article  CAS  PubMed  Google Scholar 

  16. de Sousa Maciel I, Piironen A-K, Afonin AM, Ivanova M, Alatalo A, Jadhav KK, et al. Plasma proteomics discovery of mental health risk biomarkers in adolescents. Nature Mental Health. 2023;1:596–605.

    Article  Google Scholar 

  17. Consortium TG, Aguet F, Anand S, Ardlie KG, Gabriel S, Getz GA, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.

    Article  Google Scholar 

  18. Milà-Alomà M, Ashton NJ, Shekari M, Salvadó G, Ortiz-Romero P, Montoliu-Gaya L, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat Med. 2022;28:1797–801.

    PubMed  PubMed Central  Google Scholar 

  19. Mila-Aloma M, Salvado G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. 2020;16:1358–71.

    Article  PubMed  Google Scholar 

  20. Guo Y, Shen XN, Wang HF, Chen SD, Zhang YR, Chen SF, et al. The dynamics of plasma biomarkers across the Alzheimer’s continuum. Alzheimers Res Ther. 2023;15:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johansson C, Thordardottir S, Laffita-Mesa J, Rodriguez-Vieitez E, Zetterberg H, Blennow K, et al. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain. 2023;146:1132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Del Campo M, Peeters CFW, Johnson ECB, Vermunt L, Hok AHYS, van Nee M, et al. CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. Nat Aging. 2022;2:1040–53.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ikonomovic MD, Abrahamson EE, Isanski BA, Wuu J, Mufson EJ, DeKosky ST. Superior frontal cortex cholinergic axon density in mild cognitive impairment and early Alzheimer disease. Arch Neurol. 2007;64:1312–7.

    Article  PubMed  Google Scholar 

  24. Chang YT, Huang CW, Chen NC, Lin KJ, Huang SH, Chang WN, et al. Hippocampal Amyloid Burden with Downstream Fusiform Gyrus Atrophy Correlate with Face Matching Task Scores in Early Stage Alzheimer’s Disease. Front Aging Neurosci. 2016;8:145.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Minei M, et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain. 2022;145:3776–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. medRxiv 2022: 2022.2003.2003.22271360.

  28. Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. 2021;78:1471–83.

    Article  PubMed  Google Scholar 

  29. Cicognola C, Janelidze S, Hertze J, Zetterberg H, Blennow K, Mattsson-Carlgren N, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther. 2021;13:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Wolf F, Ghanbari M, Licher S, McRae-McKee K, Gras L, Weverling GJ, et al. Plasma tau, neurofilament light chain and amyloid-beta levels and risk of dementia; a population-based cohort study. Brain. 2020;143:1220–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo Y, You J, Zhang Y, Liu WS, Huang YY, Zhang YR, et al. Plasma proteomic profiles predict future dementia in healthy adults. Nat Aging. 2024;4:247–60.

    Article  CAS  PubMed  Google Scholar 

  32. Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun. 2021;3:fcab261.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wingo AP, Dammer EB, Breen MS, Logsdon BA, Duong DM, Troncosco JC, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun. 2019;10:1619.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson OT, Gunnarsdottir K, et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature. 2023;622:348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dammer EB, Ping L, Duong DM, Modeste ES, Seyfried NT, Lah JJ, et al. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res Ther. 2022;14:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Livingston G, Huntley J, Liu KY, Costafreda SG, Selbaek G, Alladi S, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. 2024;404:572–628.

    Article  PubMed  Google Scholar 

  37. Rosenzweig N, Kleemann KL, Rust T, Carpenter M, Grucci M, Aronchik M, et al. Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer’s disease. Nat Med. 2024;30:2990–3003.

  38. Brinkmalm A, Larsson V, Janelidze S, Zetterberg H, Blennow K, Hansson O. Cerebrospinal fluid levels of SNAP-25 and SYT1 in Alzheimer’s and Parkinson’s disease. Alzheimer’s & Dementia. 2020;16:e044515.

    Article  Google Scholar 

  39. Xie W, Guo D, Li J, Yue L, Kang Q, Chen G, et al. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in Alzheimer’s disease. Cell Death Differ. 2022;29:2417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity. 2022;55:2236–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Obulesu M, Lakshmi MJ. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 2014;39:2301–12.

    Article  CAS  PubMed  Google Scholar 

  42. Gunturkun O, Strockens F, Ocklenburg S. Brain Lateralization: A Comparative Perspective. Physiol Rev. 2020;100:1019–63.

    Article  PubMed  Google Scholar 

  43. Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron. 2024;112:1222–34.

    Article  CAS  PubMed  Google Scholar 

  44. Mesulam MM. Temporopolar regions of the human brain. Brain. 2023;146:20–41.

    Article  PubMed  Google Scholar 

  45. Banks SJ, Zhuang X, Bayram E, Bird C, Cordes D, Caldwell JZK, et al. Default Mode Network Lateralization and Memory in Healthy Aging and Alzheimer’s Disease. J Alzheimers Dis. 2018;66:1223–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jack CR Jr, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 2024;20:5143–69.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer’s Disease Neuroimaging I. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Öhrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Hansson O, Zetterberg H, et al. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimers Res Ther. 2016;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. T P, Katta B, Lulu SS, Sundararajan V Gene expression analysis reveals GRIN1, SYT1, and SYN2 as significant therapeutic targets and drug repurposing reveals lorazepam and lorediplon as potent inhibitors to manage Alzheimer’s disease. J Biomol Struct Dyn. 2023;1–22.

  50. Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simonet C, Bestwick J, Jitlal M, Waters S, Ben-Joseph A, Marshall CR, et al. Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population. JAMA Neurol. 2022;79:359–69.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Williams SA, Kivimaki M, Langenberg C, Hingorani AD, Casas JP, Bouchard C, et al. Plasma protein patterns as comprehensive indicators of health. Nat Med. 2019;25:1851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oh HS, Rutledge J, Nachun D, Pálovics R, Abiose O, Moran-Losada P, et al. Organ aging signatures in the plasma proteome track health and disease. Nature. 2023;624:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, et al. Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol Cell Proteomics. 2021;20:100168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141.

    CAS  PubMed  Google Scholar 

  56. Yu G. Gene Ontology Semantic Similarity Analysis Using GOSemSim. Methods Mol Biol. 2020;2117:207–15.

    Article  CAS  PubMed  Google Scholar 

  57. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics. 2010;26:976–8.

    Article  CAS  PubMed  Google Scholar 

  58. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lindbohm JV, Mars N, Walker KA, Singh-Manoux A, Livingston G, Brunner EJ, et al. Plasma proteins, cognitive decline, and 20-year risk of dementia in the Whitehall II and Atherosclerosis Risk in Communities studies. Alzheimers Dement. 2022;18:612–24.

    Article  CAS  PubMed  Google Scholar 

  60. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med. 2019;25:1843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell. 2022;185:5028–5039.e5013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  64. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016;19:1523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage. 2018;166:400–24.

    Article  PubMed  Google Scholar 

  66. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  67. Ganna A, Ingelsson E. 5 year mortality predictors in 498,103 UK Biobank participants: a prospective population-based study. Lancet. 2015;386:533–40.

    Article  PubMed  Google Scholar 

  68. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  69. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018; 7.

  70. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB. Abundant associations with gene expression complicate GWAS follow-up. Nat Genet. 2019;51:768–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sakaue S, Okada Y. GREP: genome for REPositioning drugs. Bioinformatics. 2019;35:3821–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Key R&D Program of China 2023YFC3605400. Science and Technology Innovation 2030 Major Projects 2022ZD0211600. National Natural Science Foundation of China 82071201, 82271471, 82472055, 82071997, 92249305, 82402381, and 8247070942. Shanghai Municipal Science and Technology Major Project 2018SHZDZX01 and 2023SHZDZX02. Research Start-up Fund of Huashan Hospital 2022QD002. Excellence 2025 Talent Cultivation Program at Fudan University 3030277001. Program of Shanghai Academic Research Leader 23XD1420400. Shanghai Rising-Star Program 21QA1408700. Shanghai Municipal Science and Technology Major Project 2023SHZDZX02. Shanghai Municipal Health Commission Emerging Interdisciplinary Research Project 2022JC014. National Postdoctoral Program for Innovative Talents (BX20230087 to S.-D.C., BX20230089 to Y.-R.Z., and BX20240073 to Y.G.), Shanghai Pujiang Talent Program (23PJD006 to J.Y.). We want to thank all the participants and researchers from the UK Biobank.

Author information

Authors and Affiliations

Contributions

Conceptualization: JTY, WC. Methodology: JTY, WC, YZ, LBW, JY, YG, YH, XYH, YL. Investigation: JTY, WC, JFF, QD. Visualization: YZ, YG, YH, JY. Supervision: JTY, WC, JFF, QD. Writing—original draft: YZ, YG, YH, JY. Writing—review & editing: All authors

Corresponding authors

Correspondence to Wei Cheng or JinTai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The study was conducted following the Declaration of Helsinki. The UK Biobank has research tissue bank approval from the North West Multi-Center Research Ethics Committee (11/NW/0382). Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, Y., He, Y. et al. Large-scale proteomic analyses of incident Alzheimer’s disease reveal new pathophysiological insights and potential therapeutic targets. Mol Psychiatry 30, 2347–2361 (2025). https://doi.org/10.1038/s41380-024-02840-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02840-x

This article is cited by

Search

Quick links