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The opioid overdose epidemic has rapidly expanded in North America, with rates accelerating during the COVID-19 pandemic. No
existing study has demonstrated prospective opioid overdose at a population level. This study aimed to develop and validate a
population-level individualized prospective prediction model of opioid overdose (OpOD) using machine learning (ML) and
de-identified provincial administrative health data. The OpOD prediction model was based on a cohort of approximately 4 million
people in 2017 to predict OpOD cases in 2018 and was subsequently tested on cohort data from 2018, 2019, and 2020 to predict
OpOD cases in 2019, 2020, and 2021, respectively. The model’s predictive performance, including balanced accuracy, sensitivity,
specificity, and area under the Receiver Operating Characteristics Curve (AUC), was evaluated, achieving a balanced accuracy of
83.7, 81.6, and 85.0% in each respective year. The leading predictors for OpOD, which were derived from health care utilization
variables documented by the Canadian Institute for Health Information (CIHI) and physician billing claims, were treatment
encounters for drug or alcohol use, depression, neurotic/anxiety/obsessive-compulsive disorder, and superficial skin injury. The
main contribution of our study is to demonstrate that ML-based individualized OpOD prediction using existing population-level
data can provide accurate prediction of future OpOD cases in the whole population and may have the potential to inform targeted

interventions and policy planning.
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INTRODUCTION

Opioid overdose (OpOD) is a rapidly growing epidemic in North
America. In Canada, 47 162 people died from apparent opioid-
related overdoses between January 2016 and March 2024 [1].
During the COVID-19 pandemic, overdose rates accelerated, with a
24% increase in opioid-related poisonings in the first half of 2022
alone [2]. Similarly, the United States is facing a crisis, reporting
212 892 opioid-related deaths between 2017 and 2020 [3].
Recently, from 2023 to 2024, opioid-related deaths showed signs
of reduction overall, yet opioids continue to account for most drug
overdoses, and rates continue to increase in some regions [1, 4.
Identifying actionable intervention strategies would be an
important step in supporting people at risk of OpOD and their
communities.

One potential solution is the early identification of OpOD cases
and associated risk factors through individualized prediction and
analysis based on large-scale health data by leveraging advanced
computational methods like machine learning (ML) so that
potential timely intervention and support can be delivered to a
population in need of help. Rising research interests in the clinical
applications of OpOD prediction and other adverse outcomes

have emerged due to the increased availability of cross-linked
administrative health data and Electronic Health Records (EHR) [5].
The use of ML further enables individual-level predictions of
OpOD, opioid use disorder and other adverse outcomes related to
opioids [6-9] and associated risk factors for OpOD, including pain-
related symptoms, mental disorders, and demographic, commu-
nity and environmental factors [10, 11]. However, the lack of
population-level representative data usually limits such predic-
tions to a small portion of the population, a problem exacerbated
by non-universal or non-stratified access to health insurance [12],
potentially introducing bias and affecting prediction general-
izability and reliability.

In the current study, we developed a series of longitudinal
population cohorts based on provincial administrative health data
from the Government of Alberta, Canada, which have been
routinely collected and maintained. We aimed to develop an
OpOD prediction model by applying ML to the baseline cohort in
2017 to predict OpOD cases in 2018 and to longitudinally test this
model in the subsequent three years, demonstrating a framework
for individual-level prospective OpOD prediction in a representa-
tive population in North America.
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METHODS

Study cohort

Four cohorts of all residents in Alberta, Canada (approximately 4 million)
were developed based on data retrieved from fiscal years 2017, 2018, 2019,
2020, and 2021 (April 1st to March 31st of the following year). For each
cohort, we included all individuals with an active Alberta Health Care
Insurance Plan (AHCIP) status who had used the system in the two years
before the corresponding cohort year.

Data source

Alberta has a health care system that offers universal access to medically
necessary hospital and health care services. All new and existing Alberta
residents are provided a unique identifier under the AHCIP for access to
insured health care services, allowing deterministic linkage of different
administrative data sources and robust databases for this study. Data in the
cohorts included de-identified individual-level information of different
types (e.g., demographic, socio-economic, health utilization) that were
collected by the Alberta Ministry of Health and cross-linked. The linked
administrative health data were prepared based on AHCIP Practitioner
Claims (e.g., physician office’s claim codes, patient demographics), the
National Ambulatory Care Reporting System (NACRS) (e.g. hospital and
emergency department visits data), the Canadian Institute of Health
Information Discharge Abstract Database (DAD) (e.g., administrative,
clinical and demographic information on hospital discharges), the AHCIP
Population Registry Database (e.g., demographics of patients), Alberta
Pharmaceutical Information Network (PIN) database (e.g., drug prescription
and use history), data developed from the Canadian Institute of Health
Information population grouping methodology (CIHI) [13] (e.g., individual-
level risk scores of patient’s health conditions), and Alberta Health Services
Drug Supplement Plan database (AHSDSP) (to identify prescription opioids
and patient consumption). All databases accessed include information on
all Alberta residents covered under the AHCIP, ensuring comprehensive
coverage of the province's population.

Outcome definition

The prospective OpOD outcome was derived from the fiscal year following
the cohort (e.g., OpOD events in 2018 for the 2017 cohort), from AHCIP
Practitioner Claims, NACRS and DAD, based on the International
Classification of Diseases, Ninth Revision (ICD-9) code 965.0 (poisoning
by opiates and related narcotics) in practitioner claims data, and
International Statistical Classification of Diseases and Related Health
Problems, Tenth Revision (ICD-10), code T40.0 (poisoning by, and adverse
effect of opium), T40.1 (poisoning by, and adverse effect of heroin), T40.2
(poisoning by, adverse effect of and underdosing of opioids), T40.3
(poisoning by, adverse effect of and underdosing of methadone), T40.4
(poisoning by, adverse effect of and underdosing of other synthetic
narcotics) and T40.6 (poisoning by, adverse effect of and underdosing of
other and unspecified narcotics), in ambulatory, inpatient and outpatient
data [8, 14]. The OpOD status was binary coded and labeled as 1 if a
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patient had at least 1 incident of OpOD in the fiscal year following the
cohort and 0 if no incident was found in the administrative health records.
Note that the OpOD outcome might include both fatal and non-fatal cases
and did not capture subjects that did not access health care.

Predicting variables

Candidate predicting variables or “features” for ML, were developed
based on the cohort’s fiscal year, with a total of 368 features, including
health system utilization indicators (e.g., number of family physician
visits), demographics (e.g., age, sex), opioid specific indicators (e.g.,
opioid use disorder), substance use and related disorders (e.g., alcohol,
nicotine), and CIHI groupers [15] that identified other physical and
mental health indicators (e.g., chronic pain, hepatitis, depression). In our
model, we used the ‘relative importance’ of these features to measure
the strength of each predictor’'s impact on the outcome, quantifying
how much each feature contributes to the overall prediction accuracy of
the model [16]. Higher values indicate a stronger influence on the
model’s predictions (maximum 1), with these metrics calculated through
an ensemble model to determine which features are most critical in
predicting opioid overdose.

To address potential overlap in predictor data across years, we
developed the predictors independently for each cohort year. This
approach minimizes the risk of bias from overlapping data points while
maintaining the utility of the model. In a real-world setting, annual data
updates allow for continuous retraining of the model, ensuring it remains
responsive to population trends and emerging patterns.

Data preparation and modeling pipeline

SAS 9.4 and SAS Viya Data Studio software were used for data preparation
[17]. Features representing the frequency of occurrence and binary risk
indicator had no missing data. Zero was interpreted as zero occurrence or
lack of evidence.

The prepared data were then processed through a modeling pipeline
(Fig. 1) developed using SAS Viya Model Studio software, version V.03.05.
Because OpOD is a rare event in population-level data (e.g., 0.10% of the
population in 2017), there is a severe class imbalance that would impact
model building [18]. Class imbalance refers to a situation in ML where the
number of observations in one class significantly outweighs the
observations in the other class; in this case, the instances of OpOD
compared to no OpOD. This imbalance can lead to biases in the model as a
model can simply predict all cases as the majority class to produce high
accuracy. In our exploration of the imbalanced data, we ran several single
ML models (e.g., Gradient Boosting) on the data, all achieving a roughly 0%
sensitivity.

To address the class imbalance in our ML pipeline, we used an under-
sampling technique and devised 50 subsamples that each included all
OpOD subjects within the cohort, joined with a stratified random sample
drawn from subjects with no OpOD records, matched by age, sex, and
sample size. The number of 50 subsamples was chosen to achieve a stable

Model Model Outcomes

2020 Outcomes

BA: 81.6%
2020 Cohort 2021 Outcomes
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Fig. 1 ML pipeline flow chart. Fifty subsamples with a 1:1 ratio of OpOD and No OpOD were first derived from the 2017 cohort. Fifty gradient
boosting models were trained and validated for each sample and then ensembled. The ensemble model was tested using 2018, 2019, and

2020 cohorts, respectively. BA denotes balanced accuracy.
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Table 1. Model performance.

Cohort N Total Npatient OpOD (%) Balanced Accuracy Sensitivity Specificity AUC
2018 4 095 364 3260 (0.08) 83.7% 78.1% 89.3% 89.2%
2019 4 163 304 4223 (0.10) 81.6% 68.4% 94.8% 86.9%
2020 4 203 233 5240 (0.12) 85.0% 77.9% 92.1% 89.8%
AUC denotes the Area Under the Receiver Operating Characteristics Curve.

Table 2. Top five feature rankings from the ensemble model.

Feature Name Source Relative Importance Data Type

Drug/alcohol use/dependence CIHI 1.00 BINARY (1 = yes, 0 = no)
Depression CIHI 0.60 BINARY (1 = yes, 0 = no)
Neurotic/anxiety/obsessive-compulsive disorder CIHI 0.46 BINARY (1 = yes, 0 = no)
Supefficial skin injury/contusion/ non-serious burn CIHI 0.40 BINARY (1 = yes, 0 = no)
Depression Claims 0.36 INTERVAL

estimation of model performance with the limited computational
resources that we had. In our pilot analysis, model performance started
to stabilize after 10 subsamples, and our computational resources would
not allow more subsamples than 50 at the time of model training. Other
features were not used for sample matching. Each of the subsamples had a
1:1 ratio of OpOD and NoOpOD subjects (e.g., 4 002 OpOD and 4 002 No
OpOD) and included the same predictive features, allowing the ML model
to learn characteristics from OpOD subjects. The 50 subsamples were
further split into training and validation sets, where 70% of the data were
randomly used for model training and 30% of the data were used for
validation. These splits ran through Gradient boosting nodes in SAS Viya to
learn base models for classifying OpOD, optimizing for logistic loss, a
measure of how well the model could make a correct classification.

Each of the 50 models was set to perform auto-tuning, which performed
adjustments to the following parameters: number of trees, number of inputs
to consider for split, learning rates, subsample rates, and L1 & L2 regularization
[17]. A Gradient boosting model is a machine learning algorithm that
iteratively combines multiple weak decision trees to create a stronger, more
accurate model by adjusting the weights of the trees and reducing errors in
the predictions. The parameters optimization method used for our model was
a grid search algorithm, with the initial values used for the baseline model set
to default values provided by the SAS model [17].

The 50 models trained and validated using the subsamples were then
put through an ensemble node. The ensemble node took the average of
the estimated prediction probabilities to combine the models and
determine the top contributing features. By averaging the probabilities,
the ensemble model reduces the impact of individual model biases or
errors to improve the prediction accuracy. A predicted probability of 0.5
was used as a threshold to classify OpOD (>=0.5) and No OpOD (<0.5).
The entire 2018, 2019, and 2020 cohorts were used as testing data to
evaluate the ensemble model. The top five features of the models were
evaluated based on the ranking of feature importance in the ensemble
model. In SAS, relative feature importance is a metric used to quantify the
contribution of each feature to the predictive performance of the model. It
helps to identify the more important features driving the model
predictions and is valuable for interpreting model outputs [16, 17]. Relative
feature importance is calculated by dividing the RSS-based importance, the
reduction in residual sum of squares due to a variable, of each variable by
the maximum RSS-based importance among all variables [16]. The
selection of the Gradient boosting algorithm, the number of resamples,
and the ensemble method to solve class-imbalance issues in the pipeline
were based on the availability of algorithms and computation power in a
highly resource-restricted software analysis environment.

RESULTS

For each cohort (2017-2020), the prevalence rate of OpOD in the
population remained under 0.2% (Table 1). Despite the large
imbalance in our data, the final ensemble model obtained an Area
Under the Receiver Operating Characteristics Curve (AUC) of
89.2%, a balanced accuracy of 82.7%, an average sensitivity of
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75.8%, and a specificity of 89.7%, from the reserved 2017
validation data. The trained model was then applied to the full
2018-2020 cohorts (N =4 095 364 — 4 203 233). In each of these
cohorts, the OpOD outcomes were extracted from the year after
the cohort year to verify the prospective prediction of our model.
The sensitivity in the subsequent years 2018-2020 achieved 78.1,
68.4, and 77.9%, respectively, while specificity was 89.3, 94.8, and
92.1%, respectively, corresponding to balanced accuracy of
prospective prediction at 83.7, 81.6, and 85.0% (Table 1).

Top predictive features

From the 368 features, the top five predictors include drug/alcohol
use/dependence (CIHI QO07), depression (CIHI Q04), neurotic/
anxiety/obsessive-compulsive disorder (CIHI Q11), Superficial skin
injury/contusion/non-serious burns (CIHI 143), and Depression
from billing claims data. Note that depression from billing claims
data was developed by the authors, independent of CIHI's method
of developing the depression indicator [15]. These features had
relative importance of 1.00, 0.60, 0.46, 0.40, and 0.36, respectively
(Table 2). A score of 1.00 for drug/alcohol dependence indicates it
was the strongest predictor, with other features ranked relative to
this benchmark. Other top-ranked features are consistent with risk
factors reported in the literature, including substance use and
substance use related health utilization, mood and anxiety
disorder related claims, and physician health indicators such as
back pain and skin wounds.

DISCUSSION

In this study, we developed an ML model based on the cohort of
2017 to prospectively predict OpOD in 2018 in the general
population. We report a model performance achieving a balanced
accuracy of 83.7, 81.6, and 85.0% and AUC of 89.2, 86.9, and 89.8%,
when testing the model in 2018, 2019, and 2020 for predicting
OpOD cases in 2019, 2020 and 2021, respectively. To our best
knowledge, this is the first study using population-level data to
make a prospective prediction of individual-level opioid overdose
and verify it longitudinally within a fixed time window. These
results demonstrate that ML-based individualized OpOD predic-
tion using existing population data can provide accurate
prediction of future OpOD cases in the whole population.

The performance of our model is comparable to that of other
large-scale prospective OpOD models using smaller and less
representative samples. For example, Lo-Ciganic et al. [9] built a
three-month prospective prediction OpOD model using the US
Medicaid data and showed a gradient boosting model performed
at 84.1% balanced accuracy for internal validation and 82.8% for
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external validation within the same state. Note that our study
population included the general population, and thus modeling
performance is not directly comparable to studies focused on
predicting OpOD in patient population with a prior episode [19].
Comparing modeling performance requires consideration of
factors such as the definition of the future OpOD outcome, the
predictors, and the scope of the study sample.

It is also worth noting that Canada has a publicly funded,
universal health care system that routinely collects data in all
provinces, and the Canadian Institute for Health Information
synthesized the data and made nationally representative data
accessible [13]. Compared to the US, where up to 9% of the
population is uninsured [20], universal health coverage in Canada
provides broader coverage of the population and consistently
collected objective indicators.

Our model identified several stable predictors across training
models at a population level. Notably, predictors such as CIHI Drug/
alcohol use/dependence (Q07) and CIHI Depression (Q04) surfaced
as consistent indicators across the training models, reinforcing
their relevance as significant risk factors for OpOD, aligning with
findings from Ellis et al. [10], who also identified similar risk factors in
opioid-related outcomes. Despite the known linkage between these
factors and OpOD, none of them alone could accurately predict
future OpOD cases at the individual level. Our study demonstrates
that with a data-driven approach, we can extract sufficient
information between all potential contributing factors and make
such OpOD predictions for the future and for the whole population.

The model's consistent predictors and accuracy offer an
opportunity to develop targeted education, prevention or
intervention strategies for people at high risk of OpOD at the
population level and promote proper utilization of known risk
factors. Pending more converging evidence and support from

Y.S. Liu et al.

future studies as well as overcoming challenges in practical
applications, the models could be integrated into clinical work-
flows as a decision-support tool, flagging patients at risk and
prompting clinicians to review their history in health records. This
use case could enhance decision-making and prevent adverse
outcomes.

Our successful demonstration of OpOD prediction using a
representative, longitudinal data set also suggests the feasibility of
developing a population-level OpOD risk screening tool when
appropriate. Such a tool is especially valuable given that many
OpOD cases may be associated with non-prescription opioids but
interact with the health system previously with other needs (e.g.,
mental health, pain management, and other substance depen-
dence). The model developed using population-level data has the
opportunity to understand the profile of high-risk cases, which
further leads to the potential for generalizations.

For applications in public sectors, our model could potentially
help inform policy on which communities should be engaged
in policy planning, predict changes in OpOD rates, prioritize
interventions for individuals at most significant risk, and help
model costs associated with OpOD rates. With the option to
adjust the weights of predictors and prediction threshold
according to policy needs, our model may facilitate more
efficient resource allocation and better substance use support
programs and community outreach initiatives. All these
potential applications of such a prediction model require
further engagement of stakeholders and community members
in future studies.

Limitations
The current study presents several limitations to be considered
when interpreting the results and drawing conclusions. Firstly, as

1 ROC Curve
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Fig. 2 Model prediction performance tested on cohort data from 2018, 2019, and 2020 to predict opioid overdose cases in 2019, 2020, and
2021, respectively, as shown with the Receiver Operating Characteristics (ROC) Curves. The x-axis represents 1-specificity in a range of 0-1 and

y-axis represents sensitivity in a range of 0-1, where 1 equals 100%.
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the study relies on available administrative health records and
ICD-code-based algorithms to identify OpOD, there might be
missing or incorrect information that could affect the quality and
validity of the results, including missing OpOD events not
interfacing with health care, missing broader public health data
such as vital statistics and laboratory tests. However, the ICD-code-
base algorithm has been shown to have good specificity but
moderate sensitivity [21, 22]. Secondly, the data used in this study
were drawn from one province in Canada. Thus, caution may be
needed to generalize and interpret data from other regions of
North America and the world. However, population-based health
administration data were routinely collected and synthesized in all
Canadian provinces, and the methodology of this study applies to
other Canadian provinces. Thus, the results could be potentially
generalizable across Canada and verified by future studies. Thirdly,
the study employed an under-sampling technique to address the
class imbalance, which might have resulted in the exclusion of
some relevant data, even though we tried to mitigate this by using
50 different sampling models. Lastly, the practical application of
predictive models in clinical settings is challenging due to the
inherent false-positive rates caused by the low prevalence of
opioid overdose. However, the primary value of the model may
not only be in its direct prediction accuracy but also in its ability to
identify high-risk groups. These groups can be prioritized for
preventive interventions, such as education, early treatment of
contributing conditions, and community outreach, where the
consequences of false positives are more controllable. This
population-level stratification approach may offer a feasible path
to leveraging predictive models for public health impact. Future
studies should explore alternative techniques for handling class
imbalance to mitigate the potential loss of information. Our model
demonstrates decent predictive accuracy compared to existing
studies, with balanced accuracy in the 80% range, yet it is
important to note that a significant number of overdoses remain
undetected, which could represent substantial numbers in a large
population. Additionally, even though the model achieved a high
specificity, due to the low prevalence of OpOD, between 5 to 11%
false positive rate (corresponding to between 89.3 to 94.8%
specificity in our three testing cohorts) are still substantial in the
whole population. Thus, it is not yet practical to use these
predictive tools in clinical settings; for example, physicians might
be hesitant to provide opioid medications when indicated for
fear of further increasing the risk of subsequent opioid overdose
[23]. In our data exploration, we could select a higher probability
threshold for classification at the expense of missing more
subjects that will experience OpOD in the following year.
Adjusting cutoffs would likely provide more clinical utility, with
various use cases benefiting from different cutoff values. For
example, in primary care settings, a higher sensitivity may be
preferred to ensure that few cases are missed, while in population-
level risk screening settings, a higher specificity may be more
important to avoid unnecessary interventions (see Fig. 2 to
visualize sensitivity and specificity trade-offs). Future research and
applications may need to specify such trade-offs depending on
different clinical and policy needs.

CONCLUSION

Our study demonstrates that ML-based individualized opioid
overdose prediction using existing population-level data can
accurately predict future opioid overdose cases in the whole
population. Such prediction may have the potential to inform
targeted interventions and policy planning. Our findings empha-
size the need for a multidisciplinary approach to address the
complex interplay of factors contributing to opioid overdose risk
and show the promise of leveraging population-level data for
more effective prevention and intervention strategies for opioid
overdose.
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DATA AVAILABILITY

Due to privacy policy restrictions, individualized data cannot be shared. Data can be
accessed with permission from the Ministry of Health in Alberta, Canada through
www.alberta.ca/health-research or health.inforequest@gov.ab.ca.
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