Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of KCNQ potassium channel modulation on ventral tegmental area activity and connectivity in individuals with depression and anhedonia

Abstract

Up to half of individuals with depression do not respond to first-line treatments, possibly due to a lack of treatment interventions informed by neurobiology. A novel therapeutic approach for depression has recently emerged from translational work targeting aberrant activity of ventral tegmental area (VTA) dopamine neurons via modulation of the KCNQ voltage-gated potassium channels. In this study, individuals with major depressive disorder (MDD) with elevated anhedonia were randomized to five weeks of the KCNQ channel opener, ezogabine (up to 900 mg/day) or placebo. Participants completed functional MRI during a monetary anticipation task and resting-state at baseline and at end-of-treatment. The clinical results were reported previously. Here, we examined VTA activity during monetary anticipation and resting-state functional connectivity between the VTA and the ventromedial prefrontal cortex (mesocortical pathway) and ventral striatum (mesolimbic pathway) at baseline and end-of-treatment. Results indicated a significant drug-by-time interaction in VTA activation during anticipation (F(1,34) = 4.36, p = 0.044), where VTA activation was reduced from pre-to-post ezogabine, compared to placebo. Mesocortical functional connectivity was also higher in depressed participants at baseline compared to a healthy control group (t(56) = 2.68, p = 0.01) and associated with VTA hyper-activity during task-based functional MRI at baseline (R = 0.352, p = 0.033). Mesocortical connectivity was also reduced from pre-to-post ezogabine, compared to placebo (significant drug-by-time interaction, F(1,33) = 4.317, p = 0.046). Together this translational work is consistent with preclinical findings highlighting VTA hyper-activity in depression, and suggesting a mechanism of action for KCNQ channel openers in normalizing this hyper-activity in individuals with both depression and anhedonia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study recruitment flow and the incentive flanker task.
Fig. 2: Ventral tegmental area hyper-activation during anticipation is associated with depression symptom severity and is reduced following treatment with ezogabine.
Fig. 3: Mesocortical functional connectivity at baseline in MDD and HC.
Fig. 4: Mesocortical functional connectivity at baseline and following ezogabine or placebo.

Similar content being viewed by others

Data availability

Data from the phased R61MH111932 clinical trial is available through the NIH Data Archive (NDA, #2582).

References

  1. Iancu SC, Wong YM, Rhebergen D, Van Balkom AJLM, Batelaan NM. Long-term disability in major depressive disorder: a 6-year follow-up study. Psychol Med. 2020;50:1644–52.

    Article  PubMed  Google Scholar 

  2. Greenberg PE, Fournier AA, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). Pharmacoeconomics. 2021;39:653–65.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wardenaar KJ, Giltay EJ, Van Veen T, Zitman FG, Penninx BWJH. Symptom dimensions as predictors of the two-year course of depressive and anxiety disorders. J Affect Disord. 2012;136:1198–203.

    Article  PubMed  Google Scholar 

  4. Moos RH, Cronkite RC. Symptom-based predictors of a 10-year chronic course of treated depression. J Nerv Ment Dis. 1999;187:360–8.

    Article  CAS  PubMed  Google Scholar 

  5. Voineskos D, Daskalakis ZJ, Blumberger DM. Management of treatment-resistant depression: challenges and strategies. Neuropsychiatr Dis Treat. 2020;16:221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Undurraga J, Baldessarini RJ. Randomized, placebo-controlled trials of antidepressants for acute major depression: thirty-year meta-analytic review. Neuropsychopharmacology. 2012;37:851–64.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta T, Eckstrand KL, Forbes EE. Annual research review: puberty and the development of anhedonia – considering childhood adversity and inflammation. J Child Psychol Psychiatry. 2024;65:459–80.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chu MY, Li SB, Wang Y, Lui SSY, Chan RCK. The effect of noninvasive brain stimulation on anhedonia in patients with schizophrenia and depression: a systematic review and meta-analysis. Psych J. 2023;13:166–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bore MC, Liu X, Gan X, Wang L, Xu T, Ferraro S, et al. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression - a neuroimaging meta-analysis. Psychol Med. 2024;54:639–51. https://doi.org/10.1017/S0033291723003410.

    Article  PubMed  Google Scholar 

  10. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–51.

    Article  CAS  PubMed  Google Scholar 

  11. Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ogren S. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 2015;25:599–656.

    Article  CAS  PubMed  Google Scholar 

  12. Trutti AC, Mulder MJ, Hommel B, Forstmann BU. Functional neuroanatomical review of the ventral tegmental area. Neuroimage. 2019;191:258–68.

    Article  PubMed  Google Scholar 

  13. Hughes RN, Bakhurin KI, Petter EA, Watson GDR, Kim N, Friedman AD, et al. Ventral tegmental dopamine neurons control the impulse vector during motivated behavior. Curr Biol. 2020;30:2681–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh JJ, Han MH. The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience. 2014;282:101–8.

    Article  CAS  PubMed  Google Scholar 

  15. Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, et al. Functional circuitry effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation. Front Neurosci. 2017;11:104.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eapen M, Gore JC Identifying the functional architecture of the human ventral tegmental area and the substantia nigra using high resolution magnetic resonance imaging. Neuroscience Vanderbilt Reviews. 2009;1.

  17. Morris L, Mehta M, Ahn C, Corniquel M, Verma G, Delman B, et al. Ventral tegmental area integrity measured with high-resolution 7-Tesla MRI relates to motivation across depression and anxiety diagnoses. Neuroimage. 2022;264:119704.

    Article  PubMed  Google Scholar 

  18. Bracht T, Mertse N, Walther S, Lüdi K, Breit S, Federspiel A, et al. Link between structural connectivity of the medial forebrain bundle, functional connectivity of the ventral tegmental area, and anhedonia in unipolar depression. Neuroimage Clin. 2022;34:102961.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beier KT, Steinberg EE, Deloach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci. 2014;39:1179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qi G, Zhang P, Li T, Li M, Zhang Q, He F, et al. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun. 2022;13:577. https://doi.org/10.1038/s41467-022-28190-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salamone JD, Pardo M, Yohn SE, López-Cruz L, Sanmiguel N, Correa M. Mesolimbic dopamine and the regulation of motivated behavior. Curr Top Behav Neurosci. 2016;27:231–57.

    Article  PubMed  Google Scholar 

  23. Salamone JD, Correa M, Yohn S, Lopez Cruz L, San Miguel N, Alatorre L. The pharmacology of effort-related choice behavior: dopamine, depression, and individual differences. Behav Processes. 2016;127:3–17.

    Article  PubMed  Google Scholar 

  24. Diederen KMJ, Fletcher PC. Dopamine, prediction error and beyond. Neuroscientist. 2021;27:30–46.

    Article  PubMed  Google Scholar 

  25. Butts KA, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area. Int J Neuropsychopharmacol. 2013;16:1799–807.

    Article  CAS  PubMed  Google Scholar 

  26. Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 2014;76:351–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 2011;70:855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azzinnari D, Sigrist H, Staehli S, Palme R, Hildebrandt T, Leparc G, et al. Mouse social stress induces increased fear conditioning, helplessness and fatigue to physical challenge together with markers of altered immune and dopamine function. Neuropharmacology. 2014;85:328–41.

    Article  CAS  PubMed  Google Scholar 

  29. Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 2014;516:51–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ. Neurobiology of resilience. Nat Neurosci. 2012;15:1475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  CAS  PubMed  Google Scholar 

  34. Cao JL, Covington HE, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, et al. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci. 2010;30:16453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  36. Friedman AK, Juarez B, Ku SM, Zhang H, Calizo RC, Walsh JJ, et al. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat Commun. 2016;7:11671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Chaudhury D, Nectow AR, Friedman AK, Zhang S, Juarez B, et al. α1- and β3-adrenergic receptor–mediated mesolimbic homeostatic plasticity confers resilience to social stress in susceptible mice. Biol Psychiatry. 2019;85:226–36.

    Article  CAS  PubMed  Google Scholar 

  38. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    Article  CAS  PubMed  Google Scholar 

  39. Rincón-Cortés M, Grace AA. Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int J Neuropsychopharmacol. 2017;20:823–32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morel C, Montgomery SE, Li L, Durand-de Cuttoli R, Teichman EM, Juarez B, et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nat Commun. 2022;13:1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morel C, Montgomery SE, Li L, Ku SM, Juarez B, Flannigan ME, et al. Neural circuit from ventral tegmental area to amygdala mediates approach-avoidance behavior and its regulation by stress. Alcohol. 2023;109:89.

    Article  Google Scholar 

  42. Morel C, Montgomery SE, Li L, Ku SM, Juarez B, Cuttoli RD, et al. Midbrain projection to basolateral amygdala encodes anxiety behaviors. Biol Psychiatry. 2021;89:S76.

    Article  Google Scholar 

  43. Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience. 1995;64:619–28.

    Article  CAS  PubMed  Google Scholar 

  44. Roth RH, Tam S‐Y, Ida Y, Yang J‐X, Deutch AY. Stress and the mesocorticolimbic dopamine systems. Ann N Y Acad Sci. 1988;537:138–47.

    Article  CAS  PubMed  Google Scholar 

  45. Morris LS, Kundu P, Costi S, Collins A, Schneider M, Verma G, et al. Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla. Transl Psychiatry. 2019;9:94.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Redlich R, Dohm K, Grotegerd D, Opel N, Zwitserlood P, Heindel W, et al. Reward processing in unipolar and bipolar depression: a functional MRI study. Neuropsychopharmacology. 2015;40:2623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kumar P, Goer F, Murray L, Dillon DG, Beltzer ML, Cohen AL, et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology. 2018;43:1581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wagner G, De La Cruz F, Köhler S, Bär KJ. Treatment associated changes of functional connectivity of midbrain/brainstem nuclei in major depressive disorder. Sci Rep. 2017;7:8675.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anand A, Jones SE, Lowe M, Karne H, Koirala P. Resting state functional connectivity of dorsal raphe nucleus and ventral tegmental area in medication-free young adults with major depression. Front Psychiatry. 2019;9:765.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maier W, Gänsicke M, Gater R, Rezaki M, Tiemens B, Florenzano Urzúa R. Gender differences in the prevalence of depression: a survey in primary care. J Affect Disord. 1999;53:241–52.

    Article  CAS  PubMed  Google Scholar 

  51. Murrell SA, Himmelfarb S, Wright K. Prevalence of depression and its correlates in older adults. Am J Epidemiol. 1983;117:173–85.

    Article  CAS  PubMed  Google Scholar 

  52. Girgus JS, Yang K, Ferri CV. The gender difference in depression: are elderly women at greater risk for depression than elderly men? Geriatrics. 2017;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Costi S, Han MH, Murrough JW. The potential of KCNQ potassium channel openers as novel antidepressants. CNS Drugs. 2022;36:207–16.

    Article  CAS  PubMed  Google Scholar 

  54. Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci. 2017;74:495–508.

    Article  CAS  PubMed  Google Scholar 

  55. Tan A, Costi S, Morris LS, Van Dam NT, Kautz M, Whitton AE, et al. Effects of the KCNQ channel opener ezogabine on functional connectivity of the ventral striatum and clinical symptoms in patients with major depressive disorder. Mol Psychiatry. 2020;25:1323–33.

    Article  CAS  PubMed  Google Scholar 

  56. Costi S, Morris LS, Kirkwood KA, Hoch M, Corniquel M, Vo-Le B, et al. Impact of the KCNQ2/3 channel opener ezogabine on reward circuit activity and clinical symptoms in depression: results from a randomized controlled trial. Am J Psychiatry. 2021;178:437–46.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stern ER, Welsh RC, Fitzgerald KD, Gehring WJ, Lister JJ, Himle JA, et al. Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive-compulsive disorder. Biol Psychiatry. 2011;69:583–91.

    Article  PubMed  Google Scholar 

  58. Geugies H, Groenewold NA, Meurs M, Doornbos B, de Klerk-Sluis JM, van Eijndhoven P, et al. Decreased reward circuit connectivity during reward anticipation in major depression. Neuroimage Clin. 2022;36:103226.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  60. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone. The snaith-hamilton pleasure scale. Br J Psychiatry. 1995;167:99–103.

    Article  CAS  PubMed  Google Scholar 

  61. Kundu P, Brenowitz ND, Voon V, Worbe Y, Vértes PE, Inati SJ, et al. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc Natl Acad Sci USA. 2013;110:16187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kundu P, Inati SJ, Evans JW, Luh WM, Bandettini PA. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage. 2012;60:1759–70.

    Article  PubMed  Google Scholar 

  63. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73.

    Article  CAS  PubMed  Google Scholar 

  64. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219.

    Article  PubMed  Google Scholar 

  65. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5:180063.

  66. Pauli WM, Nili AN, Michael Tyszka J. Data descriptor: a high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5:18006.

    Article  Google Scholar 

  67. Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BAC, Lesnar P, et al. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol. 2016;524:3127–481.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morris LS, Kundu P, Dowell N, Mechelmans DJ, Favre P, Irvine MA, et al. Fronto-striatal organization: defining functional and microstructural substrates of behavioural flexibility. Cortex. 2016;74:118–33.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shanley MR, Miura Y, Guevara CA, Onoichenco A, Kore R, Ustundag E, et al. Estrous cycle mediates midbrain neuron excitability altering social behavior upon stress. J Neurosci. 2023;43:736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang S, Zhang H, Ku SM, Juarez B, Morel C, Tzavaras N, et al. Sex differences in the neuroadaptations of reward-related circuits in response to subchronic variable stress. Neuroscience. 2018;376:108–16.

    Article  CAS  PubMed  Google Scholar 

  72. Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME, Ribeiro E, et al. Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun. 2017;8:13877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Knutson B, Gibbs SEB. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology (Berl). 2007;191:813–22.

    Article  CAS  PubMed  Google Scholar 

  74. Lohrenz T, Kishida KT, Read Montague P. Bold and its connection to dopamine release in human striatum: a cross-cohort comparison. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150352.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lohani S, Poplawsky AJ, Kim SG, Moghaddam B. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol Psychiatry. 2017;22:585–94.

    Article  CAS  PubMed  Google Scholar 

  76. Okuyama S, Kuki T, Mushiake H. Representation of the numerosity ‘zero’ in the parietal cortex of the monkey. Sci Rep. 2015;5:10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Votinov M, Aso T, Fukuyama H, Mima T. A neural mechanism of preference shifting under zero price condition. Front Hum Neurosci. 2016;10:177.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.

    Article  CAS  PubMed  Google Scholar 

  79. Tanda G, Di Chiara G. A dopamine-μ1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur J Neurosci. 1998;10:1179–87.

    Article  CAS  PubMed  Google Scholar 

  80. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature. 1996;379:449–51.

    Article  CAS  PubMed  Google Scholar 

  82. Kutlu MG, Tat J, Christensen BA, Zachry JE, Calipari ES. Dopamine release at the time of a predicted aversive outcome causally controls the trajectory and expression of conditioned behavior. Cell Rep. 2023;42:112948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao Y, Gao Y, Zu Z, Li M, Schilling KG, Anderson AW, et al. Detection of functional activity in brain white matter using fiber architecture informed synchrony mapping. Neuroimage. 2022;258:119399.

    Article  PubMed  Google Scholar 

  84. Babaeeghazvini P, Rueda-Delgado LM, Gooijers J, Swinnen SP, Daffertshofer A. Brain structural and functional connectivity: a review of combined works of diffusion magnetic resonance imaging and electro-encephalography. Front Hum Neurosci. 2021;15:721206.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu L, Eichele T, Calhoun VD. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage. 2010;52:1252–60.

    Article  PubMed  Google Scholar 

  86. Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014;76:517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Posner J, Cha J, Wang Z, Talati A, Warner V, Gerber A, et al. Increased default mode network connectivity in individuals at high familial risk for depression. Neuropsychopharmacology. 2016;41:1759–67.

    Article  CAS  PubMed  Google Scholar 

  88. Knudsen L, Bailey CJ, Blicher JU, Yang Y, Zhang P, Lund TE. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. Neuroimage. 2023;271:120011.

    Article  PubMed  Google Scholar 

  89. Barghoorn A, Riemenschneider B, Hennig J, LeVan P. Improving the sensitivity of spin-echo fMRI at 3T by highly accelerated acquisitions. Magn Reson Med. 2021;86:245–57.

    Article  CAS  PubMed  Google Scholar 

  90. Knudsen L, Bailey CJ, Blicher JU, Yang Y, Zhang P, Lund TE. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. NeuroImage. 2023;271:120011.

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Mental Health of the National Institutes of Health under Award Number R61MH111932. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support was provided by the Ehrenkranz Laboratory of Human Resilience, the Freidman Brain Institute at the Icahn school of Medicine at Mount Sinai, and the Gottesman Foundation. RS was supported by VHA I01CX001937, this study is in part the result of work supported with resource at the Michael E. DeBakey VA Medical Center, the content does not represent the official views of the United States government. Scientific computing and data resources support was also provided in part by CTSA grant UL1TR004419.

Author information

Authors and Affiliations

Authors

Contributions

JWM, SJM, MHH, DVI, KAC, ERS, SC, RS contributed to the conception or design of the work. LSM, SC, SH, KAC, AC, RS contributed to the acquisition of the data. LSM, AC contributed to the analysis of the data. LSM, CM, MHH, JWM contributed to the interpretation of data. LSM wrote the initial draft of the paper. All authors revised the paper for intellectual content. All authors provided final approval of the paper to be published.

Corresponding authors

Correspondence to Laurel S. Morris or James W. Murrough.

Ethics declarations

Competing interests

Dr. Costi has provided consultation services for Boehringer Ingelheim, Guidepoint and TCG Crossover. In the last 10 years, Dr. Iosifescu has served as a consultant for Alkermes, Allergan, Angelini, Autobahn, Axsome, Biogen, Boehringer Ingelheim, the Centers for Psychiatric Excellence, Clexio, Delix, Jazz, LivaNova, Lundbeck, Neumora, Otsuka, Precision Neuroscience, Relmada, Sage, and Sunovion. He has received grant support (paid to his institutions) from Alkermes, AstraZeneca, BrainsWay, LiteCure, NeoSync, Otsuka, Roche, and Shire. In the past 24 months, Dr. Murrough has provided consultation services for LivaNova, KetaMed, Inc, Merk, Cliniclabs, Inc., Biohaven Pharmaceuticals, Inc., Compass Pathfinder, Xenon Pharmaceuticals, and Clexio Biosciences. Drs. Murrough and Han are named on a patent pending for the use of KCNQ channel openers to treat depression and related conditions. Dr. Collins has consulted for MedAvante-ProPhase, and A. Stein- Regulatory Affairs Consulting, Ltd. in the past, and currently serves as a consultant to Cronos Clinical Consulting Services, Inc. and Relmada Therapeutics, Inc. Dr. Mathew has received consultant fees from Abbott, Almatica Pharma, Beckley Psytech, Biohaven, BioXcel Therapeutics, Boehringer-Ingelheim, Brii Biosciences, Clexio Biosciences, COMPASS Pathways, Delix Therapeutics, Douglas Pharmaceuticals, Engrail Therapeutics, Freedom Biosciences, Liva Nova, Levo Therapeutics, Merck, Motif Neurotech, Neumora, Neurocrine, Perception Neurosciences, Praxis Precision Medicines, Relmada Therapeutics, Sage Therapeutics, Seelos Therapeutics, Signant Health, Sunovion Pharmaceuticals, Xenon Pharmaceuticals, Worldwide Clinical Trials, and XW Pharma. Dr. Mathew has received research support from Boehringer-Ingelheim, Engrail Therapeutics, Merck, Neurocrine, and Sage Therapeutics. Dr. Han is supported by the National Key R&D Program of China (Grant Nos. 2021ZD0202900 and 2021ZD0202902), Research Fund for International Senior Scientists (Grant No. T2250710685), Shenzhen Natural Science Foundation (Grant No. JCYJ20220818101600001), Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression (Grant No. ZDSYS20220606100606014), Shenzhen Medical Research Fund (Grant No. SMRF B2303012), and Science and Technology Research and Development Foundation of Shenzhen (High-level Talent Innovation and Entrepreneurship Plan of Shenzhen Team Funding) (Grant No. KQTD20221101093608028). The other authors declare no other disclosures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, L.S., Costi, S., Hameed, S. et al. Effects of KCNQ potassium channel modulation on ventral tegmental area activity and connectivity in individuals with depression and anhedonia. Mol Psychiatry 30, 3686–3694 (2025). https://doi.org/10.1038/s41380-025-02957-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02957-7

Search

Quick links