Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal evidence of mediodorsal thalamus-prefrontal circuit dysfunctions in clinical high-risk for psychosis: findings from a combined 7T fMRI, MRSI and sleep Hd-EEG study

Abstract

Deficits in mediodorsal thalamus-dorsolateral prefrontal cortex (MDT-DLPFC) resting-state functional magnetic resonance imaging (rs-fMRI) connectivity and prefrontal sleep spindles have been reported in chronic and early course schizophrenia. However, the presence of these alterations in clinical high-risk for psychosis (CHR), alongside their relationships with underlying neurotransmission and cognitive function, remains to be established. Thirty-one CHR and thirty-two HC underwent: 1) 7 T rs-fMRI; 2) 7 T magnetic resonance spectroscopy imaging (MRSI); and 3) sleep electroencephalography (EEG). Rs-fMRI connectivity was analyzed by seeding the whole thalamus (WT) and seven thalamic subsections. Spindle duration was computed across all EEG channels. GABA/creatine (Cr) and glutamate/Cr were calculated in DLPFC and MDT. Relative to HC, CHR showed WT-DLPFC hypoconnectivity (p-FDR = 0.001), especially involving MDT-DLPFC (p-FDR < 0.001) and reduced prefrontal spindle duration (t-stat = −2.64, p = 0.010), while no differences were found for MRSI neuro-metabolites. We then performed clustering analysis using rs-fMRI connectivity and spindle duration to identify CHR and HC subgroups and predict their working memory (WM) performance. A cluster with intact rs-fMRI and spindle duration included mostly HC (83.33% purity), while a cluster with both measures altered involved almost entirely CHR (91.66% purity) and showed worse WM performances. We also examined MRSI metabolites’ contribution to spindles and rs-fMRI connectivity with a within-group multivariable regression analysis. In HC, but not in CHR, MDT glutamate/Cr negatively predicted spindle duration and positively predicted MDT-DLPFC connectivity. Combined, these findings indicate that a multimodal neuroimaging approach can identify distinct thalamocortical dysfunctions in CHR individuals, thus informing future research aimed at developing personalized interventions in these individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In CHR, resting-state functional connectivity and sleep spindle duration were decreased compared to HC subjects.
Fig. 2: Clustering analyses showed that combined MDT-DLPFC connectivity and spindle deficits best differentiated CHR from HC and identified individuals with worst WM performance.
Fig. 3: In HC, but not in CHR individuals, MRSI metabolites significantly added to predicting rs-fMRI connectivity and spindle duration while considering age and medication status as covariates.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included in the main article and its supplementary materials. Additional details will be provided upon request by contacting the corresponding author.

References

  1. Ferrarelli F, Tononi G. Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res. 2017;180:36–43.

    Article  PubMed  Google Scholar 

  2. Danos P, Schmidt A, Baumann B, Bernstein H-G, Northoff G, Stauch R, et al. Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res. 2005;140:281–9.

    Article  PubMed  Google Scholar 

  3. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, et al. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry. 2002;159:59–65.

    Article  PubMed  Google Scholar 

  4. Woodward ND, Heckers S. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol Psychiatry. 2016;79:1016–25.

    Article  PubMed  Google Scholar 

  5. Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry. 2012;169:1092–9.

    Article  PubMed  Google Scholar 

  6. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24:3116–30.

    Article  PubMed  Google Scholar 

  7. Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan H-Y, Goldman AL, et al. Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology. 2012;37:499–507.

    Article  PubMed  Google Scholar 

  8. Uhlhaas PJ, Roux F, Singer W. Thalamocortical synchronization and cognition: implications for schizophrenia? Neuron. 2013;77:997–9.

    Article  CAS  PubMed  Google Scholar 

  9. Eryilmaz H, Tanner AS, Ho NF, Nitenson AZ, Silverstein NJ, Petruzzi LJ, et al. Disrupted working memory circuitry in schizophrenia: disentangling fMRI markers of core pathology vs other aspects of impaired performance. Neuropsychopharmacology. 2016;41:2411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandez LM, Lüthi A. Sleep spindles: mechanisms and functions. Physiol Rev. 2020;100:805–68.

    Article  PubMed  Google Scholar 

  11. Kozhemiako N, Wang J, Jiang C, Wang LA, Gai G, Zou K, et al. Non-rapid eye movement sleep and wake neurophysiology in schizophrenia. Elife. 2022;11:e76211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, et al. Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry. 2007;164:483–92.

    Article  PubMed  Google Scholar 

  13. Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, et al. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry. 2010;167:1339–48.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bagautdinova J, Mayeli A, Wilson JD, Donati FL, Colacot RM, Meyer N, et al. Sleep abnormalities in different clinical stages of psychosis: a systematic review and meta-analysis. JAMA Psychiatry. 2023;80:202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Manoach DS, Demanuele C, Wamsley EJ, Vangel M, Montrose DM, Miewald J, et al. Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, et al. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. Neuroimage. 2014;102:540–7.

    Article  PubMed  Google Scholar 

  17. McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol. 1992;9:212–23.

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez-Vives MV, Barbero-Castillo A, Perez-Zabalza M, Reig R. GABAB receptors: modulation of thalamocortical dynamics and synaptic plasticity. Neuroscience. 2021;456:131–42.

    Article  CAS  PubMed  Google Scholar 

  19. Just N, Sonnay S. Investigating the role of glutamate and GABA in the modulation of transthalamic activity: a combined fMRI-fMRS study. Front Physiol. 2017;8:30.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bartho P, Slezia A, Matyas F, Faradzs-Zade L, Ulbert I, Harris KD, et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 2014;82:1367–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krosigk von M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science. 1993;261:361–4.

    Article  Google Scholar 

  22. Lustenberger C, O’Gorman RL, Pugin F, Tüshaus L, Wehrle F, Achermann P, et al. Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects. Schizophr Bull. 2015;41:522–31.

    Article  PubMed  Google Scholar 

  23. Kiemes A, Davies C, Kempton MJ, Lukow PB, Bennallick C, Stone JM, et al. GABA, glutamate and neural activity: a systematic review with meta-analysis of multimodal 1H-MRS-fMRI studies. Front Psychiatry. 2021;12:644315.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kraguljac NV, White DM, Reid MA, Lahti AC. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry. 2013;70:1294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim S-Y, Kaufman MJ, Cohen BM, Jensen JE, Coyle JT, Du F, et al. In vivo brain glycine and glutamate concentrations in patients with first-episode psychosis measured by echo time–averaged proton magnetic resonance spectroscopy at 4T. Biol Psychiatry. 2018;83:484–91.

    Article  CAS  PubMed  Google Scholar 

  26. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Merritt K, McGuire PK, Egerton A, Aleman A, Block W, Bloemen OJ, et al. Association of age, antipsychotic medication, and symptom severity in schizophrenia with proton magnetic resonance spectroscopy brain glutamate level: a mega-analysis of individual participant-level data. JAMA psychiatry. 2021;78:667–81.

    Article  PubMed  Google Scholar 

  28. Iwata Y, Nakajima S, Plitman E, Caravaggio F, Kim J, Shah P, et al. Glutamatergic neurometabolite levels in patients with ultra-treatment-resistant schizophrenia: a cross-sectional 3T proton magnetic resonance spectroscopy study. Biol Psychiatry. 2019;85:596–605.

    Article  CAS  PubMed  Google Scholar 

  29. Kaminski J, Gleich T, Fukuda Y, Katthagen T, Gallinat J, Heinz A, et al. Association of cortical glutamate and working memory activation in patients with schizophrenia: a multimodal proton magnetic resonance spectroscopy and functional magnetic resonance imaging study. Biol Psychiatry. 2020;87:225–33.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Vajawat B, Rao NP. Frontal GABA in schizophrenia: A meta-analysis of 1H-MRS studies. World J Biol Psychiatry. 2021;22:1–13.

    Article  CAS  PubMed  Google Scholar 

  31. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X, et al. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2012;69:449–59.

    Article  CAS  PubMed  Google Scholar 

  32. Mayeli A, Sonnenschein SF, Yushmanov VE, Wilson JD, Blazer A, Foran W, et al. Dorsolateral prefrontal cortex glutamate/gamma-aminobutyric acid (GABA) alterations in clinical high risk and first-episode schizophrenia: a preliminary 7-T magnetic resonance spectroscopy imaging study. Int J Mol Sci. 2022;23:15846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quiñones GM, Mayeli A, Yushmanov VE, Hetherington HP, Ferrarelli F. Reduced GABA/glutamate in the thalamus of individuals at clinical high risk for psychosis. Neuropsychopharmacology. 2021;46:1133–9.

    Article  PubMed  Google Scholar 

  34. Fusar-Poli P. The clinical high-risk state for psychosis (CHR-P), version II. Schizophr Bull. 2017;43:44–47.

    Article  PubMed  Google Scholar 

  35. Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A, et al. Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiatry. 2013;70:793–802.

    Article  PubMed  Google Scholar 

  36. Fusar-Poli P, Bechdolf A, Taylor MJ, Bonoldi I, Carpenter WT, Yung AR, et al. At risk for schizophrenic or affective psychoses? A meta-analysis of DSM/ICD diagnostic outcomes in individuals at high clinical risk. Schizophr Bull. 2013;39:923–32.

    Article  PubMed  Google Scholar 

  37. Cannon TD. The current state of the clinical high risk for psychosis research paradigm. Biol Psychiatry. 2020;88:284–6.

    Article  PubMed  Google Scholar 

  38. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mayeli A, Wilson JD, Donati FL, LaGoy AD, Ferrarelli F. Sleep spindle alterations relate to working memory deficits in individuals at clinical high-risk for psychosis. Sleep. 2022;45:zsac193.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Ventura J, McFarlane W, et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull. 2003;29:703–15.

    Article  PubMed  Google Scholar 

  41. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    Article  PubMed  Google Scholar 

  42. https://www.nitrc.org/projects/wfu_pickatlas/, Date Accessed, 2023.

  43. Najdenovska E, Alemán-Gómez Y, Battistella G, Descoteaux M, Hagmann P, Jacquemont S, et al. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion-weighted magnetic resonance imaging. Sci Data. 2018;5:1–11.

    Article  Google Scholar 

  44. Baran B, Karahanoğlu FI, Mylonas D, Demanuele C, Vangel M, Stickgold R, et al. Increased thalamocortical connectivity in schizophrenia correlates with sleep spindle deficits: evidence for a common pathophysiology. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:706–14.

    PubMed  PubMed Central  Google Scholar 

  45. Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, et al. The visual scoring of sleep in adults. J Clin Sleep Med. 2007;3:121–31.

    Article  PubMed  Google Scholar 

  46. Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 2002;97:611–31.

    Article  Google Scholar 

  47. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry. 2008;165:203–13.

    Article  PubMed  Google Scholar 

  48. Younis S, Hougaard A, Christensen CE, Vestergaard MB, Petersen ET, Boer VO, et al. Feasibility of glutamate and GABA detection in pons and thalamus at 3T and 7T by proton magnetic resonance spectroscopy. Front Neurosci. 2020;14:559314.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pradhan S, Bonekamp S, Gillen JS, Rowland LM, Wijtenburg SA, Edden RA, et al. Comparison of single voxel brain MRS AT 3 T and 7 T using 32-channel head coils. Magn Reson Imaging. 2015;33:1013–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pan JW, Avdievich N, Hetherington HP. J-refocused coherence transfer spectroscopic imaging at 7 T in human brain. Magn Reson Med. 2010;64:1237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lacadie CM, Fulbright RK, Rajeevan N, Constable RT, Papademetris X. More accurate talairach coordinates for neuroimaging using non-linear registration. Neuroimage. 2008;42:717–25.

    Article  PubMed  Google Scholar 

  52. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–4.

    Article  CAS  PubMed  Google Scholar 

  53. Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28:129–37.

    Article  Google Scholar 

  54. Kodinariya TM, Makwana PR. Review on determining number of cluster in K-means clustering. Int J. 2013;1:90–95.

    Google Scholar 

  55. Zhang ZY, Campbell IG, Dhayagude P, Espino HC, Feinberg I. Longitudinal analysis of sleep spindle maturation from childhood through late adolescence. J Neurosci. 2021;41:4253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Purcell S, Manoach D, Demanuele C, Cade B, Mariani S, Cox R, et al. Characterizing sleep spindles in 11,630 individuals from the national sleep research resource. Nat Commun. 2017;8:15930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldman‐Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242:535–60.

    Article  PubMed  Google Scholar 

  58. Ha M, Park SH, Park I, Kim T, Lee J, Kim M, et al. Aberrant cortico-thalamo-cerebellar network interactions and their association with impaired cognitive functioning in patients with schizophrenia. Schizophrenia. 2023;9:50.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Messina A, Cuccì G, Crescimanno C, Signorelli MS. Clinical anatomy of the precuneus and pathogenesis of the schizophrenia. Anat Sci Int. 2023;98:473–81.

    Article  PubMed  Google Scholar 

  60. Lai M, Hegde R, Kelly S, Bannai D, Lizano P, Stickgold R, et al. Investigating sleep spindle density and schizophrenia: a meta-analysis. Psychiatry Res. 2022;307:114265.

    Article  CAS  PubMed  Google Scholar 

  61. Ruhrmann S, Schultze-Lutter F, Salokangas RK, Heinimaa M, Linszen D, Dingemans P, et al. Prediction of psychosis in adolescents and young adults at high risk: results from the prospective European prediction of psychosis study. Arch Gen Psychiatry. 2010;67:241–51.

    Article  PubMed  Google Scholar 

  62. Zaks N, Velikonja T, Parvaz MA, Zinberg J, Done M, Mathalon DH, et al. Sleep disturbance in individuals at clinical high risk for psychosis. Schizophr Bull. 2022;48:111–21.

    Article  PubMed  Google Scholar 

  63. Donati FL, D’Agostino A, Ferrarelli F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: an overview. Biomark Neuropsychiatry. 2020;3:100017.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Manoach DS, Stickgold R. Abnormal sleep spindles, memory consolidation, and schizophrenia. Annu Rev Clin Psychol. 2019;15:451–79.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schreiner T, Kaufmann E, Noachtar S, Mehrkens J-H, Staudigl T. The human thalamus orchestrates neocortical oscillations during NREM sleep. Nat Commun. 2022;13:5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36:316–38.

    Article  PubMed  Google Scholar 

  67. Reichenberg A. The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci. 2010;12:383–92.

    Article  PubMed  Google Scholar 

  68. Catalan A, de Pablo GS, Aymerich C, Damiani S, Sordi V, Radua J, et al. Neurocognitive functioning in individuals at clinical high risk for psychosis: a systematic review and meta-analysis. JAMA Psychiatry. 2021;78:859–67.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lewis DA. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol. 2014;26:22–26.

    Article  CAS  PubMed  Google Scholar 

  70. Hoftman GD, Dienel SJ, Bazmi HH, Zhang Y, Chen K, Lewis DA. Altered gradients of glutamate and gamma-aminobutyric acid transcripts in the cortical visuospatial working memory network in schizophrenia. Biol Psychiatry. 2018;83:670–9.

    Article  CAS  PubMed  Google Scholar 

  71. Baldwin H, Radua J, Antoniades M, Haas SS, Frangou S, Agartz I, et al. Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis. Transl Psychiatry. 2022;12:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fusar-Poli P, Cappucciati M, Borgwardt S, Woods SW, Addington J, Nelson B, et al. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA Psychiatry. 2016;73:113–20.

    Article  PubMed  Google Scholar 

  73. Carney R, Cotter J, Firth J, Bradshaw T, Yung AR. Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta‐analysis. Acta Psychiatr Scand. 2017;136:5–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gates PJ, Albertella L, Copeland J. The effects of cannabinoid administration on sleep: a systematic review of human studies. Sleep Med Rev. 2014;18:477–87.

    Article  PubMed  Google Scholar 

  75. Kesner AJ, Lovinger DM. Cannabinoids, endocannabinoids and sleep. Front Mol Neurosci. 2020;13:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia AN, Salloum IM. Polysomnographic sleep disturbances in nicotine, caffeine, alcohol, cocaine, opioid, and cannabis use: a focused review. Am J Addict. 2015;24:590–8.

    Article  PubMed  Google Scholar 

  77. Tassinari C, Ambrosetto G, Peraita-Adrado M, Gastaut H. The neuropsychiatric syndrome of Δ9-tetrahydrocannabinol and cannabis intoxication in naïve subjects: a clinical and polygraphic study during wakefulness and sleep. Marihuana and Medicine. New York: Raven Press; 1999, pp 649–64.

  78. Mondino A, Cavelli M, González J, Santana N, Castro-Zaballa S, Mechoso B, et al. Acute effect of vaporized cannabis on sleep and electrocortical activity. Pharmacol Biochem Behav. 2019;179:113–23.

    Article  CAS  PubMed  Google Scholar 

  79. Samanta A, Aleman-Zapata A, Agarwal K, Özsezer P, Alonso A, van der Meij J, et al. CBD lengthens sleep but shortens ripples and leads to intact simple but worse cumulative memory. Iscience. 2023;26:108327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lavender I, McCartney D, Marshall N, Suraev A, Irwin C, D’Rozario AL, et al. Cannabinol (CBN; 30 and 300 mg) effects on sleep and next-day function in insomnia disorder (‘CUPID’study): protocol for a randomised, double-blind, placebo-controlled, cross-over, three-arm, proof-of-concept trial. BMJ Open. 2023;13:e071148.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, et al. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex. 2024;34:bhae046.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Perica MI, Calabro FJ, Larsen B, Foran W, Yushmanov VE, Hetherington H, et al. Development of frontal GABA and glutamate supports excitation/inhibition balance from adolescence into adulthood. Prog Neurobiol. 2022;219:102370.

    Article  CAS  PubMed  Google Scholar 

  83. Fair D, Bathula D, Mills KL, Costa Dias TG, Blythe MS, Zhang D, et al. Maturing thalamocortical functional connectivity across development. Front Syst Neurosci. 2010;4:1422.

    Google Scholar 

  84. Abitz M, Nielsen RD, Jones EG, Laursen H, Graem N, Pakkenberg B. Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb Cortex. 2007;17:2573–8.

    Article  PubMed  Google Scholar 

  85. Nguyen TT, Eyler LT, Jeste DV. Systemic biomarkers of accelerated aging in schizophrenia: a critical review and future directions. Schizophr Bull. 2018;44:398–408.

    Article  PubMed  Google Scholar 

  86. Baliga SP, Mehta UM. A review of studies leveraging multimodal TMS-fMRI applications in the pathophysiology and treatment of schizophrenia. Front Hum Neurosci. 2021;15:662976.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: towards the rational design of non-invasive brain stimulation. Schizophr Res. 2020;221:71–80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIMH R01MH113827 BRAINS award. We would also like to thank all the individuals who participated in the study.

Author information

Authors and Affiliations

Authors

Contributions

AK, FD, AM, and FF helped with conceptualization, data curation, visualization, methodology and data analysis, investigation, validation, project administration, writing – review and editing. SJ and CH helped with running experiments, data curation and writing – review and editing. CM, HH helped with conceptualization, methodology and writing – review and editing. JW helped with methodology, conceptualization and writing – review and editing.

Corresponding author

Correspondence to Fabio Ferrarelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keihani, A., Donati, F.L., Janssen, S.A. et al. Multimodal evidence of mediodorsal thalamus-prefrontal circuit dysfunctions in clinical high-risk for psychosis: findings from a combined 7T fMRI, MRSI and sleep Hd-EEG study. Mol Psychiatry 30, 3384–3392 (2025). https://doi.org/10.1038/s41380-025-02924-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02924-2

Search

Quick links