Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paranodal instability driven by axonal mitochondrial accumulation in ischemic demyelination and cognitive decline

Abstract

Background

Subcortical ischemic demyelination is the primary cause of vascular cognitive impairment in the elderly. However, its underlying mechanisms remain elusive.

Methods

Using a bilateral common carotid artery stenosis (BACS) mouse model and an in vitro cerebellar slice model treated with low glucose-low oxygen (LGLO), we investigated a novel mechanism of vascular demyelination.

Results

This work identified syntaphilin-mediated docking of mitochondria as the initial event preceding ischemic demyelination. This axonal insult drives paranodal retraction, myelin instability, and subsequent cognitive impairment through excessive oxidation of protein 4.1B by mitochondrial ROS. Syntaphilin knockdown reestablished the balance of mitochondrial axoplasmic transport, reduced axonal ROS burden, and consequently decreased the abnormal oxidation of protein 4.1B, an essential component that secures the Caspr1/contactin-1/NF155 complex tethered to the axonal cytoskeleton βII-Spectrin within paranodes. This ultimately protected the paranodal structure and myelin and improved cognitive function.

Conclusions

Our findings reveal a distinct pathological characteristic of ischemic demyelination and highlight the therapeutic potential of modulating axonal mitochondrial mobility to stabilize myelin structures and improve vascular cognitive impairment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Axonal mitochondrial accumulation precedes hypoperfusion-induced demyelination.
Fig. 2: Early axonal mitochondrial accumulation and paranodal instability precede ischemic demyelination.
Fig. 3: Alleviating mitochondrial excessive accumulation mitigates ischemic demyelination and cognitive function through stabilizing paranodal structure.
Fig. 4: Alleviating mitochondrial excessive accumulation promotes paranodal stability.
Fig. 5: Oxidative modification of protein 4.1B by mitochondrial ROS impairs paranodes.
Fig. 6: Re-establishment of mitochondrial mobility stabilizes the myelin structure and neural function by reducing mitochondrial ROS production.

Similar content being viewed by others

Data availability

Data sets presented in this study are included in full whenever possible, including a display of individual data points. Data were available from the corresponding author upon reasonable request. The source data for all figures and supplementary figures are provided as a Source Data file. Supplementary information is available on MP’s website.

References

  1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–96.

    Article  PubMed  Google Scholar 

  3. Ueno Y, Koike M, Shimada Y, Shimura H, Hira K, Tanaka R, et al. L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J Cereb Blood Flow Metab. 2015;35:382–91.

    Article  CAS  PubMed  Google Scholar 

  4. Fern RF, Matute C, Stys PK. White matter injury: Ischemic and nonischemic. Glia. 2014;62:1780–9.

    Article  PubMed  Google Scholar 

  5. Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol. 2021;31:3098–3114.e3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, et al. NAD(+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation. 2021;18:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fehmi J, Scherer SS, Willison HJ, Rinaldi S. Nodes, paranodes and neuropathies. J Neurol Neurosurg Psychiatry. 2018;89:61–71.

    Article  PubMed  Google Scholar 

  8. McKie SJ, Nicholson AS, Smith E, Fawke S, Caroe ER, Williamson JC, et al. Altered plasma membrane abundance of the sulfatide-binding protein NF155 links glycosphingolipid imbalances to demyelination. Proc Natl Acad Sci USA. 2023;120:e2218823120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Djannatian M, Timmler S, Arends M, Luckner M, Weil MT, Alexopoulos I, et al. Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nat Commun. 2019;10:4794.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dutta DJ, Woo DH, Lee PR, Pajevic S, Bukalo O, Huffman WC, et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc Natl Acad Sci USA. 2018;115:11832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arancibia-Carcamo IL, Attwell D. The node of Ranvier in CNS pathology. Acta Neuropathol. 2014;128:161–75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manso C, Querol L, Mekaouche M, Illa I, Devaux JJ. Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain. 2016;139:1700–12.

    Article  PubMed  Google Scholar 

  13. Malara M, Lutz AK, Incearap B, Bauer HF, Cursano S, Volbracht K, et al. SHANK3 deficiency leads to myelin defects in the central and peripheral nervous system. Cell Mol Life Sci. 2022;79:371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet. 2009;18:1897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, et al. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia. 2013;61:240–53.

    Article  PubMed  Google Scholar 

  16. Horresh I, Bar V, Kissil JL, Peles E. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci. 2010;30:2480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Washida K, Hattori Y, Ihara M. Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. 2019;20:6176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert. Opin. Drug. Discov. 2017;12:1011–22.

    Article  PubMed  Google Scholar 

  19. Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 2020;31:623–641.e628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, et al. Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J. Neuroscience. 2007;27:10765–76.

    Article  CAS  PubMed  Google Scholar 

  21. Liebert A, Leahy M, Maniewski R. Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination. Med Biol Eng Comput. 1998;36:740–7.

    Article  CAS  PubMed  Google Scholar 

  22. Cao Q, Chen J, Zhang Z, Shu S, Qian Y, Yang L, et al. Astrocytic CXCL5 hinders microglial phagocytosis of myelin debris and aggravates white matter injury in chronic cerebral ischemia. J Neuroinflammation. 2023;20:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell. 2023;83:890–910.

    Article  CAS  PubMed  Google Scholar 

  24. Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022;13:1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie Y, Zhang X, Xu P, Zhao N, Zhao Y, Li Y, et al. Aberrant oligodendroglial LDL receptor orchestrates demyelination in chronic cerebral ischemia. J Clin Invest. 2021;131:e128114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niu J, Yu G, Wang X, Xia W, Wang Y, Hoi KK, et al. Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron. 2021;109:3104–3118.e3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez J, Escobar JB, Cheung EC, Kowalik G, Russo R, Dyavanapalli J, et al. Hypothalamic oxytocin neuron activation attenuates intermittent hypoxia-induced hypertension and cardiac dysfunction in an animal model of sleep apnea. Hypertension. 2023;80:882–94.

    Article  CAS  PubMed  Google Scholar 

  28. Lubetzki C, Sol-Foulon N, Desmazières A. Nodes of Ranvier during development and repair in the CNS. Nat. Rev. Neurol. 2020;16:426–39.

    Article  PubMed  Google Scholar 

  29. Buttermore ED, Dupree JL, Cheng J, An X, Tessarollo L, Bhat MA. The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J Neurosci. 2011;31:8013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cifuentes-Diaz C, Chareyre F, Garcia M, Devaux J, Carnaud M, Levasseur G, et al. Protein 4.1B contributes to the organization of peripheral myelinated axons. PLoS ONE. 2011;6:e25043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell. 2024;23:e13942.

    Article  CAS  PubMed  Google Scholar 

  32. Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020;62:101128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandal A, Wong HC, Pinter K, Mosqueda N, Beirl A, Lomash RM, et al. Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci. 2021;41:1371–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol. 2016;214:103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol. 2013;202:351–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joshi DC, Zhang C-L, Lin T-M, Gusain A, Harris MG, Tree E, et al. Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS. J Neuroscience. 2015;35:5293–306.

    Article  CAS  PubMed  Google Scholar 

  37. Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, et al. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132:1161–74.

    Article  PubMed  Google Scholar 

  38. Joshi DC, Zhang CL, Babujee L, Vevea JD, August BK, Sheng ZH, et al. Inappropriate intrusion of an axonal mitochondrial anchor into dendrites causes neurodegeneration. Cell Rep. 2019;29:685–96.e685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, et al. Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci USA. 2014;111:9953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Licht-Mayer S, Campbell GR, Canizares M, Mehta AR, Gane AB, McGill K, et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol. 2020;140:143–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alrashdi B, Dawod B, Schampel A, Tacke S, Kuerten S, Marshall JS, et al. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J Neuroinflammation. 2019;16:215.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain. 2004;127:294–303.

    Article  PubMed  Google Scholar 

  43. Craner MJ, Lo AC, Black JA, Waxman SG. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain. 2003;126:1552–61.

    Article  PubMed  Google Scholar 

  44. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28:14329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weng Z, Cao C, Stepicheva NA, Chen F, Foley LM, Cao S, et al. A novel needle mouse model of vascular cognitive impairment and dementia. J Neurosci. 2023;43:7351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matute C, Domercq M, Sánchez-Gómez MV. Glutamate-mediated glial injury: mechanisms and clinical importance. Glia. 2006;53:212–24.

    Article  PubMed  Google Scholar 

  47. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001;81:871–927.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology of China (STI2030- Major Projects 2021ZD0201806 to M.C. and 2021YFC2500100 to Q.D), National Natural Science Foundation of China (82271221 to M.C.; 82071197 to Q.D.; 82101336 to M.G.; 82201468 to YW. F.; 82373658 to YF. J).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MC, QD, JY and YZ; formal analysis, YF; investigation, YF, MZ, JX, SH, JL and HZ; writing—original draft preparation, MG and TY; writing—review and editing, MG, TY, YZ, QD and MC; supervision, MC; funding acquisition, MG, QD, YJ and MC.

Corresponding authors

Correspondence to Yanxin Zhao, Jintai Yu, Qiang Dong or Mei Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures were performed following the Guide for the National Science Council of the People’s Republic of China, and the study was approved by the Ethics Committee of Fudan University, Shanghai, China (IRB approval number 20180972A259). This manuscript was written in accordance with the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Guo, M., You, T. et al. Paranodal instability driven by axonal mitochondrial accumulation in ischemic demyelination and cognitive decline. Mol Psychiatry 30, 3502–3515 (2025). https://doi.org/10.1038/s41380-025-02936-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02936-y

Search

Quick links