Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rightward brain structural asymmetry in young children with autism

Abstract

To understand the neural mechanism of autism spectrum disorder (ASD) and developmental delay/intellectual disability (DD/ID) that can be associated with ASD, it is important to investigate individuals at an early stage with brain, behavioural and also genetic measures, but such research is still lacking. Here, using the cross-sectional sMRI data of 1030 children under 8 years old, we employed developmental normative models to investigate the atypical development of gray matter volume (GMV) asymmetry in individuals with ASD without DD/ID, ASD with DD/ID and individuals with only DD/ID, and their associations with behavioral and clinical measures and transcription profiles. By extracting the individual deviations of patients from the typical controls with normative models, we found a commonly abnormal pattern of GMV asymmetry across all ASD children: more rightward laterality in the inferior parietal lobe and precentral gyrus, and higher individual variability in the temporal pole. Specifically, ASD with DD/ID children showed a severer and more extensive abnormal pattern in GMV asymmetry deviation values, which was linked with both ASD symptoms and verbal IQ. The abnormal pattern of ASD without DD/ID children showed higher and more extensive individual variability, which was linked with ASD symptoms only. DD/ID children showed no significant differences from healthy population in asymmetry. Lastly, the GMV laterality patterns of all patient groups were significantly associated with both shared and unique gene expression profiles. Our findings provide evidence for rightward GMV asymmetry of some cortical regions in young ASD children (1–7 years) in a large sample (1030 cases), show that these asymmetries are related to ASD symptoms, and identify genes that are significantly associated with these differences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the multi-scale cascade.
Fig. 2: The GMV asymmetry deviations in the three patient groups.
Fig. 3: Comorbidities between patient groups.
Fig. 4: The identified canonical modes linking GMV asymmetry deviations and behavioural performance in ASD children without DD/ID and ASD children with DD/ID.
Fig. 5: Associations characterized by interregional similarities between gene expression profiles and GMV asymmetry deviations of patient groups.
Fig. 6: Functional enrichment of GMV asymmetry-related multiple gene lists from ASD children with DD, ASD children without DD and children with DD only.

Similar content being viewed by others

Data availability

Access to the identified participant research data must be approved by the research ethics board on a case-by-case basis, please contact the corresponding authors (feili@shsmu.edu.cn, mcao@fudan.edu.cn) for assistance in data access request.

Code availability

The code for spatial autocorrelation-preserving permutation test is available at (https://github.com/frantisekvasa/rotate_parcellation) (version 3, June 2022). All home developed codes will be given on request.

References

  1. Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatr Assoc. 2013;21:591–643.

    Google Scholar 

  2. Lombardo MV, Lai M-C, Baron-Cohen S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol Psychiatry. 2019;24:1435–50.

    PubMed  PubMed Central  Google Scholar 

  3. Li H-H, Feng J-Y, Wang B, Zhang Y, Wang C-X, Jia F-Y. Comparison of the children neuropsychological and behavior scale and the Griffiths mental development scales when assessing the development of children with autism. Psychol Res Behav Manag. 2019;12:973–81.

    PubMed  PubMed Central  Google Scholar 

  4. McDonald NM, Senturk D, Scheffler A, Brian JA, Carver LJ, Charman T, et al. Developmental trajectories of infants with multiplex family risk for autism: a baby siblings research consortium study. JAMA Neurol. 2020;77:73–81.

    PubMed  Google Scholar 

  5. Srour M, Shevell M. Genetics and the investigation of developmental delay/intellectual disability. Arch Dis Child. 2014;99:386–9.

    PubMed  Google Scholar 

  6. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Practice parameter: evaluation of the child with global developmental delay [RETIRED]: report of the quality standards subcommittee of the american academy of neurology and the practice committee of the child neurology society. Neurology. 2003;60:367–80.

    PubMed  CAS  Google Scholar 

  7. Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD living Biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24:88–107.

    PubMed  Google Scholar 

  8. Lombardo MV, Pramparo T, Gazestani V, Warrier V, Bethlehem RA, Carter Barnes C, et al. Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes. Nat Neurosci. 2018;21:1680–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Courchesne E, Gazestani VH, Lewis NE. Prenatal origins of ASD: the when, what, and how of ASD development. Trends Neurosci. 2020;43:326–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Gazestani VH, Chiang AW, Courchesne E, Lewis NE. Autism genetics perturb prenatal neurodevelopment through a hierarchy of broadly-expressed and brain-specific genes. bioRxiv. 2020:2020.05. 23.112623.

  11. Hyman SL, Levy SE, Myers SM, Kuo DZ, Apkon S, Davidson LF, et al. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics. 2020;145:e20193447.

    PubMed  Google Scholar 

  12. Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci. 2018;19:123–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Cao M, Huang H, He Y. Developmental connectomics from infancy through early childhood. Trends Neurosci. 2017;40:494–506.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Brouwer RM, van Haren NE, Forti MD, van den Berg LH, Penninx BW, Falkai PG, et al. Dynamics of brain structure and its genetic architecture over the lifespan. Strukturelle und funktionelle Organisation des Gehirns; 2020.

  15. Gottesman II, Hanson DR. Human development: biological and genetic processes. Annu Rev Psychol. 2005;56:263–86.

    PubMed  Google Scholar 

  16. Parikshak NN, Gandal MJ, Geschwind DH. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet. 2015;16:441–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: a comparative perspective. Physiol Rev. 2020;100:1019–63.

    PubMed  Google Scholar 

  18. Wang J, Ma S, Yu P, He X. Evolution of human brain left–right asymmetry: old genes with new functions. Mol Biol Evol. 2023;40:msad181.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Roe JM, Vidal-Pineiro D, Amlien IK, Pan M, Sneve MH, de Schotten MT, et al. Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. Elife. 2023;12:e84685.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Carrion-Castillo A, Pepe A, Kong X-Z, Fisher SE, Mazoyer B, Tzourio-Mazoyer N, et al. Genetic effects on planum temporale asymmetry and their limited relevance to neurodevelopmental disorders, intelligence or educational attainment. Cortex. 2020;124:137–53.

    PubMed  Google Scholar 

  21. Kong X-Z, Postema M, Schijven D, Castillo AC, Pepe A, Crivello F, et al. Large-scale phenomic and genomic analysis of brain asymmetrical skew. Cereb Cortex. 2021;31:4151–68.

    PubMed  PubMed Central  Google Scholar 

  22. Sha Z, Schijven D, Carrion-Castillo A, Joliot M, Mazoyer B, Fisher SE, et al. The genetic architecture of structural left–right asymmetry of the human brain. Nat Hum Behav. 2021;5:1226–39.

    PubMed  PubMed Central  Google Scholar 

  23. Ratnarajah N, Rifkin-Graboi A, Fortier MV, Chong YS, Kwek K, Saw S-M, et al. Structural connectivity asymmetry in the neonatal brain. Neuroimage. 2013;75:187–94.

    PubMed  Google Scholar 

  24. Scheinost D, Lacadie C, Vohr BR, Schneider KC, Papademetris X, Constable RT, et al. Cerebral lateralization is protective in the very prematurely born. Cereb Cortex. 2015;25:1858–66.

    PubMed  Google Scholar 

  25. Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex. 2012;22:13–25.

    PubMed  Google Scholar 

  26. Kasprian G, Langs G, Brugger PC, Bittner M, Weber M, Arantes M, et al. The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex. 2011;21:1076–83.

    PubMed  Google Scholar 

  27. Dubois J, Hertz-Pannier L, Cachia A, Mangin J-F, Le Bihan D, Dehaene-Lambertz G. Structural asymmetries in the infant language and sensori-motor networks. Cereb Cortex. 2009;19:414–23.

    PubMed  CAS  Google Scholar 

  28. Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, et al. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex. 2014;24:1289–1300.

    PubMed  CAS  Google Scholar 

  29. Koelkebeck K, Miyata J, Kubota M, Kohl W, Son S, Fukuyama H, et al. The contribution of cortical thickness and surface area to gray matter asymmetries in the healthy human brain. Hum Brain Mapp. 2014;35:6011–22.

    PubMed  PubMed Central  Google Scholar 

  30. Gracia-Tabuenca Z, Moreno MB, Barrios FA, Alcauter S. Hemispheric asymmetry and homotopy of resting state functional connectivity correlate with visuospatial abilities in school-age children. NeuroImage. 2018;174:441–8.

    PubMed  Google Scholar 

  31. Song JW, Mitchell PD, Kolasinski J, Ellen Grant P, Galaburda AM, Takahashi E. Asymmetry of white matter pathways in developing human brains. Cereb Cortex. 2015;25:2883–93.

    PubMed  Google Scholar 

  32. Shu N, Liu Y, Duan Y, Li K. Hemispheric asymmetry of human brain anatomical network revealed by diffusion tensor tractography. BioMed Res Int. 2015;2015:908917.

    PubMed  PubMed Central  Google Scholar 

  33. Zhong S, He Y, Shu H, Gong G. Developmental changes in topological asymmetry between hemispheric brain white matter networks from adolescence to young adulthood. Cereb Cortex. 2017;27:2560–70.

    PubMed  Google Scholar 

  34. Karolis VR, Corbetta M, Thiebaut de Schotten M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat Commun. 2019;10:1–9.

    CAS  Google Scholar 

  35. Kleinhans NM, Müller R-A, Cohen DN, Courchesne E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008;1221:115–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Joseph RM, Fricker Z, Fenoglio A, Lindgren KA, Knaus TA, Tager-Flusberg H. Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging Behav. 2014;8:60–72.

    PubMed  Google Scholar 

  37. Floris DL, Lai MC, Auer T, Lombardo MV, Ecker C, Chakrabarti B, et al. Atypically rightward cerebral asymmetry in male adults with autism stratifies individuals with and without language delay. Hum Brain Mapp. 2016;37:230–53.

    PubMed  Google Scholar 

  38. Lindell AK, Hudry K. Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders. Neuropsychol Rev. 2013;23:257–70.

    PubMed  Google Scholar 

  39. Postema MC, Van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun. 2019;10:1–12.

    Google Scholar 

  40. Dai Y, Liu Y, Zhang L, Ren T, Wang H, Yu J, et al. Shanghai autism early development: an integrative Chinese ASD cohort. Neurosci Bull. 2022;38:1603–7.

    PubMed  PubMed Central  Google Scholar 

  41. Zhao T, Liao X, Fonov VS, Wang Q, Men W, Wang Y, et al. Unbiased age-specific structural brain atlases for Chinese pediatric population. Neuroimage. 2019;189:55–70.

    PubMed  Google Scholar 

  42. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Google Scholar 

  43. Fortin J-P, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70.

    PubMed  Google Scholar 

  44. Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20.

    PubMed  Google Scholar 

  45. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    PubMed  Google Scholar 

  46. Rutherford S, Kia SM, Wolfers T, Fraza C, Zabihi M, Dinga R, et al. The normative modeling framework for computational psychiatry. Nature protocols. 2022;17:1711–34.

  47. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial autocorrelation. NeuroImage. 2020;220:117038.

    PubMed  Google Scholar 

  48. Váša F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vértes PE, et al. Adolescent tuning of association cortex in human structural brain networks. Cereb Cortex. 2018;28:281–94.

    PubMed  Google Scholar 

  49. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Arnatkevic̆iūtė A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353–67.

    PubMed  Google Scholar 

  51. Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat. 2010;2:97–106.

    Google Scholar 

  52. Romero-Garcia R, Seidlitz J, Whitaker KJ, Morgan SE, Fonagy P, Dolan RJ, et al. Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes. Biol Psychiatry. 2020;88:248–59.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Xie Y, Xu Z, Xia M, Liu J, Shou X, Cui Z, et al. Alterations in connectome dynamics in autism spectrum disorder: a harmonized mega-and meta-analysis study using the autism brain imaging data exchange dataset. Biol Psychiatry. 2022;91:945–55.

    PubMed  Google Scholar 

  54. Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci USA. 2019;116:9604–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Li J, Seidlitz J, Suckling J, Fan F, Ji G-J, Meng Y, et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun. 2021;12:1–14.

    Google Scholar 

  56. Yeo BT, Krienen FM, Chee MW, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage. 2014;88:212–27.

    PubMed  Google Scholar 

  57. Silk TJ, Rinehart N, Bradshaw JL, Tonge B, Egan G, O’Boyle MW, et al. Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: a functional MRI study. Am J Psychiatry. 2006;163:1440–3.

    PubMed  Google Scholar 

  58. Rolls ET, Deco G, Huang C-C, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex. 2023;33:3142–70.

    PubMed  Google Scholar 

  59. Yoshimura S, Sato W, Kochiyama T, Uono S, Sawada R, Kubota Y, et al. Gray matter volumes of early sensory regions are associated with individual differences in sensory processing. Hum Brain Mapp. 2017;38:6206–17.

    PubMed  PubMed Central  Google Scholar 

  60. Rolls ET, Deco G, Huang C-C, Feng J. Multiple cortical visual streams in humans. Cereb Cortex. 2023;33:3319–49.

    PubMed  Google Scholar 

  61. Rolls ET, Deco G, Huang C-C, Feng J. The human language effective connectome. NeuroImage. 2022;258:119352.

    PubMed  Google Scholar 

  62. Rolls ET. Brain computations and connectivity. Oxford University Press; 2023.

  63. Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y, et al. Longitudinal study of brain asymmetries in autism and developmental delays aged 2–5 years. Neuroscience. 2020;432:137–49.

    PubMed  CAS  Google Scholar 

  64. Sha Z, Van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, et al. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry. 2022;27:2114–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol Psychiatry. 2016;80:552–61.

    PubMed  PubMed Central  Google Scholar 

  66. Wolfers T, Beckmann CF, Hoogman M, Buitelaar JK, Franke B, Marquand AF. Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychol Med. 2020;50:314–23.

    PubMed  Google Scholar 

  67. Chien Y-L, Lin H-Y, Tung Y-H, Hwang T-J, Chen C-L, Wu C-S, et al. Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD. Mol Psychiatry. 2022;27:3262–71.

    PubMed  Google Scholar 

  68. Pigdon L, Willmott C, Reilly S, Conti-Ramsden G, Gaser C, Connelly A, et al. Grey matter volume in developmental speech and language disorder. Brain Structure Funct. 2019;224:3387–98.

    Google Scholar 

  69. Aglinskas A, Hartshorne JK, Anzellotti S. Contrastive machine learning reveals the structure of neuroanatomical variation within autism. Science. 2022;376:1070–4.

    PubMed  CAS  Google Scholar 

  70. Yamasaki S, Yamasue H, Abe O, Suga M, Yamada H, Inoue H, et al. Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol Psychiatry. 2010;68:1141–7.

    PubMed  Google Scholar 

  71. Li C, Ning M, Fang P, Xu H. Sex differences in structural brain asymmetry of children with autism spectrum disorders. J Integr Neurosci. 2021;20:331–40.

    PubMed  Google Scholar 

  72. Eisenberg IW, Wallace GL, Kenworthy L, Gotts SJ, Martin A. Insistence on sameness relates to increased covariance of gray matter structure in autism spectrum disorder. Mol Autism. 2015;6:1–12.

    Google Scholar 

  73. Rolls ET, Deco G, Huang C-C, Feng J. The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit versus explore. Cereb Cortex. 2023;34:bhad416.

    Google Scholar 

  74. Indika N-LR, Deutz NE, Engelen MP, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: a review of biochemical evidence for a hypothesis. Biochimie. 2021;184:143–57.

    PubMed  CAS  Google Scholar 

  75. van Sadelhoff JH, Perez Pardo P, Wu J, Garssen J, Van Bergenhenegouwen J, Hogenkamp A, et al. The gut-immune-brain axis in autism spectrum disorders; a focus on amino acids. Front Endocrinol. 2019;10:247.

    Google Scholar 

  76. Brito NH, Noble KG. Socioeconomic status and structural brain development. Front Neurosci. 2014;8:276.

    PubMed  PubMed Central  Google Scholar 

  77. Rakesh D, Whittle S. Socioeconomic status and the developing brain–a systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev. 2021;130:379–407.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (81901826, 61932008, 62076068, 82271627, 82125032, 81930095, 81761128035, 82202243, and 82204048), the Science and Technology Commission of Shanghai Municipality (23Y21900500, 19410713500 and 2018SHZDZX01), the Shanghai Municipal Commission of Health and Family Planning (GWVI-11.1-34,GWV-10.1-XK07, 2020CXJQ01, 2018YJRC03), the Shanghai Clinical Key Subject Construction Project (shslczdzk02902), the Shanghai Municipal Science and Technology Major Project [2021ZD0200800,No.2018SHZDZX01], Innovative research team of high-level local universities in Shanghai (SHSMU-ZDCX20211100), the Guangdong Key Project (2018B030335001), the Shanghai Municipal Commission of Health and Family Planning (20214Y0125), the National Key R&D Program of China (grant numbers 2018YFC1312900 and 2019YFA0709502), and the ZJ Lab, Shanghai Center for Brain Science and Brain-Inspired Technology and the 111 Project (grant number B18015).

Author information

Authors and Affiliations

Contributions

MC, FL and SG designed the study. YD, YL, YZ, LD, ZC contributed to the acquisition of research data. SG and MC conducted the data analysis. FL, MC, and SG provided the interpretation of results. MC and SG wrote the first draft of the manuscript. ETR and JF revised the manuscript.

Corresponding authors

Correspondence to Fei Li or Miao Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in compliance with the declaration of Helsinki, approved by the Ethics Committee of Xinhua Hospital affiliated with the Shanghai Jiao Tong University School of Medicine (XHEC-C-2019-076) and registered with ClinicalTrials.gov (NCT04358744). The legal guardian of all participants signed the written informed consent after detailed information notification.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Dai, Y., Rolls, E.T. et al. Rightward brain structural asymmetry in young children with autism. Mol Psychiatry 30, 2860–2870 (2025). https://doi.org/10.1038/s41380-025-02890-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02890-9

Search

Quick links