Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal microstructural changes following electroconvulsive therapy in severe depression

Abstract

Electroconvulsive therapy (ECT) induces hippocampal volume increases in depressed patients, potentially reflecting neuroplasticity. We hypothesized that Neurite Orientation Dispersion and Density Imaging (NODDI) could provide in vivo evidence of hippocampal neuroplasticity following ECT. This longitudinal study evaluated 43 depressed patients undergoing ECT and 24 controls. MRI and clinical assessments were performed at baseline (V1), after 5 sessions (V2), and post-treatment (V3). Evaluations included a 3 T MR-scan with 3DT1-weighted and multi-shell diffusion (b = 200/1500/2500 s/mm², 30/45/60directions) sequences. Q-ball, Diffusion Tensor, and NODDI models provided: axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), fractional anisotropy (FA), generalized FA (GFA), neurite density index (NDI), isotropic fraction (Fiso), and orientation dispersion index (ODI). FreeSurfer extracted whole hippocampal and subfield volumes from T1-weighted images. Longitudinal changes were assessed with linear mixed-effect models. 107 MRIs from patients and 24 MRIs from controls were analyzed. ECT induced significant bilateral hippocampal volume increases (p < 0.001). Group comparisons showed consistently higher FA, lower GFA and ODI in patients compared to controls at all time-points. Following ECT, significant diffusion changes included decreased hippocampal GFA, FA, AD, MD and Fiso, along with increased ODI and NDI. NDI and Fiso changes were localized to the dentate gyrus but not the hippocampal tail. ECT responders showed a significant right hippocampal volume increase at V2 compared to non-responders. After ECT, hippocampal volume increases are accompanied by bilateral changes in NODDI parameters, particularly in the dentate gyrus, consistent with hippocampal neuroplasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Image processing steps of the 3D T1-w and diffusion-weighted data.
Fig. 2: Volumes of the whole hippocampus, dentate gyrus, and hippocampal tail over time in depressed patients across three time points and in healthy controls.
Fig. 3: Changes in whole Hippocampus DTI metrics over time in depressed patients across three time points and in healthy controls.
Fig. 4: Changes in whole Hippocampus NODDI metrics over time in depressed patients across three time points and in healthy controls.
Fig. 5: Early hippocampal volumetric changes in responders vs. non-responders to ECT.

Similar content being viewed by others

Data availability

The dataset analyzed during the current study are not publicly available but are available from the corresponding author upon motivated request.

References

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–50.

    Article  PubMed Central  Google Scholar 

  2. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR*D) trial: a review. Can J Psychiatry Rev Can Psychiatr. 2010;55:126–35.

    Article  Google Scholar 

  3. UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet Lond Engl. 2003;361:799–808.

    Article  Google Scholar 

  4. Loo CK, Garfield JBB, Katalinic N, Schweitzer I, Hadzi-Pavlovic D. Speed of response in ultrabrief and brief pulse width right unilateral ECT. Int J Neuropsychopharmacol. 2013;16:755–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kaster TS, Vigod SN, Gomes T, Sutradhar R, Wijeysundera DN, Blumberger DM. Risk of serious medical events in patients with depression treated with electroconvulsive therapy: a propensity score-matched, retrospective cohort study. Lancet Psychiatry. 2021;8:686–95.

    Article  PubMed  Google Scholar 

  6. Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci Off J Soc Neurosci. 2 mai. 2007;27:4894–901.

    Article  CAS  Google Scholar 

  7. Smitha JSM, Roopa R, Khaleel N, Kutty BM, Andrade C. Images in electroconvulsive therapy: electroconvulsive shocks dose-dependently increase dendritic arborization in the CA1 region of the rat hippocampus. J ECT. 2014;30:191–2.

    Article  PubMed  Google Scholar 

  8. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.

    Article  PubMed  Google Scholar 

  9. Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12.

    Article  CAS  PubMed  Google Scholar 

  10. Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, et al. Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimulat. 2021;14:927–37.

    Article  Google Scholar 

  11. Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry. 2018;84:574–81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nuninga JO, Mandl RCW, Boks MP, Bakker S, Somers M, Heringa SM, et al. Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry. 2020;25:1559–68.

    Article  PubMed  Google Scholar 

  13. Loef D, Tendolkar I, van Eijndhoven PFP, Hoozemans JJM, Oudega ML, Rozemuller AJM, et al. Electroconvulsive therapy is associated with increased immunoreactivity of neuroplasticity markers in the hippocampus of depressed patients. Transl Psychiatry. 2023;13:1–11.

    Article  Google Scholar 

  14. Xie XH, Xu SX, Yao L, Chen MM, Zhang H, Wang C, et al. Altered in vivo early neurogenesis traits in patients with depression: Evidence from neuron-derived extracellular vesicles and electroconvulsive therapy. Brain Stimul Basic Transl Clin Res Neuromodulation. 2024;17:19–28.

    Google Scholar 

  15. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–30.

    Article  PubMed  Google Scholar 

  16. Assaf Y. Imaging laminar structures in the gray matter with diffusion MRI. NeuroImage. 2019;197:677–88.

    Article  PubMed  Google Scholar 

  17. Kim H, Shon SH, Joo SW, Yoon W, Lee JH, Hur JW, et al. Gray matter microstructural abnormalities and working memory deficits in individuals with Schizophrenia. Psychiatry Investig. 2019;16:234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee JS, Kim CY, Joo YH, Newell D, Bouix S, Shenton ME, et al. Increased diffusivity in gray matter in recent onset schizophrenia is associated with clinical symptoms and social cognition. Schizophr Res. 2016;176:144–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61:1000–16.

    Article  PubMed  Google Scholar 

  20. Nazeri A, Schifani C, Anderson JAE, Ameis SH, Voineskos AN. In vivo imaging of gray matter microstructure in major psychiatric disorders: opportunities for clinical translation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:855–64.

    PubMed  Google Scholar 

  21. Sato K, Kerever A, Kamagata K, Tsuruta K, Irie R, Tagawa K, et al. Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain. Acta Radiol Open. 2017;6:2058460117703816.

    PubMed  PubMed Central  Google Scholar 

  22. Giachetti I, Padelli F, Aquino D, Garbelli R, De Santis D, Rossini L, et al. Role of NODDI in the MRI characterization of hippocampal abnormalities in temporal lobe epilepsy. Neurology. 2022;98:e1771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chau Loo Kung G, Chiu A, Davey Z, Mouchawar N, Carlson M, Moein Taghavi H, et al. High-resolution hippocampal diffusion tensor imaging of mesial temporal sclerosis in refractory epilepsy. Epilepsia. 2022;63:2301–11.

    Article  PubMed  Google Scholar 

  24. Lam HW, Patodia S, Zeicu C, Lim YM, Mrzyglod A, Scott C, et al. Quantitative cellular pathology of the amygdala in temporal lobe epilepsy and correlation with magnetic resonance imaging volumetry, tissue microstructure, and sudden unexpected death in epilepsy risk factors. Epilepsia. 2024;65:2368–85.

    Article  PubMed  Google Scholar 

  25. Ota M, Noda T, Sato N, Hidese S, Teraishi T, Setoyama S, et al. The use of diffusional kurtosis imaging and neurite orientation dispersion and density imaging of the brain in major depressive disorder. J Psychiatr Res. 2018;98:22–9.

    Article  PubMed  Google Scholar 

  26. Haykal S, Invernizzi A, Carvalho J, Jansonius NM, Cornelissen FW. Microstructural visual pathway white matter alterations in primary open-angle glaucoma: a neurite orientation dispersion and density imaging study. AJNR Am J Neuroradiol. 2022;43:756–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Villemonteix T, Guerreri M, Deantoni M, Balteau E, Schmidt C, Stee W, et al. Sleep-dependent structural neuroplasticity after a spatial navigation task: a diffusion imaging study. J Neurosci Res. 2023;101:1031–43.

    Article  CAS  PubMed  Google Scholar 

  28. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20:870–88.

    Article  PubMed  Google Scholar 

  29. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–219.

    Article  PubMed  Google Scholar 

  30. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med. 2007;58:497–510.

    Article  PubMed  Google Scholar 

  31. Perrin M, Poupon C, Rieul B, Leroux P, Constantinesco A, Mangin JF, et al. Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner. Philos Trans R Soc B Biol Sci. 2005;360:881–91.

    Article  Google Scholar 

  32. Fischl B. FreeSurfer. NeuroImage. 2012;62:774–81.

    Article  PubMed  Google Scholar 

  33. Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, et al. FreeSurfer-based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts. Hum Brain Mapp. 2022;43:207–33.

    Article  PubMed  Google Scholar 

  34. Argyelan M, Deng ZD, Ousdal OT, Oltedal L, Angulo B, Baradits M, et al. Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression. Mol Psychiatry. 20 nov 2023.

  35. Gbyl K, Støttrup MM, Mitta Raghava J, Xue Jie S, Videbech P. Hippocampal volume and memory impairment after electroconvulsive therapy in patients with depression. Acta Psychiatr Scand. 2021;143:238–52.

    Article  PubMed  Google Scholar 

  36. Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry J Ment Sci. 2018;212:19–26.

    Article  Google Scholar 

  37. Wilkinson ST, Sanacora G, Bloch MH. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:327–35.

    PubMed  PubMed Central  Google Scholar 

  38. Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, et al. Brain changes induced by electroconvulsive therapy are broadly distributed. Biol Psychiatry. 2020;87:451–61.

    Article  PubMed  Google Scholar 

  39. Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand. 2016;133:154–64.

    Article  CAS  PubMed  Google Scholar 

  40. Yrondi A, Nemmi F, Billoux S, Giron A, Sporer M, Taib S, et al. Significant decrease in hippocampus and amygdala mean diffusivity in treatment-resistant depression patients who respond to electroconvulsive therapy. Front Psychiatry [Internet]. 2019 [cité 18 août 2022];10. Disponible sur: https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00694.

  41. Nuninga JO, Mandl RCW, Froeling M, Siero JCW, Somers M, Boks MP, et al. Vasogenic edema versus neuroplasticity as neural correlates of hippocampal volume increase following electroconvulsive therapy. Brain Stimulat. 2020;13:1080–6.

    Article  Google Scholar 

  42. Wang Z, Zhang S, Liu C, Yao Y, Shi J, Zhang J, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke. Magn Reson Imaging. 2019;57:28–33.

    Article  PubMed  Google Scholar 

  43. Batalle D, O’Muircheartaigh J, Makropoulos A, Kelly CJ, Dimitrova R, Hughes EJ, et al. Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. NeuroImage. 2019;185:764–75.

    Article  PubMed  Google Scholar 

  44. Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging. 2010;29:1626–35. https://pubmed.ncbi.nlm.nih.gov/20304721/.

    Article  PubMed  Google Scholar 

  45. Wu C, Jia L, Mu Q, Fang Z, Hamoudi HJAS, Huang M, et al. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry. 2023;23:540.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Holikova K, Selingerova I, Pospisil P, Bulik M, Hynkova L, Kolouskova I, et al. Hippocampal subfield volumetric changes after radiotherapy for brain metastases. Neuro-Oncol Adv. 2024;6:vdae040.

    Article  Google Scholar 

  47. Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol. 2020;49:3–16.

    Article  PubMed  Google Scholar 

  48. Kempermann G, Song H, Gage FH. Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol. 2015;7:a018812.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci. 2004;19:234–46.

    Article  PubMed  Google Scholar 

  50. Imoto Y, Segi-Nishida E, Suzuki H, Kobayashi K. Rapid and stable changes in maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive treatment. Mol Brain. 2017;10:8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou Y, Su Y, Li S, Kennedy BC, Zhang DY, Bond AM, et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature. 2022;607:527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao C, Warner-Schmidt J, Duman RS, Gage FH. Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev Neurobiol. 2012;72:937–42.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen F, Madsen TM, Wegener G, Nyengaard JR. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2009;19:329–38.

    Article  CAS  Google Scholar 

  54. De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, et al. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: a systematic review of animal models of depression. Neurosci Biobehav Rev. 2024;164:105796.

    Article  PubMed  Google Scholar 

  55. Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem. 2024;168:1738–50.

    Article  CAS  PubMed  Google Scholar 

  56. Kubicki A, Leaver AM, Vasavada M, Njau S, Wade B, Joshi SH, et al. Variations in hippocampal white matter diffusivity differentiate response to electroconvulsive therapy in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:300–9.

    PubMed  Google Scholar 

  57. Gbyl K, Labanauskas V, Lundsgaard CC, Mathiassen A, Ryszczuk A, Siebner HR, et al. Electroconvulsive therapy disrupts functional connectivity between hippocampus and posterior default mode network. Prog Neuropsychopharmacol Biol Psychiatry. 2024;132:110981.

    Article  PubMed  Google Scholar 

  58. Nagin DS, Odgers CL. Group-Based trajectory modeling in clinical research. Annu Rev Clin Psychol. 2010;6:109–38.

    Article  PubMed  Google Scholar 

  59. Nguefack HLN, Pagé MG, Katz J, Choinière M, Vanasse A, Dorais M, et al. <p>Trajectory modelling techniques useful to epidemiological research: a comparative narrative review of approaches</p>. Clin Epidemiol. 2020;12:1205–22.

    Article  Google Scholar 

  60. Nordanskog P, Larsson MR, Larsson EM, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand. 2014;129:303–11.

    Article  CAS  PubMed  Google Scholar 

  61. Takamiya A, Plitman E, Chung JK, Chakravarty M, Graff-Guerrero A, Mimura M, et al. Acute and long-term effects of electroconvulsive therapy on human dentate gyrus. Neuropsychopharmacology. 2019;44:1805–11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2016;41:2741–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients for their trust and commitment in making this clinical trial possible. We thank all the nursing and administrative staff who devoted time and effort to the success of this research project, in particular Bénédicte Launay-Saucet, the clinical trial nurse coordinator. The clinical trial was sponsored by the Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences and its Delegation for Clinical Research and Innovation; we thank Viviane Awassi, Kenza Sabi, Khaoussou Sylla and Marin Chapelle. This work was supported and funded by the Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences (‘Appel à projets 2017’) and the Fondation de France (‘AO 2017 sur les maladies psychiatriques’). We thank Denis David and Jean-Philippe Guilloux for fruitful discussions. Finally, we thank the reviewers for their significant contributions, which helped to improve this work.

Author information

Authors and Affiliations

Contributions

DA and MP contributed to the conception and design of the study. DA, MP, CD, SC, LM, PG, ML, CO contributed to clinical and MRI data acquisition. IU and CP provided methodological development. ALB, IU, CD, CP, AC, FR conducted MRI data preprocessing and statistical data analysis. ALB, DA, MP, AC, CO conducted the interpretation of the analyses with additional contributions from MM and AH. DA, MP, ML, CD, SC provided administrative, technical, and material support. ALB drafted the manuscript. CO, AC and MP supervised the study and critically revised the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to A. Le Berre.

Ethics declarations

Ethics declaration

All methods were performed in accordance with the relevant guidelines and regulations.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Berre, A., Attali, D., Uszynski, I. et al. Hippocampal microstructural changes following electroconvulsive therapy in severe depression. Mol Psychiatry 30, 4343–4352 (2025). https://doi.org/10.1038/s41380-025-03016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03016-x

Search

Quick links