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Internet Gaming Disorder (IGD) is marked by impaired psychological and social functioning but remains without effective
treatments. Cue exposure therapy (CET) is typically administered during wakefulness to help extinguish addictive memories.
However, recent studies suggest that sleep may be an optimal state for memory modulation. This study aimed to assess the efficacy
of repeated closed-loop exposure to game sounds during UP-state of slow-wave sleep (SWS) on IGD. 84 participants meeting DSM-
5 criteria for IGD were randomly assigned to sleep intervention/control groups (SIG/SCG) or awake intervention/control groups
(AIG/ACG) with two consecutive days of intervention. During SWS of two intervention nights, around 300 sounds were exposed at
slow-wave UP-state. While the awake groups received similar auditory cue exposure during the awake state for two consecutive
days. Cravings, playtime, and P300 amplitude in the cue reactivity task were recorded at baseline, post-intervention, and follow-up
intervals (1, 2, 3, weeks, and 1 month). Results showed that the SIG significantly reduced cravings (p < 0.001), and playtime

(p =0.009) at post-intervention and follow-up, whereas awake CET showed no effect. The SIG exhibited higher low-frequency and
early spindle power, along with lower late spindle power after sound exposure. Notably, the linear increase in sound-elicited late
spindle power across the 20 intervention blocks over two experiment nights was positively correlated with reduced cravings post-
intervention (r=0.54, p = 0.015), especially among participants achieving a craving reduction greater than 30% after one month.
Our findings suggest that closed-loop auditory exposure during SWS presents a promising, non-invasive intervention strategy for

treating IGD, potentially exerting its effects by modulating late spindle power.
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INTRODUCTION

Internet Gaming Disorder (IGD) is characterized by impaired
control over gaming, an increasing priority given to gaming, and
the continuation or escalation of gaming despite negative
consequences [1, 2]. IGD affects approximately 8.8% of adoles-
cents and 10.4% of young adults worldwide [3]. It is included in
both the 11th Revision of the International Classification of
Diseases (ICD-11) and the 5th edition of The Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) [2]. However,
effective treatments for IGD remain limited.

The persistent addictive memory is thought to be the core
factor driving psychological cravings and relapse, even after
prolonged abstinence [4, 5]. Addictive disorders have been treated
by facilitating the extinction of addiction-related memories
through repeated exposure to the addictive substance or related
cues, a method known as cue exposure therapy (CET) [6]. CET has
been widely used to treat addictions such as smoking and alcohol
[7-14], with positive effects on reducing cravings [7, 8, 10-12].
However, recent meta-analyses have suggested that CET has
limited efficacy in reducing cravings and preventing relapse for

substance addictions [15, 16]. Evidence regarding the use of CET
to address addictive memories in IGD is scarce. Only one recent
study showed that a CET-based approach, specifically a retrieval-
extinction procedure, could successfully reduce cravings in
individuals with IGD [17]. Therefore, further research on enhanced
CET-based therapies for IGD is needed.

Sleep is considered an unconscious state for the brain, free
from external distractors and tasks [18]. The memory-related
neural connections could be reorganized (strength or extinction)
during sleep [19, 20]. Recent studies suggest that sleep is an
ideal time for modulating memories through the presentation of
sensory cues, such as tones or odors previously associated with
specific stimuli or events- known as target memory reactivation
(TMR) [21-25]. Research has shown that repeated cue exposure
during slow-wave sleep (SWS) can exert therapeutic effects on
conditions such as post-traumatic stress disorder (PTSD) [26] or
smoking addiction [27], and can promote fear memory extinc-
tion [28, 29]. Thus, sleep, particularly SWS, could be a promising
period to eliminate and rewrite pathological memories uncon-
sciously in IGD.
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During SWS sleep, slow oscillations [SOs, < 2 Hz] and spindles
(12-17 Hz) are key electroencephalogram (EEG) signatures [30-32].
Both SOs and spindles play critical roles in the reactivation and
consolidation of memories [21, 33-35]. SOs are thought to act as
global pacemakers of brain activity during sleep, alternating
between phases of neuronal excitability (UP states) and inhibition
(DOWN states) [33]. Notably, SO UP-states are associated with
increased brain-wide coherence following the learning of
declarative memories [33, 36, 37], which are essential for
processing of information during sleep [38, 39]. Based on these
findings, we hypothesize that the SO UP-state may represent an
optimal period for intervening in the extinction of targeted
addictive memories.

This study aims to investigate whether repeated exposure to
game-related auditory cues (gaCET) during SO UP-states in SWS
effectively reduces cravings and playtime in individuals with IGD.
We also compare these effects of gaCET during wakefulness.
Additionally, we explore the neuroelectrophysiological mechan-
isms underlying the effects of gaCET during sleep on IGD.

METHODS

Ethics approval and consent to participate

This randomized controlled trial was conducted in accordance with the
Declaration of Helsinki and was approved by the Peking University
Institutional Review Board (IRB00001052-23170), with registration at the
Chinese Clinical Trial Registry (ChiCTR2400089928). The study was performed
in Beijing from June 1, 2023, to May 30, 2024. All participants provided
written informed consent prior to enrollment and received a monetary
compensation of 500 RMB after completing four experimental visits.

Participants
The sleep group consisted of 42 IGD individuals from universities in Beijing.
The inclusion criteria were: (1) playing “Honor of Kings” (a massively
multiplayer online competitive game widely popular among Chinese
college students [40]) for more than 21 h per week, (2) meeting 5 or more
of the 9 diagnostic criteria for IGD according to DSM-5 [2], as assessed by
trained medical researchers, (3) being right-handed with normal hearing.
Exclusion criteria included: (1) the Beck Anxiety Inventory score=50, (2) the
Patient Health Questionnaire-9 score>20, (3) the Insomnia Severity Index
score=15, (4) had been diagnosed as chronic neurological or psychiatric
disorders, and (5) other substance dependencies. Participants were
randomly assigned to either the sleep intervention group (SIG) or the
sleep control group (SCG) in a 1:1 ratio according to a computer-generated
randomization schedule. Further details are provided in the Supplement.
The awake group consisted of 42 IGD individuals who were randomly
and evenly assigned to either the awake intervention group (AIG) or the
awake control group (ACG). The inclusion and exclusion criteria were
identical to those of the sleep groups. The CONSORT flow diagram and
experimental design are presented in Fig. 1.

Interventions and procedures

In the pre-experiment questionnaire survey, we found that game players’
cravings peaked between 9 p.m. and 11 p.m. by asking about the time they
most wanted to play games. To minimize the influence of environmental
and circadian factors on cravings, all participants completed online
questionnaires about game cravings and playtime between 9 and
11 p.m. on the evening prior to the experiment (T0).

Sleep groups. On the first experimental night, participants arrived at the
sleep laboratory around 10 p.m. and were prepared for EEG recordings.
They then completed a cue reactivity task (T0). Afterward, they went to
bed, with lights turned off at 11 p.m. Sounds were played when a SO UP-
state was detected after the onset of SWS. The SIG was exposed to
approximately 300 game sounds, while the SCG heard around 300 non-
game sounds, both of which had been presented during the cue reactivity
task prior to sleep. After 8.5 h of sleep, participants were gently awakened
around 7:30a.m. The protocol for the second consecutive experimental
night followed the same procedure as the first night. On the morning
following the two experimental nights (T1), participants completed the cue
reactivity task while undergoing EEG recording (15-min after awakening).
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They then filled out online questionnaires about cravings between 9 and
11 p.m. (T1).

Awake groups. On the first day, participants arrived at the laboratory to
complete the cue reactivity task (T0). They then underwent approximately
50 min of gaCET at almost the same time each day for two consecutive
days. For the AIG, this intervention involved listening to 300 game-related
sounds, while the ACG listened to 300 non-game sounds. On the morning
following the two experimental days (T1), participants returned to the lab
to complete the cue reactivity task under EEG recording. They then filled
out online questionnaires between 9 and 11 p.m. (T1).

Follow-up tests. All participants then completed online questionnaires on
game craving and playtime between 9 and 11 p.m. at 1 week (T2), 2 weeks
(T3), 3 weeks (T4), and 1 month (T5) post-intervention. At the 1-month
follow-up (T5), participants returned to the laboratory to complete the cue
reactivity task under EEG monitoring.

Measurements

Cravings and playtime served as the primary measures of therapeutic effects.
Subjective cravings were assessed using the visual analog scale (VAS) [17, 41],
and the Questionnaire on Gaming Urge Brief Version (QDG-B) [42]. Objective
craving was measured by the mean amplitude of the P300 wave induced by
game stimuli during cue reactivity task [17]. Playtime was quantified by the
amount of time participants spent playing the game each week.

Additional questionnaire assessments included the Pittsburgh Sleep
Quality Index (PSQI) [43], Insomnia Severity Index (ISI) [44], Epworth
Sleepiness Scale (ESS) [45], Morning and Evening Questionnaire 5 (MEQ-5)
[46], Chinese Perceived Stress Scale (CPSS) [47], Brief Sensation Seeking
Scale for Chinese (BSSS-C) [48], Patient Health Questionnaire-9 (PHQ-9)
[49], and Beck Anxiety Inventory (BAI) [50].

Cue reactivity task

The cue reactivity task consisted of 14 sounds (7 game-related, e.g.,
“double kill" and 7 non-game sounds, e.g., “peaceful”) and 70 images (35
game-related and 35 non-game images). Each image was paired with a
corresponding sound. The duration of each sound was approximately 1s,
and all sounds were normalized to a consistent volume of 70 dB. Each trial
began with a 0.8 s fixation, followed by the presentation of an image in the
center of the screen for 2's, accompanied by the sound. After participants
rated their craving levels, the next trial commenced. The paired stimuli
were presented in a randomized order.

EEG data recording

The EEG signals were recorded using a 32-channel Smarting EEG system
(mBrainTrain LLC, Serbia) with electrodes positioned according to the
International 10-20 system. F3/F4, C3/C4, and O1/02 were selected for online
sleep monitoring, with FCz used as the online reference electrode. Two EOG
channels were placed below the left and right eyes to monitor eye
movements. The online EEG data were bandpass filtered from 0.5-30 Hz, with
a 500 Hz sampling rate. Sleep stages were determined offline based on EEG
recordings from F3, F4, C3, C4, O1, 02, and EOG for 30 s epochs, using
standard criteria [51]. Total sleep time (TST) and time spent in different sleep
stages (wake, sleep stages 1, 2, 3, and REM sleep) were determined by an
experienced researcher for the two experiment nights.

EEG data preprocessing

The 32-channel EEG data were preprocessed using EEGLAB, a toolbox
integrated within MATLAB 2021b. First, raw EEG data were filtered with a
bandpass of 0.5-30Hz. Next, bad channels were visually identified and
marked. The continuous sleep EEG data were then segmented into epochs
(—1-5.55) relative to the onset of the sound. These epochs were used for
stimulus-locked event-related potentials (ERPs) and time-frequency
analyses. The EEG data from the cue reactivity task was segmented into
epochs (—1-2s) for ERP analysis. Noisy EEG channels were identified
through visual inspection, discarded, and interpolated using a weighted
average of neighboring channels. The data were re-referenced to the
average of all non-marked electrodes after removing M1 and M2. Localizer
data were subjected to independent component analysis (ICA) and
components associated with eye blinks and movements were identified
and rejected. Four participants in the sleep groups and three participants
in the awake group, with more than 30% unusable epochs during the cue

Molecular Psychiatry (2025) 30:4151-4160



A Sleep groups

109 Potential participants assessed for eligibility

63 Excluded
56 Did not meet inclusion criteria
7 Refused to participate
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Awake groups

87 Potential participants assessed for eligibility

45 Excluded
43 Did not meet inclusion criteria
2 Refused to participate
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reactivity task at T1 or T5. These participants were excluded from the
analysis. As in other studies focusing on the coordination of SOs and
spindles, both oscillations and P300 amplitude (250-500 ms) showed
strong presence over central areas, making Cz the optimal target zone.
Therefore, the subsequent ERP and time-frequency analyses were
performed using data from Cz.

Molecular Psychiatry (2025) 30:4151-4160

EEG date analysis

For ERPs and time-frequency analyses, we used the ERPLAB and FieldTrip
toolboxes for EEG analysis in MATLAB 2021b. For ERPs, artifact-free short
epochs were averaged and baseline corrected (—0.2-0s). The P300
amplitude was calculated by averaging the amplitude within the peak
time window (250-500 ms) evoked by the game auditory cue stimuli.
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Fig. 1

CONSORT flow diagram and experimental design. A CONSORT flow diagram. B Experimental design. a. Timeline of sleep groups:

Participants were split into two groups (SIG and SCG) and spent two consecutive nights in the sleep laboratory. SIG participants were exposed
to approximately 300 game-related sounds per night, while SCG participants heard around 300 non-game-related sounds. Online game
craving questionnaires and cue reactivity tasks were administered before and after the intervention. b. Timeline for awake groups. Participants
were divided into two groups (AlIG and ACG), On day 1, they completed online game craving questionnaires, a cue reactivity task, and a 50-
min cue-exposure intervention (approximately 300 game-related sounds for AlG and 300 non-game-related sounds for ACG). On day 2, the
cue-exposure intervention was repeated. On day 3, participants took the cue reactivity task and completed the craving questionnaires again.
All four groups then filled out the online game craving questionnaires at 1 (T2), 2 (T3), 3 weeks (T4), and at 1 month (T5) post-intervention
follow-up. Participants returned to the laboratory for the cue reactivity task 1 month later. SIG, sleep intervention group; SCG, sleep control

group; AlG, awake intervention group; ACG, awake control group.

For the time-frequency analysis of sleep EEG data, continuous wavelet
transformation was applied with variance cycles (three cycles at 1 Hz
in length, increasing linearly up to 15 cycles at 30 Hz) on sleep epochs
(—1-6's) to obtain power in the frequency range of 1-30 Hz, with 0.5 Hz
frequency steps and a 5ms time window. Epochs were cropped
to remove edge artifacts after the time-frequency transformation.
Power data were then normalized for each frequency bin and each
channel by subtracting the mean power from the baseline time windows
([—0.4-—0.2 5] relative to the cue onset) and dividing by the same
baseline mean power. Finally, the power data were re-segmented into
5.5 s epochs (i.e., [0.5-5 s] relative to the cue onset).

Phase-locked closed-loop auditory stimulation

The SO UP-state closed-loop auditory exposure was administered using an
additional EEG recording system comprising a “Digitimer D360” EEG
amplifier (Digitimer LTD, Hertfordshire, UK) and a “Power1401mk 2" high-
performance data acquisition interface (Cambridge Electronic Design Ltd,
UK), connected to a dedicated PC for online detection of SOs and auditory
stimulation [37]. EEG signals could be viewed on the data acquisition PC
using dedicated software Spike2 (Cambridge Electronic Design Ltd). Given
that SOs predominantly originate in frontal regions [52, 53], the detection
was based on recordings from Fpz. These recordings were referenced
against linked earlobes, and bandpass-filtered in the slow-wave range (0.5-
4 Hz) at a sampling rate of 200 Hz. For a signal to qualify as an SO UP-state, it
needed to rise, exceeded a+35uV threshold, and show a positive-to-
negative slope change, marking a local maximum [33]. When a positive SO
peak was detected, auditory stimulation at 47 dB was triggered, after which
the protocol paused for 8 s. Stimulation was paused if the participant entered
REM or N1 sleep, exhibited signs of arousal or awoke. The procedure was set
to conclude by researcher either (1) when approximately 300 sounds had
been delivered or (2) at 03:00 a.m., whichever occurred first.

Statistical analysis

The sample size was estimated using G*Power [54]. The expected effect size
of the primary outcome measure between the two groups after treatment
was 04, with a significance level (a) of 0.05. The primary outcome was
measured 6 times (baseline, after intervention, 1 week, 2 weeks, 3 weeks, and
1-month [follow-up endpoint] after initiation), with an estimated correlation
of 0.5 for repeated measurements. The total sample size required to ensure
90% statistical power was calculated to be 42.

Variance in craving measures (VAS, QGU-B, P300 amplitude) and
playtime were assessed using repeated-measures ANOVA with factors of
group and time, applying Bonferroni correction for multiple comparisons.
Independent sample t-tests were conducted to compare power across the
three frequency clusters and sleep characteristics. To examine relationships
between pairs of variables, Pearson’s correlation analysis and linear
regression modeling were used. All p-values were two-tailed, with
statistical significance set at p <0.05. Analyses were carried out using
SPSS 24 and MATLAB (2021b).

The 600 cues reactivity of each participant across the two experimental
nights were averaged and divided into 20 consecutive blocks. To
capture the optimal dynamic fluctuations in the power of the three main
frequency clusters across the 20 consecutive blocks, we applied the locally
weighted scatterplot smoothing (LOWESS) method for fitting.

RESULTS

Basic and sleep characteristics

A total of 84 IGD participants (39 [46.43%] female; mean age
[SD] = 21.09 [2.83] years) were randomly and evenly assigned to
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the SIG, SCG, AIG, and ACG groups. No significant differences were
observed in baseline characteristics across the four groups
(Table 1), and sleep characteristics were also found to have no
significant differences between the SIG and the SCG groups
(Table 1).

Effects of gaCET during SWS on IGD

Across sessions, the statistical analysis revealed significant effects
on self-reported VAS scores (interaction effect: Fs, 3 =239,
p=0.039; group main effect: F;, 40)=7.28, p=0.01; time main
effect: F5, 36y=10.40, p =0.003) and QGU-B (interaction effect:
Fis, 36y = 4.55, p = 0.003; group main effect: F(;, 40)=5.06, p = 0.03;
time main effect: Fs, 36 =6.73, p<0.001). Post hoc analysis
indicated that within the SIG, the VAS and QGU-B scores were
significantly reduced at all follow-up time points compared to TO
(T1 to T5, p<0.05). Additionally, the SIG showed significantly
lower VAS scores than the SCG at each follow-up, and lower QGU-
B scores at T1, T3, and T4 (p < 0.05) (Fig. 2A and B).

Similarly, the SIG showed a significant reduction in the P300
amplitude during the cue reactivity task (the objective craving
index) at T1 and T5 compared to baseline (T0), (time main effect:
F2, 36)=5.88, p < 0.01) (Fig. 2C). Playtime in the SIG also decreased
significantly at follow-up points (T2 to T5) compared with T0, and
was notably lower than in the SCG at T4 and T5 (interaction effect:
Fis, 36 = 4.84, p = 0.03, group main effect: F; 40y =4.38, p=0.04;
time main effect: F(5, 36y = 6.79, p =0.01) (Fig. 2D).

The effects of gaCET during awake on IGD

In both the AIG and ACG, there were no significant changes in the
primary measures- VAS scores (Fig. 2E), QGU-B scores (Fig. 2F),
P300 amplitude (Fig. 2G), and playtime (Fig. 2H)- from baseline
(TO) either immediately post-intervention or during the follow-up
period. Additionally, no significant group differences were found
in these measures (p > 0.05).

EEG responses to game auditory cues during sleep and their
correlation with therapeutic effects

Both game-related cues in the SIG and non-game cues in the SCG
elicited significantly increased EEG power across the 2-20 Hz range
during the first 1.5 s after cue presentation (Figure S1A and B). And we
also examined the cue-induced ERP plots by averaging all trials of
sound exposure. The onset of sound playback was marked as 0 ms. It
is obvious that for both the SIG and SCG, the sound presentation
coincided with the UP-state of the SO (Figure S1A and B).

Notably, compared to the SCG, SIG exhibited a significant
increase in a low-frequency power cluster (2-7 Hz at 0.2-0.5 s after
cue onset, t=3.79, p <0.001) and an early spindle power cluster
(13-17 Hz at 0.5-1.2 s after cue onset, t =2.29, p = 0.03). Further-
more, along with a significant reduction in late spindle power (13-
17 Hz at 1.8-2.6 s after cue onset; t = —2.08, p = 0.04) (Fig. 3A-D)
across the two intervention nights.

We then examined correlations between cue-evoked EEG
power and intervention effects in the SIG. For the subjective
craving index, low-frequency power was negatively correlated
with reductions in VAS scores at T4 (r=—-0.5, p=0.01) and T5
(r=—0.38, p =0.04). Early spindle power also showed a negative

Molecular Psychiatry (2025) 30:4151-4160
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Table 1. Clinical and sleep characteristics in the different groups.

Sleep Sleep control Awake Awake control F/t/x2 p
intervention group intervention group
group group
Basic Total (Female) 21 (11) 21 (11) 21 (8) 21 (9) X2 =0.53 0.91
characteristics Age 21.14+2.50 21.70 +4.98 21.00 + 1.86 20.52 +1.99 F=038 077
BAI 29.76 £ 5.85 24.75+3.14 29.75+7.99 28.81+7.05 F=243 0.07
PHQ-9 3.81+£4.52 442 +4.41 5.62 +4.09 5.05+4.04 F=1.18 0.32
PSQI 9.91+1.73 945+ 1.73 10.10 + 1.94 1042+ 1.54 F=1.13 0.34
MEQ-5 12.67 £ 2.11 11.45+2.67 12.75+3.24 12.52+3.03 F =0.95 0.42
ISI 6.29 £3.54 7.35+553 8.05+4.93 6.95 +5.38 F =047 0.71
ESS 10.14 + 4.56 10.60 +4.70 9.40+5.34 9.24 £ 4.69 F =037 0.78
BSSS-C 25.00+4.11 25.58+6.19 2445 +5.66 23.86+5.09 F=0.28 0.84
CPSS 43.24 +7.06 39.63 +£5.20 40.20 + 5.60 38.65+9.23 F=1.51 0.22
First night WASO (%) 6.50 £5.72 7.22+5.32 / / t = 0.59 0.56
characteristics Sleep latency 12.95+9.89 12,07 £10.10 / / t=026 080
(min)
N1 (%) 2.01£1.66 3.27 £3.68 / / t=-1.27 0.21
N2 (%) 46.17 £9.80 47.77 £7.40 / / t=-0.55 0.59
N3 (%) 20.98 + 6.88 19.85 +6.57 / / t = 0.50 0.62
REM (%) 24.35+9.50 21.90+3.79 / / t=1.04 0.31
Total time 507.62 £51.63 501.49 £ 78.63 / / t=0.28 0.78
(min)
Number 300.00 + 88.56 290.85 +78.01 / / t = 0.36 0.14
stimulations
Second night WASO (%) 429+5.37 346 +297 / / t = 0.59 0.56
characteristics Sleep latency 0.87 +6.47 9.98+6.78 / / t=-005 096
(min)
N1 (%) 2.73+1.94 249+1.92 / / t=0.39 0.70
N2 (%) 52.66+7.10 53.11+£6.75 / / t=-0.20 0.84
N3 (%) 17.40 £ 5.80 17.98 + 6.04 / / t=-0.31 0.76
REM (%) 2291 +4.79 2295+ 3.51 / / t=-0.03 0.98
Total time 505.10 £ 46.44 516.78 £40.53 / / t=-0.86 0.40
(min)
Number 314.62 £67.80 285.00 £ 57.07 / / t=1.51 0.09
stimulations

Data are presented as means + standard deviations.
BAIl beck anxiety inventory, PHQ-9 patient health questionnaire-9, PSQI Pittsburgh sleep quality index, MEQ-5 morning and evening questionnaire 5, IS/
insomnia severity index, ESS epworth sleepiness scale, BSSS-C brief sensation seeking scale for Chinese, CPSS Chinese perceived stress scale, WASO wake-time

after sleep onset, N7 NREM sleep stage 1, N2 NREM sleep stage 2, N3 NREM sleep stage 3, REM rapid eye movement.

correlation with decreased VAS scores at T4 (r=—0.45, p =0.02).
Similarly, both low-frequency power (r=—-0.49, p=0.01 at T4;
r=—0.44, p=0.02 at T5) and the early spindle power (r= —0.43,
p =0.02 at T4) were negatively correlated with decreased QGU-B
scores. Conversely, late spindle power was positively correlated
with reduced VAS scores at T1 (r=0.38, p =0.04) and T2 (r =04,
p =0.03) (Fig. 3E and F).

The objective craving index showed a consistent correlation
pattern with intervention effects in the SIG. Early spindle power
was negatively correlated with changes in P300 amplitude at
T1(r=—-0.54, p=0.01). Additionally, late spindle power was
positively correlated with reductions in playtime (r=0.41,
p=0.03 at T3; r=0.43, p=0.03 at T4) and with P300 amplitude
(r=0.41, p=0.03 at T1; r=0.47, p =0.03 at T5) (Fig. 3G and H).

There was no significant correlation between the three
prominent EEG power clusters and subjective and objective
changes in the SCG, except for a significant positive correlation
between the late spindle power and the changes in VAS scores at
T1 (r=0.48, p =0.03) (Figure S2).

Molecular Psychiatry (2025) 30:4151-4160

Dose-dependent EEG response across the two

intervention nights

Further analyses using repeated-measures ANOVA to assess the
three frequency clusters’ power in the first night and the second
night between the SIG and SCG, revealed a significant main
effect of the group on the power of the low-frequency power
(Fa, s0)=12.92, p=0.001), the early spindle power (F;, go)=4.95,
p=0.029), and the late spindle power (F; go =8.57, p=0.005).
However, the interaction and intervention time effects were not
statistically significant (p > 0.05) (Figure S3).

To delve deeper into the impact of the intervention time, we
segmented each participant’s cue exposure trials over two nights
into 20 intervention blocks. Across the 20 intervention blocks,
game auditory cues evoked a descending parabolic trend in low-
frequency power (Fig. 4A) and early spindle power (Fig. 4B).
Notably, late spindle power exhibited a significant linear correla-
tion with the intervention blocks (*=0.31, p=0.011) (Fig. 4C).
Additionally, the slope of the linear increase in late spindle power
was positively correlated with reductions in VAS scores (r=0.54,

SPRINGER NATURE

4155



X. Yang et al.

4156

@ SIG
& SCG

@ SIG

20 * sk

VAS Scores
PO
*
*
QGU-B scores
8 3

8 - AG
& ACG

F o
S S

P300 amplitude
O
Playtime (h)
3

VAS Scores
a
QGU-B scores

T
S & .S ¥ &
ST EFLES ST EFEES

& @é & & & & & & °o° &£ &
NI Y & &

A S A2 & @ (@« X ‘{&x

@ T o ¥

& SCG

@ AG
& ACG

” Kk -~ SIG 55 - SIG
—_——
& * -= SCG & SCG
s z
= % 20
Q
E 2 £
©
S E' 10 * *
S 1 o
o
T T T T T T T T
o 2 o &
RS & & &K S
g & & N A AR
& & r & O )
s o & & ¢ o
PO NI
¢ v & ¥
& v v
4 & AIG 30 @ AIG

& ACG

T T T T

4 N o o o >

P & o & & & & &
& & & 2 e & 8 <&
i & e X4 o o
W@ & A4 < & @S
é‘& ¢ (@( R &\é
& v A S &

Fig. 2 Group differences in cravings and playtime at pre- and post-intervention, and follow-up. A VAS score changes in SIG and SCG at
baseline, post-intervention, and at 1, 2, 3 weeks, and 1 month follow-up. B QGU-B score changes in SIG and SCG at baseline, post-intervention,
and at 1, 2, 3 weeks, and 1 month follow-up. € P300 mean amplitude changes in SIG and SCG at baseline, post-intervention, and at 1 month
follow-up. D Playtime changes in SIG and SCG at baseline, post-intervention, and at 1, 2, 3 weeks, and 1 month follow-up. E VAS score changes
in AlG and ACG at baseline, post-intervention, and at 1, 2, 3 weeks, and 1 month follow-up. F QGU-B score changes in AlG and ACG at baseline,
post-intervention, and at 1, 2, 3 weeks, and 1 month follow-up. G P300 mean amplitude changes in AIG and ACG at baseline, post-
intervention, and at 1-month follow-up. H Playtime changes for AIG and ACG at baseline, and at 1, 2, 3 weeks, and 1 month follow-up.
* p <0.05; **: p <0.01. All bar graphs display mean (xSEM). SIG, sleep intervention group; SCG, sleep control group; AlG, awake intervention

group; ACG, awake control group.

p = 0.015) (Fig. 4D) and QGU-B scores (r =0.49, p = 0.03) (Fig. 4E)
at T1 in SIG. The y-intercept of the linear trend for late spindle
power also showed a significant positive correlation with VAS
score changes at T4 (r=0.45, p =0.04) (Fig. 4F). In contrast, for
SCG, no significant linear or curvilinear changes in the three cue-
evoked EEG power clusters were observed across the 20
intervention blocks (Figure S4).

Distinct EEG responses between better and weaker
therapeutic effects

We identified two distinct clusters of therapeutic effectiveness
based on VAS and QGU-B scores at the 1-month follow-up in SIG.
Participants were categorized into two groups based on the
reduction in QGU-B scores at 1-month post-intervention. Those
with a decrease of less than 30% from baseline were assigned to
the ‘weaker’ group (11 participants), while those with a decrease
of more than 30% were placed in the ‘better group (10
participants) (Figure S5A). A significant interaction between time
and group was observed, with differences between weaker and
better groups (F, 19p=35.51, p<0.001 for VAS, F; 19 =40.94,
p <0.001 for QGU-B) (Fig. 4G and H).

There were no significant differences between the better and
weaker groups regarding basic clinical features or cue-evoked EEG
power during sleep (p>0.05, Supplementary Table S1,
Figure S5B-D). Notably, the linear increase in late spindle power
across the 20 intervention blocks remained significant in the
better group (*=0.23, p=0.03), but not in the weaker group
(P =0.03, p=0.42) (Fig. 4l).

DISCUSSION
To our knowledge, this is the first preliminary study to evaluate
the therapeutic effects of repeated auditory cue exposure during

SPRINGER NATURE

sleep for IGD. Our findings demonstrate that repeated closed-loop
exposure to game-related sounds during the SO Up-state of SWS
is both technically feasible and safe, resulting in a significant
reduction in cravings and playtime for IGD individuals lasting at
least one month. Notably, this effect was not observed during
awake sessions. Mechanistic insights revealed that game-related
cues elicited increased low-frequency and early spindle power,
alongside reduced late spindle power, all of which were
associated with decreased cravings and playtime in the SIG.
Particularly, a dose-dependent escalation of late spindle power
across intervention blocks was positively correlated with the
therapeutic outcomes.

Our findings indicated that the same dose of sound CET
intervention was more effective during sleep than wakefulness.
This finding aligns with prior research on olfactory CET for
disorders involving pathological memories, such as smoking [27].
Sleep is akin to an anesthetic state of unconsciousness, whereas
wakefulness represents a state of consciousness [18]. According to
the consciousness-dependent inhibition theory [55], CET during
sleep may encounter less resistance, thereby enhancing
extinction-based effects on pathological memories, compared to
conscious CET reactivation while awake, which may involve
greater conscious inhibition. This suggests that SWS presents a
more receptive and modifiable state for the extinction of
pathological memories and behaviors than wakefulness. More-
over, the lack of efficacy during wakefulness underscores the
limitations of traditional CET for addiction [15, 16, 56].

Regarding neuroelectrophysiological mechanisms, game-
related sounds presented during SWS significantly elevated low-
frequency and early spindle power, consistent with findings from
prior TMR studies [26, 57-62]. And similar oscillatory increases
were associated with memory reactivation and retention
[21, 33, 61, 63]. In this study, cue-elicited early spindle and
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Fig. 3 Time-frequency difference and its correlation with cravings. A Top panel: TFR of responses to game-related cues versus non-game
cues over two nights. Bottom panel: topographical plots showing game-related cue-elicited low-frequency power, early spindle power, and
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Fig. 4 Fitting curve of power in three frequency clusters across intervention blocks and its correlation with therapeutic effects. A A
quadratic trajectory of low-frequency power across 20 intervention blocks in the SIG. B A quadratic trend for early spindle power across 20
intervention blocks in the SIG. C A significant linear trend for late spindle power across 20 intervention blocks in the SIG. D The slope of the
linear trend for late spindle power across 20 intervention blocks positively correlates with changes in VAS scores in the SIG at T1. E The slope
of the linear trend for late spindle power across 20 intervention blocks positively correlates with changes in GQU-B scores in the SIG at T1.
F The y-intercept of the linear trend for late spindle power across 20 intervention blocks positively correlates with changes in VAS scores in the
SIG at T4. G Mean (£SEM) VAS scores for the better and weaker groups at baseline and after one month. H Mean (£SEM) QGU-B scores for
the better and weaker groups at baseline and after one month. I The linear trend of the late spindle power across 20 intervention blocks in the
better and the weaker groups. ***: p < 0.001. SIG, sleep intervention group.

low-frequency power negatively correlated with the therapeutic
effects of sleep-based gaCET, suggesting they may represent
subconscious reactivation of cravings. Additionally, the observed
inverted U-shape pattern in these power components across
intervention blocks may reflect an initial rise in subconscious
cravings followed by a decline as the intervention progresses.
Aligned with previous studies [23], there was a significant
reduction in late spindle power (1.8-2.6s) following target cues
exposure compared to control cues during SWS. The reduction in
late spindle power in response to game-related sounds may be
due to the natural spindle occurrence rhythm [64], where stronger

SPRINGER NATURE

early spindle activity initiates a refractory period (3-6s) that
reduces the likelihood of late spindles. While prior evidence has
highlighted the role of cue-elicited late spindle power in memory
consolidation [23]. Our findings, in line with retrieval-induced
extinction theory [65, 66], in which repeated retrieval of selected
game-related memories would recruit the top-down inhibitory
control, specifically the late spindle power, leading to the reform
of these game-related memories and the decrease in cravings.
Furthermore, this cue-related activity in late spindle power
reinforces the dose-dependent extinction effects and individual
variability in response to auditory CET during sleep.

Molecular Psychiatry (2025) 30:4151-4160



Our study has some limitations. First, our findings need
validation through a double-blind approach to ensure robustness.
Second, it remains to be seen if these findings apply to IGD
associated with other game genres. Third, in order to enhance the
participants’ willingness to take part in this experiment, we did not
require the subjects to undergo sleep adaptation on the first
night. Fourth, as some studies suggest that cue exposure during
both the UP-state and DOWN-state of SO may aid in memory
extinction [67], further investigation is warranted to explore the
effects of cue exposure during SO DOWN-state in IGD. Addition-
ally, further interventions targeting cue-evoked late spindle power
are necessary to clarify the causative mechanisms involved.

In conclusion, our findings indicate that closed-loop repeated
exposure to game-related sounds during SO UP-state in SWS
presents a promising approach for reducing cravings and playtime
in IGD individuals, with effects lasting at least one month. Cue-
evoked late spindle power appears to play a critical role in
facilitating this therapeutic outcome. This study provides research
evidence for the special period and neural mechanism of
unconscious memory intervention during sleep.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
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