Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis

Abstract

Background/objectives

Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls.

Subjects/methods

We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls.

Results

Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ.

Conclusions

This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mTOR pathway.
Fig. 2: Whole brain volume.
Fig. 3: Gray matter volume.
Fig. 4: White matter volume.

Similar content being viewed by others

Data availability

Data used of the current study were reported in articles as cited in this paper.

References

  1. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.

    PubMed Central  PubMed  Google Scholar 

  2. Kostović I, Jovanov-Milosević N. The development of cerebral connections during the first 20-45 weeks’ gestation. Semin Fetal Neonatal Med. 2006;11:415–22.

    PubMed  Google Scholar 

  3. Gressens P. Mechanisms and disturbances of neuronal migration. Pediatr Res. 2000;48:725–30.

    CAS  PubMed  Google Scholar 

  4. Bae BI, Jayaraman D, Walsh CA. Genetic changes shaping the human brain. Dev Cell. 2015;32:423–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020;10:229.

    PubMed Central  PubMed  Google Scholar 

  6. Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.

    CAS  PubMed  Google Scholar 

  7. Amor DJ. Investigating the child with intellectual disability. J Paediatr Child Health. 2018;54:1154–8.

    PubMed  Google Scholar 

  8. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37:19–24.

    CAS  PubMed  Google Scholar 

  9. Veenstra-VanderWeele J, Blakely RD. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacol. 2012;37:196–212.

    CAS  Google Scholar 

  10. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014;7:28.

  13. Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neurosci. 2017;341:112–53.

    CAS  Google Scholar 

  14. Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84:275–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee DY. Roles of mTOR signaling in brain development. Exp Neurobiol. 2015;24:177–85.

    PubMed Central  PubMed  Google Scholar 

  16. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Nat Acad Sci USA. 2005;102:8573–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11:687–94.

    CAS  PubMed  Google Scholar 

  18. Liu W, Yu WM, Zhang J, Chan RJ, Loh ML, Zhang Z, et al. Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia. 2017;31:1415–22.

    CAS  PubMed  Google Scholar 

  19. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci. 2010;30:694–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chaste P, Betancur C, Gérard-Blanluet M, Bargiacchi A, Kuzbari S, Drunat S, et al. High-functioning autism spectrum disorder and fragile X syndrome: report of two affected sisters. Mol Autism. 2012;3:5.

    PubMed Central  PubMed  Google Scholar 

  21. Chisholm AK, Anderson V, Pride NA, Malarbi S, North KN, Payne JM. Social function and autism spectrum disorder in children and adults with neurofibromatosis type 1: a systematic review and meta-analysis. Neuropsychol Rev. 2018;28:317–40.

    PubMed  Google Scholar 

  22. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.

    CAS  PubMed  Google Scholar 

  23. Bruno JL, Romano D, Mazaika P, Lightbody AA, Hazlett HC, Piven J, et al. Longitudinal identification of clinically distinct neurophenotypes in young children with fragile X syndrome. Proc Natl Acad Sci USA. 2017;114:10767–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Garg S, Brooks A, Burns A, Burkitt-Wright E, Kerr B, Huson S, et al. Autism spectrum disorder and other neurobehavioural comorbidities in rare disorders of the Ras/MAPK pathway. Dev Med Child Neurol. 2017;59:544–9.

    PubMed  Google Scholar 

  25. Hansen-Kiss E, Beinkampen S, Adler B, Frazier T, Prior T, Erdman S, et al. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet. 2017;54:471–8.

    PubMed  Google Scholar 

  26. Payne JM, Haebich KH, MacKenzie R, Walsh KS, Hearps SJC, Coghill D, et al. Cognition, ADHD symptoms, and functional impairment in children and adolescents with neurofibromatosis type 1. J Atten Disord. 2021;25:1177–86.

    PubMed  Google Scholar 

  27. D’Agati E, Moavero R, Cerminara C, Curatolo P. Attention-deficit hyperactivity disorder (ADHD) and tuberous sclerosis complex. J Child Neurol. 2009;24:1282–7.

    PubMed  Google Scholar 

  28. Grefer M, Flory K, Cornish K, Hatton D, Roberts J. The emergence and stability of attention deficit hyperactivity disorder in boys with fragile X syndrome. J Iintellect Disabil Res. 2016;60:167–78.

    CAS  Google Scholar 

  29. Payne JM, Hearps SJC, Walsh KS, Paltin I, Barton B, Ullrich NJ, et al. Reproducibility of cognitive endpoints in clinical trials: lessons from neurofibromatosis type 1. Ann Clin Transl Neurol. 2019;6:2555–65.

    PubMed Central  PubMed  Google Scholar 

  30. van Eeghen AM, Black ME, Pulsifer MB, Kwiatkowski DJ, Thiele EA. Genotype and cognitive phenotype of patients with tuberous sclerosis complex. Eur J Hum Genet. 2012;20:510–5.

    PubMed  Google Scholar 

  31. Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis. 2020;136:104740.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Santoro C, Bernardo P, Coppola A, Pugliese U, Cirillo M, Giugliano T, et al. Seizures in children with neurofibromatosis type 1: is neurofibromatosis type 1 enough? Ital J Pediatr. 2018;44:41.

    PubMed Central  PubMed  Google Scholar 

  33. Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J Neurosci. 2019;39:2762.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Payne JM, Moharir MD, Webster R, North KN. Brain structure and function in neurofibromatosis type 1: current concepts and future directions. J Neurol Neurosurg Psychiatry. 2010;81:304–9.

    PubMed  Google Scholar 

  35. Schapiro MB, Murphy DG, Hagerman RJ, Azari NP, Alexander GE, Miezejeski CM, et al. Adult fragile X syndrome: neuropsychology, brain anatomy, and metabolism. Am J Med Genet. 1995;60:480–93.

    CAS  PubMed  Google Scholar 

  36. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    PubMed Central  PubMed  Google Scholar 

  37. Hazlett HC, Poe MD, Lightbody AA, Styner M, MacFall JR, Reiss AL, et al. Trajectories of early brain volume development in fragile X syndrome and autism. J Am Acad Child Adolesc Psychiatry. 2012;51:921–33.

    PubMed Central  PubMed  Google Scholar 

  38. Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Ed Stat. 1981;6:107–28.

    Google Scholar 

  39. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum; 1988.

  40. Borenstein M. Introduction to meta-analysis. Chichester, U.K.: John Wiley & Sons; 2009.

  41. Duval S, Tweedie R. Trim and Fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    CAS  PubMed  Google Scholar 

  42. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    PubMed Central  PubMed  Google Scholar 

  43. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013, https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp.

  44. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    PubMed Central  PubMed  Google Scholar 

  45. Cutting LE, Koth CW, Burnette CP, Abrams MT, Kaufmann WE, Denckla MB. Relationship of cognitive functioning, whole brain volumes, and T2-weighted hyperintensities in neurofibromatosis-1. J Child Neurol. 2000;15:157–60.

    CAS  PubMed  Google Scholar 

  46. Siqueiros-Sanchez M, Rai B, Chowdhury S, Reiss AL, Green T. Syndrome-specific neuroanatomical phenotypes in girls With Turner and Noonan syndromes. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024;9:146–55.

    PubMed  Google Scholar 

  47. Wilson LB, Tregellas JR, Hagerman RJ, Rogers SJ, Rojas DC. A voxel-based morphometry comparison of regional gray matter between fragile X syndrome and autism. Psychiatry Res. 2009;174:138–45.

    PubMed Central  PubMed  Google Scholar 

  48. Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-Branco M. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp. 2014;35:89–106.

    PubMed  Google Scholar 

  49. Lee CH, Bartholomay KL, Marzelli MJ, Miller JG, Bruno JL, Lightbody AA, et al. Neuroanatomical profile of young females with Fragile X syndrome: a voxel-based morphometry analysis. Cereb Cortex. 2021;32:2310–20.

    PubMed Central  Google Scholar 

  50. Barkovich MJ, Tan CH, Nillo RM, Li Y, Xu D, Glastonbury CM, et al. Abnormal morphology of select cortical and subcortical regions in neurofibromatosis type 1. Radiology. 2018;289:499–508.

    PubMed  Google Scholar 

  51. Greenwood RS, Tupler LA, Whitt JK, Buu A, Dombeck CB, Harp AG, et al. Brain morphometry, T2-weighted hyperintensities, and IQ in children with neurofibromatosis type 1. Arch Neurol. 2005;62:1904–8.

    PubMed  Google Scholar 

  52. Said SM, Yeh TL, Greenwood RS, Whitt JK, Tupler LA, Krishnan KR. MRI morphometric analysis and neuropsychological function in patients with neurofibromatosis. Neuroreport. 1996;7:1941–4.

    CAS  PubMed  Google Scholar 

  53. Eliez S, Blasey CM, Freund LS, Hastie T, Reiss AL. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain. 2001;124:1610–8.

    CAS  PubMed  Google Scholar 

  54. Hallahan BP, Craig MC, Toal F, Daly EM, Moore CJ, Ambikapathy A, et al. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. Neuroimage. 2011;54:16–24.

    PubMed  Google Scholar 

  55. Pride NA, Korgaonkar MS, Barton B, Payne JM, Vucic S, North KN. The genetic and neuroanatomical basis of social dysfunction: lessons from neurofibromatosis type 1. Hum Brain Mapp. 2014;35:2372–82.

    PubMed  Google Scholar 

  56. Huijbregts S, Loitfelder M, Rombouts SA, Swaab H, Verbist BM, Arkink EB, et al. Cerebral volumetric abnormalities in neurofibromatosis type 1: associations with parent ratings of social and attention problems, executive dysfunction, and autistic mannerisms. J Neurodev Disord. 2015;7:32.

    PubMed Central  PubMed  Google Scholar 

  57. Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–21.

    CAS  PubMed  Google Scholar 

  58. Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, et al. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacol. 2014;231:1063–78.

    CAS  Google Scholar 

  59. Payne JM. Bridging the gap between mouse behavior and human cognition in neurofibromatosis type 1. EBioMedicine. 2015;2:1290–1.

    PubMed Central  PubMed  Google Scholar 

  60. Chisholm AK, Haebich KM, Pride NA, Walsh KS, Lami F, Ure A, et al. Delineating the autistic phenotype in children with neurofibromatosis type 1. Mol Autism. 2022;13:3.

    PubMed Central  PubMed  Google Scholar 

  61. Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics. 2017;139:S194–S206.

    PubMed Central  PubMed  Google Scholar 

  62. Mitchell RA, Barton SM, Harvey AS, Ure AM, Williams K. Factors associated with autism spectrum disorder in children with tuberous sclerosis complex: a systematic review and meta-analysis. Dev Med Child Neurol. 2021;63:791–801.

    PubMed  Google Scholar 

  63. Ridler K, Bullmore ET, De Vries PJ, Suckling J, Barker GJ, Meara SJ, et al. Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol Med. 2001;31:1437–46.

    CAS  PubMed  Google Scholar 

  64. Ridler K, Suckling J, Higgins NJ, de Vries PJ, Stephenson CM, Bolton PF, et al. Neuroanatomical correlates of memory deficits in tuberous sclerosis complex. Cereb Cortex. 2007;17:261–71.

    CAS  PubMed  Google Scholar 

  65. Tye C, McEwen FS, Liang H, Underwood L, Woodhouse E, Barker ED, et al. Long-term cognitive outcomes in tuberous sclerosis complex. Dev Med Child Neurol. 2020;62:322–9.

    PubMed  Google Scholar 

  66. Johnson EM, Ishak AD, Naylor PE, Stevenson DA, Reiss AL, Green T. PTPN11 gain-of-function mutations affect the developing human brain, memory, and attention. Cereb Cortex. 2019;29:2915–23.

    PubMed  Google Scholar 

  67. Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron. 2007;54:245–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bartholomay KL, Lee CH, Bruno JL, Lightbody AA, Reiss AL. Closing the gender gap in fragile X syndrome: review on females with FXS and preliminary research findings. Brain Sci. 2019;9:11.

    PubMed Central  PubMed  Google Scholar 

  69. Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech. 2022;15:dmm049362.

  70. Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci. 2021;22:209–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005;15:1961–7.

    CAS  PubMed  Google Scholar 

  72. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135:549–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, et al. Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci. 2014;17:1583–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Scheffzek K, Ahmadian MR, Wiesmüller L, Kabsch W, Stege P, Schmitz F, et al. Structural analysis of the GAP-related domain from neurofibromin and its implications. Embo J. 1998;17:4313–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Guo HF, Tong J, Hannan F, Luo L, Zhong Y. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature. 2000;403:895–8.

    CAS  PubMed  Google Scholar 

  76. Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Hum Mol Genet. 2015;24:3518–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Anastasaki C, Gutmann DH. Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Hum Mol Genet. 2014;23:6712–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, et al. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry. 2015;20:1311–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Morris SM, Gutmann DH. A genotype-phenotype correlation for quantitative autistic trait burden in neurofibromatosis 1. Neurology. 2018;90:377–9.

    PubMed Central  PubMed  Google Scholar 

  80. Pigoni M, Uzquiano A, Paulsen B, Kedaigle AJ, Yang SM, Symvoulidis P, et al. Cell-type specific defects in PTEN-mutant cortical organoids converge on abnormal circuit activity. Hum Mol Genet. 2023;32:2773–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Li Y, Zhao X. Concise review: fragile X proteins in stem cell maintenance and differentiation. Stem Cells. 2014;32:1724–33.

    PubMed  Google Scholar 

  82. Wang Y, Kim E, Wang X, Novitch BG, Yoshikawa K, Chang LS, et al. ERK inhibition rescues defects in fate specification of Nf1-deficient neural Ppogenitors and brain abnormalities. Cell. 2012;150:816–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Andrews MG, Subramanian L, Kriegstein AR. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife. 2020;9:e58737.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16:595–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Dasgupta B. Gutmann DH. Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci. 2005;25:5584–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Cheng Y, Corbin JG, Levy RJ. Programmed cell death is impaired in the developing brain of FMR1 mutants. Dev Neurosci. 2013;35:347–58.

    CAS  PubMed  Google Scholar 

  87. Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev. 2015;95:1157–87.

    CAS  PubMed  Google Scholar 

  88. Kosodo Y, Huttner WB. Basal process and cell divisions of neural progenitors in the developing brain. Dev Growth Differ. 2009;51:251–61.

    PubMed  Google Scholar 

  89. Lafourcade CA, Lin TV, Feliciano DM, Zhang L, Hsieh LS, Bordey A. Rheb activation in subventricular zone progenitors leads to heterotopia, ectopic neuronal differentiation, and rapamycin-sensitive olfactory micronodules and dendrite hypertrophy of newborn neurons. J Neurosci. 2013;33:2419–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Pride N, Payne JM, Webster R, Shores EA, Rae C, North KN. Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1. J Child Neurol. 2010;25:834–41.

    PubMed  Google Scholar 

  91. Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, et al. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. 2010;13:163–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Piper M, Lee AC, van Horck FP, McNeilly H, Lu TB, Harris WA, et al. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Dev. 2015;10:3.

    PubMed Central  PubMed  Google Scholar 

  93. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, et al. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 2008;22:2485–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kumar V, Zhang MZ, Swank MW, Kunz J, Wu GY. Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signaling pathways. J Neurosci. 2005;25:11288.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.

    PubMed Central  PubMed  Google Scholar 

  96. He Z, Maynard A, Jain A, Gerber T, Petri R, Lin HC, et al. Lineage recording in human cerebral organoids. Nat Methods. 2022;19:90–9.

    PubMed  Google Scholar 

  97. Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nature Med. 2018;24:1568–78.

    CAS  PubMed  Google Scholar 

  98. Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo A, et al. Autist genes converge on asynchronous development of shared neuron clases. Nature. 2022;602:268–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Villa CE, Cheroni C, Dotter CP, López-Tóbon A, Oliveira B, Sacco R, et al. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep. 2022;39:110615.

    CAS  PubMed  Google Scholar 

  100. Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhang W, Ma L, Yang M, Shao Q, Xu J, Lu Z, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev. 2020;34:580–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Dang LT, Vaid S, Lin G, Swaminathan P, Safran J, Loughman A, et al. STRADA-mutant human cortical organoids model megalencephaly and exhibit delayed neuronal differentiation. Dev Neurobiol. 2021;81:696–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell. 2017;20:385–96.e3.

    PubMed  Google Scholar 

  104. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Primers. 2017;3:17065.

    PubMed  Google Scholar 

  105. Cornish K, Cole V, Longhi E, Karmiloff-Smith A, Scerif G. Mapping developmental trajectories of attention and working memory in fragile X syndrome: developmental freeze or developmental change? Dev Psychopathol. 2013;25:365–76.

    PubMed  Google Scholar 

  106. Summers MA, Quinlan KG, Payne JM, Little DG, North KN, Schindeler A. Skeletal muscle and motor deficits in Neurofibromatosis Type 1. J Musculoskelet Neuronal Interact. 2015;15:161–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Hyman SL, Shores EA, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.

    PubMed  Google Scholar 

  108. Mautner VF, Kluwe L, Thakker SD, Leark RA. Treatment of ADHD in neurofibromatosis type 1. Dev Med Child Neurol. 2002;44:164–70.

    PubMed  Google Scholar 

  109. Payne JM, Hyman SL, Shores EA, North KN. Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behavior. Child Neuropsychol. 2011;17:313–29.

    PubMed  Google Scholar 

  110. Garg S, Green J, Leadbitter K, Emsley R, Lehtonen A, Evans DG, et al. Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics. 2013;132:e1642–e8.

    PubMed  Google Scholar 

  111. Green T, Naylor PE, Davies W. Attention deficit hyperactivity disorder (ADHD) in phenotypically similar neurogenetic conditions: Turner syndrome and the RASopathies. J Neurodev Disord. 2017;9:25.

    PubMed Central  PubMed  Google Scholar 

  112. Ciaccio C, Saletti V, D’Arrigo S, Esposito S, Alfei E, Moroni I, et al. Clinical spectrum of PTEN mutation in pediatric patients. A bicenter experience. Eur J Med Genet. 2019;62:103596.

    PubMed  Google Scholar 

  113. Joinson C, O’Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med. 2003;33:335–44.

    CAS  PubMed  Google Scholar 

  114. Henske EP, Jóźwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.

    PubMed  Google Scholar 

  115. Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA. Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology. 2011;76:981–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Cohen JD, Nichols T, Brignone L, Hall SS, Reiss AL. Insular volume reduction in fragile X syndrome. Int J Dev Neurosci. 2011;29:489–94.

    PubMed Central  PubMed  Google Scholar 

  117. Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O’Hara R, et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol. 2008;63:40–51.

    PubMed Central  PubMed  Google Scholar 

  118. Lee AD, Leow AD, Lu A, Reiss AL, Hall S, Chiang MC, et al. 3D pattern of brain abnormalities in Fragile X syndrome visualized using tensor-based morphometry. Neuroimage. 2007;34:924–38.

    PubMed  Google Scholar 

  119. Baudou E, Nemmi F, Biotteau M, Maziero S, Assaiante C, Cignetti F, et al. Are morphological and structural MRI characteristics related to specific cognitive impairments in neurofibromatosis type 1 (NF1) children? Eur J Paediatr Neurol. 2020;28:89–100.

    PubMed  Google Scholar 

  120. Karlsgodt KH, Rosser T, Lutkenhoff ES, Cannon TD, Silva A, Bearden CE. Alterations in white matter microstructure in neurofibromatosis-1. PLoS ONE. 2012;7:e47854.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Moore BD 3rd, Slopis JM, Jackson EF, De Winter AE, Leeds NE. Brain volume in children with neurofibromatosis type 1: relation to neuropsychological status. Neurology. 2000;54:914–20.

    PubMed  Google Scholar 

  122. Violante IR, Ribeiro MJ, Silva ED, Castelo-Branco M. Gyrification, cortical and subcortical morphometry in neurofibromatosis type 1: An uneven profile of developmental abnormalities. J Neurodev Disord. 2013;5:3.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

JMP is funded by a Murdoch Children’s Research Institute Clinician-Scientist Fellowship. DRH is supported by a Discovery Early Career Researcher Award (DE160100042). SV is supported by the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), funded by the Novo Nordisk Foundation grant NNF21CC0073719. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JMP and KMH had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the analysis. All authors approved the final version before submission. Study concept and design: JMP, DRH. Acquisition, of data: JMP, EG, KMH, RM, AM. Interpretation of data: JMP, KMH, RM, KB, EG, PJL, AM, SV, GB, KNN, DRH. Drafting of manuscript: JMP, EG. Critical revision of the manuscript for important intellectual content: KMH, RM, KB, PJL, AM, SV, GB, KNN, DRH. Statistical analysis: KMH, EG. Study supervision: JMP, DRH. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding author

Correspondence to Jonathan M. Payne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, J.M., Haebich, K.M., Mitchell, R. et al. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 30, 1676–1688 (2025). https://doi.org/10.1038/s41380-024-02863-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02863-4

Search

Quick links