Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology

Abstract

In applying model organisms to study the neurobiology of mental disorders, rodents offer unique potential for probing, with high spatiotemporal resolution, the neural and molecular mechanisms underlying behavior in a mammalian system. Furthermore, investigators can wield exceptional power to manipulate genes, molecules, and circuits in mice to pin down causal relationships. While these advantages have allowed us to understand much more deeply than ever before the brain mechanisms regulating complex behaviors, the impact of rodent models on developing therapeutic strategies for psychiatric disorders has remained thus far limited. Herein, we will discuss the opportunities and limits of using mouse models in the context of schizophrenia, a complex psychiatric disorder with strong genetic basis that poses various unmet clinical needs calling out for basic science research. We review approaches for employing behavioral, genetic, and circuit-based methods in rodents to inform schizophrenia symptomatology, pathophysiology, and, ultimately, treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of four rodent behavioral paradigms used to model positive symptoms of schizophrenia—pre-pulse inhibition (PPI) of startle, mismatch negativity (MMN), corollary discharge (CD), and signal detection task (SDT).
Fig. 2: Summary of 22q11.2 microdeletion mouse model phenotypes with demonstrated rescue methods.
Fig. 3: Schematic overview of rodent brain circuits with relevance for schizophrenia neurobiology.

Similar content being viewed by others

References

  1. Lieberman JA, Small SA, Girgis RR. Early detection and preventive intervention in schizophrenia: from fantasy to reality. Am J Psychiatry. 2019;176:794–810. https://doi.org/10.1176/appi.ajp.2019.19080865.

    Article  PubMed  Google Scholar 

  2. Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25:588–95. https://doi.org/10.1038/s41593-022-01061-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schulmann A, Feng N, Auluck PK, Mukherjee A, Komal R, Leng Y, et al. A conserved cell-type gradient across the human mediodorsal and paraventricular thalamus. bioRxiv, 2024.2009.2003.611112 [Preprint]. https://doi.org/10.1101/2024.09.03.611112 (2024).

  4. Krienen FM, Goldman M, Zhang Q, C H Del Rosario R, Florio M, Machold R, et al. Innovations present in the primate interneuron repertoire. Nature. 2020;586:262–9. https://doi.org/10.1038/s41586-020-2781-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188:1217–9. https://doi.org/10.1126/science.1145194.

    Article  CAS  PubMed  Google Scholar 

  6. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192:481–3. https://doi.org/10.1126/science.3854.

    Article  CAS  PubMed  Google Scholar 

  7. van Rossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966;160:492–4.

    PubMed  Google Scholar 

  8. Baumeister AA, Francis JL. Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci. 2002;11:265–77. https://doi.org/10.1076/jhin.11.3.265.10391.

    Article  PubMed  Google Scholar 

  9. Besson MJ, Cheramy A, Feltz P, Glowinski J. Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Natl Acad Sci USA. 1969;62:741–8. https://doi.org/10.1073/pnas.62.3.741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snyder SH. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry. 1973;130:61–7. https://doi.org/10.1176/ajp.130.1.61.

    Article  CAS  PubMed  Google Scholar 

  11. Van Rossum J, Hurkmans AT. Mechanism of action of psychomotor stimulant drugs. Significance of Dopamine in Locomotor Stimulant Action. Int J Neuropharmacol. 1964;3:227–39. https://doi.org/10.1016/0028-3908(64)90012-7.

    Article  Google Scholar 

  12. Randrup A, Munkvad I. Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia. 1967;11:300–10. https://doi.org/10.1007/BF00404607.

    Article  CAS  PubMed  Google Scholar 

  13. van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull. 2010;36:246–70. https://doi.org/10.1093/schbul/sbp132.

    Article  PubMed  Google Scholar 

  14. Johnson KM. Phencyclidine: behavioral and biochemical evidence supporting a role for dopamine. Fed Proc. 1983;42:2579–83.

    CAS  PubMed  Google Scholar 

  15. Chatterjee M, Ganguly S, Srivastava M, Palit G. Effect of ‘chronic’ versus ‘acute’ ketamine administration and its ‘withdrawal’ effect on behavioural alterations in mice: implications for experimental psychosis. Behav Brain Res. 2011;216:247–54. https://doi.org/10.1016/j.bbr.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  16. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281:1349–52. https://doi.org/10.1126/science.281.5381.1349.

    Article  CAS  PubMed  Google Scholar 

  17. Galici R, Echemendia NG, Rodriguez AL, Conn PJ. A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther. 2005;315:1181–7. https://doi.org/10.1124/jpet.105.091074.

    Article  CAS  PubMed  Google Scholar 

  18. Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, et al. In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl). 2007;193:121–36. https://doi.org/10.1007/s00213-007-0758-3.

    Article  CAS  PubMed  Google Scholar 

  19. Downing AM, Kinon BJ, Millen BA, Zhang L, Liu L, Morozova MA, et al. A Double-Blind, Placebo-Controlled Comparator Study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry. 2014;14:351 https://doi.org/10.1186/s12888-014-0351-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Litman RE, Smith MA, Doherty JJ, Cross A, Raines S, Gertsik L, et al. AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: a proof of principle study. Schizophr Res. 2016;172:152–7. https://doi.org/10.1016/j.schres.2016.02.001.

    Article  PubMed  Google Scholar 

  21. Thomas P, Mathur P, Gottesman II, Nagpal R, Nimgaonkar VL, Deshpande SN. Correlates of hallucinations in schizophrenia: a cross-cultural evaluation. Schizophr Res. 2007;92:41–9. https://doi.org/10.1016/j.schres.2007.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siegel SJ, Talpos JC, Geyer MA. Animal models and measures of perceptual processing in schizophrenia. Neurosci Biobehav Rev. 2013;37:2092–8. https://doi.org/10.1016/j.neubiorev.2013.06.016.

    Article  PubMed  Google Scholar 

  23. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 1978;15:339–43. https://doi.org/10.1111/j.1469-8986.1978.tb01390.x.

    Article  CAS  PubMed  Google Scholar 

  24. Braff DL, Swerdlow NR, Geyer MA. Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry. 1999;156:596–602. https://doi.org/10.1176/ajp.156.4.596.

    Article  CAS  PubMed  Google Scholar 

  25. San-Martin R, Castro LA, Menezes PR, Fraga FJ, Simoes PW, Salum C. Meta-analysis of sensorimotor gating deficits in patients with schizophrenia evaluated by prepulse inhibition test. Schizophr Bull. 2020;46:1482–97. https://doi.org/10.1093/schbul/sbaa059.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grillon C, Morgan CA, Southwick SM, Davis M, Charney DS. Baseline startle amplitude and prepulse inhibition in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res. 1996;64:169–78. https://doi.org/10.1016/s0165-1781(96)02942-3.

    Article  CAS  PubMed  Google Scholar 

  27. Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A. Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol Psychiatry. 2001;50:578–85. https://doi.org/10.1016/s0006-3223(01)01164-7.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmari SE, Risbrough VB, Geyer MA, Simpson HB. Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology. 2012;37:1216–23. https://doi.org/10.1038/npp.2011.308.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bitsios P, Giakoumaki SG, Theou K, Frangou S. Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia. 2006;44:2494–9. https://doi.org/10.1016/j.neuropsychologia.2006.04.001.

    Article  PubMed  Google Scholar 

  30. Csomor PA, Stadler RR, Feldon J, Yee BK, Geyer MA, Vollenweider FX. Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology. 2008;33:497–512. https://doi.org/10.1038/sj.npp.1301421.

    Article  CAS  PubMed  Google Scholar 

  31. Swerdlow NR, Braff DL, Geyer MA. Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol. 2016;30:1072–81. https://doi.org/10.1177/0269881116661075.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Naatanen R, Gaillard AW, Mantysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42:313–29. https://doi.org/10.1016/0001-6918(78)90006-9.

    Article  CAS  PubMed  Google Scholar 

  33. Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, McConaghy N. Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry. 1991;30:1059–62. https://doi.org/10.1016/0006-3223(91)90126-7.

    Article  CAS  PubMed  Google Scholar 

  34. Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr. Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatry. 1993;33:513–9. https://doi.org/10.1016/0006-3223(93)90005-x.

    Article  CAS  PubMed  Google Scholar 

  35. Baldeweg T, Klugman A, Gruzelier J, Hirsch SR. Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophr Res. 2004;69:203–17. https://doi.org/10.1016/j.schres.2003.09.009.

    Article  PubMed  Google Scholar 

  36. Friedman T, Sehatpour P, Dias E, Perrin M, Javitt DC. Differential relationships of mismatch negativity and visual p1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biol Psychiatry. 2012;71:521–9. https://doi.org/10.1016/j.biopsych.2011.10.037.

    Article  PubMed  Google Scholar 

  37. Fisher DJ, Smith DM, Labelle A, Knott VJ. Attenuation of mismatch negativity (MMN) and novelty P300 in schizophrenia patients with auditory hallucinations experiencing acute exacerbation of illness. Biol Psychol. 2014;100:43–9. https://doi.org/10.1016/j.biopsycho.2014.05.005.

    Article  PubMed  Google Scholar 

  38. Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ. Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. J Cogn Neurosci. 2008;20:1403–14. https://doi.org/10.1162/jocn.2008.20097.

    Article  PubMed  Google Scholar 

  39. Harms L. Mismatch responses and deviance detection in N-methyl-D-aspartate (NMDA) receptor hypofunction and developmental models of schizophrenia. Biol Psychol. 2016;116:75–81. https://doi.org/10.1016/j.biopsycho.2015.06.015.

    Article  PubMed  Google Scholar 

  40. Ross JM, Hamm JP. Cortical microcircuit mechanisms of mismatch negativity and its underlying subcomponents. Front Neural Circuits. 2020;14:13 https://doi.org/10.3389/fncir.2020.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamm JP, Yuste R. Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep. 2016;16:597–604. https://doi.org/10.1016/j.celrep.2016.06.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex. 2008;18:1575–87. https://doi.org/10.1093/cercor/bhm186.

    Article  PubMed  Google Scholar 

  43. Beneyto M, Morris HM, Rovensky KC, Lewis DA. Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology. 2012;62:1598–605. https://doi.org/10.1016/j.neuropharm.2010.12.029.

    Article  CAS  PubMed  Google Scholar 

  44. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull. 1978;4:636–40. https://doi.org/10.1093/schbul/4.4.636.

    Article  CAS  PubMed  Google Scholar 

  45. Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol. 1950;43:482–9. https://doi.org/10.1037/h0055479.

    Article  CAS  PubMed  Google Scholar 

  46. von Holst E, Mittelstaedt H. Das Reafferenzprinzip. Naturwissenschaften. 1950;37:464–76.

    Article  Google Scholar 

  47. Rummell BP, Klee JL, Sigurdsson T. Attenuation of responses to self-generated sounds in auditory cortical neurons. J Neurosci. 2016;36:12010–26. https://doi.org/10.1523/JNEUROSCI.1564-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ford JM, Mathalon DH, Heinks T, Kalba S, Faustman WO, Roth WT. Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am J Psychiatry. 2001;158:2069–71. https://doi.org/10.1176/appi.ajp.158.12.2069.

    Article  CAS  PubMed  Google Scholar 

  49. Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T. Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun. 2023;14:7388 https://doi.org/10.1038/s41467-023-42964-2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Friston K. Functional integration and inference in the brain. Prog Neurobiol. 2002;68:113–43. https://doi.org/10.1016/s0301-0082(02)00076-x.

    Article  PubMed  Google Scholar 

  51. Horga G, Schatz KC, Abi-Dargham A, Peterson BS. Deficits in predictive coding underlie hallucinations in schizophrenia. J Neurosci. 2014;34:8072–82. https://doi.org/10.1523/JNEUROSCI.0200-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Corlett PR, Horga G, Fletcher PC, Alderson-Day B, Schmack K, Powers AR 3rd. Hallucinations and Strong Priors. Trends Cogn Sci. 2019;23:114–27. https://doi.org/10.1016/j.tics.2018.12.001.

    Article  PubMed  Google Scholar 

  53. Kafadar E, Fisher VL, Quagan B, Hammer A, Jaeger H, Mourgues C, et al. Conditioned hallucinations and prior overweighting are state-sensitive markers of hallucination susceptibility. Biol Psychiatry. 2022;92:772–80. https://doi.org/10.1016/j.biopsych.2022.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duhamel E, Mihali A, Horga G. Effects of hallucination proneness and sensory resolution on prior biases in human perceptual inference of time intervals. J Neurosci. 2023;43:5365–77. https://doi.org/10.1523/JNEUROSCI.0692-22.2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Powers AR, Mathys C, Corlett PR. Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science. 2017;357:596–600. https://doi.org/10.1126/science.aan3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmack K, Bosc M, Ott T, Sturgill JF, Kepecs A. Striatal dopamine mediates hallucination-like perception in mice. Science. 2021;372:eabf4740 https://doi.org/10.1126/science.abf4740.

    Article  CAS  PubMed  Google Scholar 

  57. Kirkpatrick B, Fenton WS, Carpenter WT Jr., Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32:214–9. https://doi.org/10.1093/schbul/sbj053.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Marder SR, Umbricht D. Negative symptoms in schizophrenia: Newly emerging measurements, pathways, and treatments. Schizophr Res. 2023;258:71–7. https://doi.org/10.1016/j.schres.2023.07.010.

    Article  PubMed  Google Scholar 

  59. Rabinowitz J, Levine SZ, Garibaldi G, Bugarski-Kirola D, Berardo CG, Kapur S. Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophr Res. 2012;137:147–50. https://doi.org/10.1016/j.schres.2012.01.015.

    Article  PubMed  Google Scholar 

  60. Ellenbroek BA, Cools AR. Animal models for the negative symptoms of schizophrenia. Behav Pharmacol. 2000;11:223–33. https://doi.org/10.1097/00008877-200006000-00006.

    Article  CAS  PubMed  Google Scholar 

  61. Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JI, et al. Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology. 2012;37:1699–707. https://doi.org/10.1038/npp.2012.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sahin C, Doostdar N, Neill JC. Towards the development of improved tests for negative symptoms of schizophrenia in a validated animal model. Behav Brain Res. 2016;312:93–101. https://doi.org/10.1016/j.bbr.2016.06.021.

    Article  PubMed  Google Scholar 

  63. Powell SB, Swerdlow NR. The relevance of animal models of social isolation and social motivation for understanding schizophrenia: review and future directions. Schizophr Bull. 2023;49:1112–26. https://doi.org/10.1093/schbul/sbad098.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Drew MR, Simpson EH, Kellendonk C, Herzberg WG, Lipatova O, Fairhurst S, et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci. 2007;27:7731–9. https://doi.org/10.1523/JNEUROSCI.1736-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A. Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology. 2009;34:1578–89. https://doi.org/10.1038/npp.2008.215.

    Article  CAS  PubMed  Google Scholar 

  66. Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, et al. Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology. 2012;62:1263–72. https://doi.org/10.1016/j.neuropharm.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  67. Labouesse MA, Langhans W, Meyer U. Abnormal context-reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia. Transl Psychiatry. 2015;5:e637 https://doi.org/10.1038/tp.2015.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gard DE, Kring AM, Gard MG, Horan WP, Green MF. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res. 2007;93:253–60. https://doi.org/10.1016/j.schres.2007.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hodos W. Progressive ratio as a measure of reward strength. Science. 1961;134:943–4. https://doi.org/10.1126/science.134.3483.943.

    Article  CAS  PubMed  Google Scholar 

  70. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl). 1991;104:515–21. https://doi.org/10.1007/BF02245659.

    Article  CAS  PubMed  Google Scholar 

  71. Bailey MR, Goldman O, Bello EP, Chohan MO, Jeong N, Winiger V, et al. An interaction between serotonin receptor signaling and dopamine enhances goal-directed vigor and persistence in mice. J Neurosci. 2018;38:2149–62. https://doi.org/10.1523/JNEUROSCI.2088-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Walton ME, Bannerman DM, Rushworth MF. The role of rat medial frontal cortex in effort-based decision making. J Neurosci. 2002;22:10996–1003. https://doi.org/10.1523/JNEUROSCI.22-24-10996.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sullivan JA, Dumont JR, Memar S, Skirzewski M, Wan J, Mofrad MH, et al. New frontiers in translational research: touchscreens, open science, and the mouse translational research accelerator platform. Genes Brain Behav. 2021;20:e12705 https://doi.org/10.1111/gbb.12705.

    Article  PubMed  Google Scholar 

  74. Babaev O, Cruces-Solis H, Arban R. Dopamine modulating agents alter individual subdomains of motivation-related behavior assessed by touchscreen procedures. Neuropharmacology. 2022;211:109056 https://doi.org/10.1016/j.neuropharm.2022.109056.

    Article  CAS  PubMed  Google Scholar 

  75. Salamone JD, Correa M, Yohn S, Lopez Cruz L, San Miguel N, Alatorre L. The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behav Processes. 2016;127:3–17. https://doi.org/10.1016/j.beproc.2016.02.008.

    Article  PubMed  Google Scholar 

  76. Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ. Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry. 2013;74:130–6. https://doi.org/10.1016/j.biopsych.2012.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Strauss GP, Waltz JA, Gold JM. A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull. 2014;40:S107–16. https://doi.org/10.1093/schbul/sbt197.

    Article  PubMed  Google Scholar 

  78. Barch DM, Treadway MT, Schoen N. Effort, anhedonia, and function in schizophrenia: reduced effort allocation predicts amotivation and functional impairment. J Abnorm Psychol. 2014;123:387–97. https://doi.org/10.1037/a0036299.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cornblatt BA, Keilp JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull. 1994;20:31–46. https://doi.org/10.1093/schbul/20.1.31.

    Article  CAS  PubMed  Google Scholar 

  80. Lustig C, Kozak R, Sarter M, Young JW, Robbins TW. CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev. 2013;37:2099–110. https://doi.org/10.1016/j.neubiorev.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  81. Humby T, Laird FM, Davies W, Wilkinson LS. Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur J Neurosci. 1999;11:2813–23. https://doi.org/10.1046/j.1460-9568.1999.00701.x.

    Article  CAS  PubMed  Google Scholar 

  82. Young JW, Light GA, Marston HM, Sharp R, Geyer MA. The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PloS One. 2009;4:e4227 https://doi.org/10.1371/journal.pone.0004227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Christakou A, Robbins TW, Everitt BJ. Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav Neurosci. 2001;115:812–25. https://doi.org/10.1037/0735-7044.115.4.812.

    Article  CAS  PubMed  Google Scholar 

  84. Christakou A, Robbins TW, Everitt BJ. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci. 2004;24:773–80. https://doi.org/10.1523/JNEUROSCI.0949-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Flores-Dourojeanni JP, van Rijt C, van den Munkhof MH, Boekhoudt L, Luijendijk MCM, Vanderschuren L, et al. Temporally specific roles of ventral tegmental area projections to the nucleus accumbens and prefrontal cortex in attention and impulse control. J Neurosci. 2021;41:4293–304. https://doi.org/10.1523/JNEUROSCI.0477-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barch DM. The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol. 2005;1:321–53. https://doi.org/10.1146/annurev.clinpsy.1.102803.143959.

    Article  PubMed  Google Scholar 

  87. Dudchenko PA, Talpos J, Young J, Baxter MG. Animal models of working memory: a review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia. Neurosci Biobehav Rev. 2013;37:2111–24. https://doi.org/10.1016/j.neubiorev.2012.03.003.

    Article  PubMed  Google Scholar 

  88. Hvoslef-Eide M, Mar AC, Nilsson SR, Alsio J, Heath CJ, Saksida LM, et al. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl). 2015;232:3853–72. https://doi.org/10.1007/s00213-015-4007-x.

    Article  CAS  PubMed  Google Scholar 

  89. Funahashi S, Chafee MV, Goldman-Rakic PS. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature. 1993;365:753–6. https://doi.org/10.1038/365753a0.

    Article  CAS  PubMed  Google Scholar 

  90. Leung HC, Gore JC, Goldman-Rakic PS. Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J Cogn Neurosci. 2002;14:659–71. https://doi.org/10.1162/08989290260045882.

    Article  PubMed  Google Scholar 

  91. Granon S, Vidal C, Thinus-Blanc C, Changeux JP, Poucet B. Working memory, response selection, and effortful processing in rats with medial prefrontal lesions. Behav Neurosci. 1994;108:883–91. https://doi.org/10.1037/0735-7044.108.5.883.

    Article  CAS  PubMed  Google Scholar 

  92. Benoit LJ, Holt ES, Teboul E, Taliaferro JP, Kellendonk C, Canetta S. Medial prefrontal lesions impair performance in an operant delayed nonmatch to sample working memory task. Behav Neurosci. 2020;134:187–97. https://doi.org/10.1037/bne0000357.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vogel P, Hahn J, Duvarci S, Sigurdsson T. Prefrontal pyramidal neurons are critical for all phases of working memory. Cell Rep. 2022;39:110659 https://doi.org/10.1016/j.celrep.2022.110659.

    Article  CAS  PubMed  Google Scholar 

  94. Taliaferro JP, Posani L, Greenwald J, Lim S, McGowan JC, Pekarskaya E, et al. Prefrontal representations of retrospective spatial working memory in a rodent radial maze task. bioRxiv, 2024.2010.2010.617655 [Preprint] https://doi.org/10.1101/2024.10.10.617655 (2024).

  95. Spellman T, Rigotti M, Ahmari SE, Fusi S, Gogos JA, Gordon JA. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 2015;522:309–14. https://doi.org/10.1038/nature14445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci. 2017;20:987–96. https://doi.org/10.1038/nn.4568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morice R. Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry. 1990;157:50–4. https://doi.org/10.1192/bjp.157.1.50.

    Article  CAS  PubMed  Google Scholar 

  98. Floresco SB, Zhang Y, Enomoto T. Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res. 2009;204:396–409. https://doi.org/10.1016/j.bbr.2008.12.001.

    Article  PubMed  Google Scholar 

  99. Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000;20:4320–4. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: an updated perspective. Neuroscience. 2017;345:12–26. https://doi.org/10.1016/j.neuroscience.2016.03.021.

    Article  CAS  PubMed  Google Scholar 

  101. Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR, et al. Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry. 2009;66:586–93. https://doi.org/10.1016/j.biopsych.2009.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Farmer AE, McGuffin P, Gottesman II. Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Arch Gen Psychiatry. 1987;44:634–41. https://doi.org/10.1001/archpsyc.1987.01800190054009.

    Article  CAS  PubMed  Google Scholar 

  103. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry. 1999;56:162–8. https://doi.org/10.1001/archpsyc.56.2.162.

    Article  CAS  PubMed  Google Scholar 

  104. Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide danish twin register. Biol Psychiatry. 2018;83:492–8. https://doi.org/10.1016/j.biopsych.2017.08.017.

    Article  PubMed  Google Scholar 

  105. Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci. 2024;25:611–24. https://doi.org/10.1038/s41583-024-00837-7.

    Article  CAS  PubMed  Google Scholar 

  106. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. https://doi.org/10.1038/nature13595.

    Article  CAS  Google Scholar 

  107. Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8. https://doi.org/10.1038/s41586-022-04434-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35. https://doi.org/10.1038/ng.3725.

    Article  CAS  PubMed  Google Scholar 

  109. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16. https://doi.org/10.1038/s41586-022-04556-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nielsen J, Fejgin K, Sotty F, Nielsen V, Mork A, Christoffersen CT, et al. A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission. Transl Psychiatry. 2017;7:1261 https://doi.org/10.1038/s41398-017-0011-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mukai J, Cannavo E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, et al. Recapitulation and reversal of schizophrenia-related phenotypes in setd1a-deficient mice. Neuron. 2019;104:471–87.e412. https://doi.org/10.1016/j.neuron.2019.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, et al. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet. 2022;31:3095–106. https://doi.org/10.1093/hmg/ddac105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Obi-Nagata K, Suzuki N, Miyake R, MacDonald ML, Fish KN, Ozawa K, et al. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. Sci Adv. 2023;9:eade5973. https://doi.org/10.1126/sciadv.ade5973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Purcell RH, Sefik E, Werner E, King AT, Mosley TJ, Merritt-Garza ME, et al. Cross-species analysis identifies mitochondrial dysregulation as a functional consequence of the schizophrenia-associated 3q29 deletion. Sci Adv. 2023;9:eadh0558. https://doi.org/10.1126/sciadv.adh0558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Harrison PJ, Bannerman DM. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia. Mol Psychiatry. 2023;28:3568–72. https://doi.org/10.1038/s41380-023-02265-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mollon J, Almasy L, Jacquemont S, Glahn DC. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol Psychiatry. 2023;28:1480–93. https://doi.org/10.1038/s41380-023-01978-4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA. 1995;92:7612–6. https://doi.org/10.1073/pnas.92.17.7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature. 1999;401:379–83. https://doi.org/10.1038/43900.

    Article  CAS  PubMed  Google Scholar 

  119. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40:751–60. https://doi.org/10.1038/ng.138.

    Article  CAS  PubMed  Google Scholar 

  120. Hyman SE. Use of mouse models to investigate the contributions of CNVs associated with schizophrenia and autism to disease mechanisms. Curr Opin Genet Dev. 2021;68:99–105. https://doi.org/10.1016/j.gde.2021.03.004.

    Article  CAS  PubMed  Google Scholar 

  121. Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci. 2005;8:1586–94. https://doi.org/10.1038/nn1562.

    Article  CAS  PubMed  Google Scholar 

  122. Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA. 2006;103:7729–34. https://doi.org/10.1073/pnas.0600206103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Long JM, LaPorte P, Merscher S, Funke B, Saint-Jore B, Puech A, et al. Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics. 2006;7:247–57. https://doi.org/10.1007/s10048-006-0054-0.

    Article  PubMed  Google Scholar 

  124. Chun S, Westmoreland JJ, Bayazitov IT, Eddins D, Pani AK, Smeyne RJ, et al. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science. 2014;344:1178–82. https://doi.org/10.1126/science.1253895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature. 2010;464:763–7. https://doi.org/10.1038/nature08855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Devaraju P, Yu J, Eddins D, Mellado-Lagarde MM, Earls LR, Westmoreland JJ, et al. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry. 2017;22:1313–26. https://doi.org/10.1038/mp.2016.75.

    Article  CAS  PubMed  Google Scholar 

  127. Eom TY, Bayazitov IT, Anderson K, Yu J, Zakharenko SS. Schizophrenia-Related microdeletion impairs emotional memory through MicroRNA-Dependent disruption of thalamic inputs to the amygdala. Cell Rep. 2017;19:1532–44. https://doi.org/10.1016/j.celrep.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Piskorowski RA, Nasrallah K, Diamantopoulou A, Mukai J, Hassan SI, Siegelbaum SA, et al. Age-Dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron. 2016;89:163–76. https://doi.org/10.1016/j.neuron.2015.11.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Donegan ML, Stefanini F, Meira T, Gordon JA, Fusi S, Siegelbaum SA. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. Nat Neurosci. 2020;23:1365–75. https://doi.org/10.1038/s41593-020-00720-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, et al. Mitochondrial dysfunction leads to cortical under-connectivity and cognitive impairment. Neuron. 2019;102:1127–42.e1123. https://doi.org/10.1016/j.neuron.2019.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-Lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell. 2019;178:1387–402.e1314. https://doi.org/10.1016/j.cell.2019.07.023.

    Article  CAS  PubMed  Google Scholar 

  132. Ellegood J, Markx S, Lerch JP, Steadman PE, Genc C, Provenzano F, et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry. 2014;19:99–107. https://doi.org/10.1038/mp.2013.112.

    Article  CAS  PubMed  Google Scholar 

  133. Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, et al. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun. 2024;15:10510 https://doi.org/10.1038/s41467-024-54837-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hamm JP, Peterka DS, Gogos JA, Yuste R. Altered cortical ensembles in mouse models of schizophrenia. Neuron. 2017;94:153–67.e158. https://doi.org/10.1016/j.neuron.2017.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gokhale A, Hartwig C, Freeman AAH, Bassell JL, Zlatic SA, Sapp Savas C, et al. Systems analysis of the 22q11.2 microdeletion syndrome converges on a mitochondrial interactome necessary for synapse function and behavior. J Neurosci. 2019;39:3561–81. https://doi.org/10.1523/JNEUROSCI.1983-18.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Meechan DW, Tucker ES, Maynard TM, LaMantia AS. Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proc Natl Acad Sci USA. 2009;106:16434–45. https://doi.org/10.1073/pnas.0905696106.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mukai J, Tamura M, Fenelon K, Rosen AM, Spellman TJ, Kang R, et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015;86:680–95. https://doi.org/10.1016/j.neuron.2015.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tamura M, Mukai J, Gordon JA, Gogos JA. Developmental inhibition of Gsk3 rescues behavioral and neurophysiological deficits in a mouse model of schizophrenia predisposition. Neuron. 2016;89:1100–9. https://doi.org/10.1016/j.neuron.2016.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: a dimensional perspective. Prog Neurobiol. 2016;136:1–27. https://doi.org/10.1016/j.pneurobio.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  140. Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2021;89:215–26. https://doi.org/10.1016/j.biopsych.2020.03.008.

    Article  CAS  PubMed  Google Scholar 

  141. Hayes LN, An K, Carloni E, Li F, Vincent E, Trippaers C, et al. Prenatal immune stress blunts microglia reactivity, impairing neurocircuitry. Nature. 2022;610:327–34. https://doi.org/10.1038/s41586-022-05274-z.

    Article  CAS  PubMed  Google Scholar 

  142. Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Ongur D, et al. Redox and immune signaling in schizophrenia: new therapeutic potential. Int J Neuropsychopharmacol. 2023;26:309–21. https://doi.org/10.1093/ijnp/pyad012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Meyer U. Sources and translational relevance of heterogeneity in maternal immune activation models. Curr Top Behav Neurosci. 2023;61:71–91. https://doi.org/10.1007/7854_2022_398.

    Article  CAS  PubMed  Google Scholar 

  144. Murlanova K, Pletnikov MV. Modeling psychotic disorders: Environment x environment interaction. Neurosci Biobehav Rev. 2023;152:105310 https://doi.org/10.1016/j.neubiorev.2023.105310.

    Article  CAS  PubMed  Google Scholar 

  145. Canetta SE, Brown AS. Prenatal infection, maternal immune activation, and risk for schizophrenia. Transl Neurosci. 2012;3:320–7. https://doi.org/10.2478/s13380-012-0045-6.

    Article  PubMed  Google Scholar 

  146. Jiang HY, Xu LL, Shao L, Xia RM, Yu ZH, Ling ZX, et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun. 2016;58:165–72. https://doi.org/10.1016/j.bbi.2016.06.005.

    Article  PubMed  Google Scholar 

  147. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302. https://doi.org/10.1523/JNEUROSCI.23-01-00297.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7. https://doi.org/10.1126/science.aag3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brown AS, Meyer U. Maternal immune activation and neuropsychiatric illness: a translational research perspective. Am J Psychiatry. 2018;175:1073–83. https://doi.org/10.1176/appi.ajp.2018.17121311.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gumusoglu SB, Stevens HE. Maternal inflammation and neurodevelopmental programming: a review of preclinical outcomes and implications for translational psychiatry. Biol Psychiatry. 2019;85:107–21. https://doi.org/10.1016/j.biopsych.2018.08.008.

    Article  PubMed  Google Scholar 

  151. Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956–68. https://doi.org/10.1038/mp.2015.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hoftman GD, Datta D, Lewis DA. Layer 3 excitatory and inhibitory circuitry in the prefrontal cortex: developmental trajectories and alterations in schizophrenia. Biol Psychiatry. 2017;81:862–73. https://doi.org/10.1016/j.biopsych.2016.05.022.

    Article  PubMed  Google Scholar 

  153. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu WL, Hsiao EY, Yan Z, Mazmanian SK, Patterson PH. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav Immun. 2017;62:11–23. https://doi.org/10.1016/j.bbi.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  155. Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity. 2021;54:2611–31.e2618. https://doi.org/10.1016/j.immuni.2021.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9. https://doi.org/10.1126/science.aad0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017;549:482–7. https://doi.org/10.1038/nature23909.

    Article  CAS  PubMed  Google Scholar 

  158. Meyer U. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends Neurosci. 2019;42:793–806. https://doi.org/10.1016/j.tins.2019.08.001.

    Article  CAS  PubMed  Google Scholar 

  159. Kwon HK, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol. 2022;43:230–44. https://doi.org/10.1016/j.it.2022.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000;97:8104–9. https://doi.org/10.1073/pnas.97.14.8104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69:776–86. https://doi.org/10.1001/archgenpsychiatry.2012.169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-Specific dopamine abnormalities in schizophrenia. Biol Psychiatry. 2017;81:31–42. https://doi.org/10.1016/j.biopsych.2016.03.2104.

    Article  CAS  PubMed  Google Scholar 

  163. Jauhar S, Veronese M, Nour MM, Rogdaki M, Hathway P, Turkheimer FE, et al. Determinants of treatment response in first-episode psychosis: an (18)F-DOPA PET study. Mol Psychiatry. 2019;24:1502–12. https://doi.org/10.1038/s41380-018-0042-4.

    Article  PubMed  Google Scholar 

  164. van der Pluijm M, Wengler K, Reijers PN, Cassidy CM, Tjong Tjin Joe K, de Peuter OR, et al. Neuromelanin-Sensitive MRI as candidate marker for treatment resistance in first-episode schizophrenia. Am J Psychiatry. 2024;181:512–9. https://doi.org/10.1176/appi.ajp.20220780.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cassidy CM, Balsam PD, Weinstein JJ, Rosengard RJ, Slifstein M, Daw ND, et al. A perceptual inference mechanism for hallucinations linked to striatal dopamine. Curr Biol. 2018;28:503–14.e504. https://doi.org/10.1016/j.cub.2017.12.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Horga G, Abi-Dargham A. An integrative framework for perceptual disturbances in psychosis. Nat Rev Neurosci. 2019;20:763–78. https://doi.org/10.1038/s41583-019-0234-1.

    Article  CAS  PubMed  Google Scholar 

  167. Yun S, Yang B, Anair JD, Martin MM, Fleps SW, Pamukcu A, et al. Antipsychotic drug efficacy correlates with the modulation of D1 rather than D2 receptor-expressing striatal projection neurons. Nat Neurosci. 2023;26:1417–28. https://doi.org/10.1038/s41593-023-01390-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010;67:231–9. https://doi.org/10.1001/archgenpsychiatry.2010.10.

    Article  CAS  PubMed  Google Scholar 

  169. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl). 2007;191:461–82. https://doi.org/10.1007/s00213-006-0668-9.

    Article  CAS  PubMed  Google Scholar 

  170. Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry. 2022;27:436–44. https://doi.org/10.1038/s41380-021-01253-4.

    Article  CAS  PubMed  Google Scholar 

  171. Krabbe S, Duda J, Schiemann J, Poetschke C, Schneider G, Kandel ER, et al. Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proc Natl Acad Sci USA. 2015;112:E1498–1506. https://doi.org/10.1073/pnas.1500450112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Filla I, Bailey MR, Schipani E, Winiger V, Mezias C, Balsam PD, et al. Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology. 2018;43:2180–9. https://doi.org/10.1038/s41386-018-0159-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, et al. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2024 https://doi.org/10.1038/s41386-024-01997-x.

  174. Treadway MT, Peterman JS, Zald DH, Park S. Impaired effort allocation in patients with schizophrenia. Schizophr Res. 2015;161:382–5. https://doi.org/10.1016/j.schres.2014.11.024.

    Article  PubMed  Google Scholar 

  175. Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, et al. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry. 2013;18:1025–33. https://doi.org/10.1038/mp.2013.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1086 https://doi.org/10.1038/s41467-018-03272-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Muller CE, et al. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology. 2012;62:2068–77. https://doi.org/10.1016/j.neuropharm.2011.12.033.

    Article  CAS  PubMed  Google Scholar 

  178. Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The pharmacological potential of adenosine A(2A) receptor antagonists for treating Parkinson’s disease. Molecules. 2022;27:2366 https://doi.org/10.3390/molecules27072366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ingvar DH, Franzen G. Distribution of cerebral activity in chronic schizophrenia. Lancet. 1974;2:1484–6. https://doi.org/10.1016/s0140-6736(74)90221-9.

    Article  CAS  PubMed  Google Scholar 

  180. Weinberger DR, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci. 1996;351:1495–503. https://doi.org/10.1098/rstb.1996.0135.

    Article  CAS  PubMed  Google Scholar 

  181. Karlsgodt KH, Sanz J, van Erp TG, Bearden CE, Nuechterlein KH, Cannon TD. Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia. Schizophr Res. 2009;108:143–50. https://doi.org/10.1016/j.schres.2008.12.025.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci. 2012;16:27–34. https://doi.org/10.1016/j.tics.2011.11.015.

    Article  PubMed  Google Scholar 

  183. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66:811–22. https://doi.org/10.1001/archgenpsychiatry.2009.91.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry. 2012;169:1092–9. https://doi.org/10.1176/appi.ajp.2012.12010056.

    Article  PubMed  Google Scholar 

  185. Kubota M, Miyata J, Sasamoto A, Sugihara G, Yoshida H, Kawada R, et al. Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia. JAMA Psychiatry. 2013;70:12–21. https://doi.org/10.1001/archgenpsychiatry.2012.1023.

    Article  PubMed  Google Scholar 

  186. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24:3116–30. https://doi.org/10.1093/cercor/bht165.

    Article  PubMed  Google Scholar 

  187. Giraldo-Chica M, Woodward ND. Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res. 2017;180:58–63. https://doi.org/10.1016/j.schres.2016.08.005.

    Article  PubMed  Google Scholar 

  188. Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, et al. Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology. 2012;37:499–507. https://doi.org/10.1038/npp.2011.215.

    Article  PubMed  Google Scholar 

  189. Cho KI, Shenton ME, Kubicki M, Jung WH, Lee TY, Yun JY, et al. Altered thalamo-cortical white matter connectivity: probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophr Bull. 2016;42:723–31. https://doi.org/10.1093/schbul/sbv169.

    Article  PubMed  Google Scholar 

  190. Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND. Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biol Psychiatry. 2018;83:509–17. https://doi.org/10.1016/j.biopsych.2017.09.022.

    Article  PubMed  Google Scholar 

  191. Woodward ND, Heckers S. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol Psychiatry. 2016;79:1016–25. https://doi.org/10.1016/j.biopsych.2015.06.026.

    Article  PubMed  Google Scholar 

  192. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91. https://doi.org/10.1001/jamapsychiatry.2015.0566.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhang M, Palaniyappan L, Deng M, Zhang W, Pan Y, Fan Z, et al. Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry. 2021;60:479–89. https://doi.org/10.1016/j.jaac.2020.07.903.

    Article  PubMed  Google Scholar 

  194. Fryer SL, Ferri JM, Roach BJ, Loewy RL, Stuart BK, Anticevic A, et al. Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia. Psychol Med. 2022;52:2767–75. https://doi.org/10.1017/S0033291720004882.

    Article  PubMed  Google Scholar 

  195. Marton TF, Seifikar H, Luongo FJ, Lee AT, Sohal VS. Roles of Prefrontal cortex and mediodorsal thalamus in task engagement and behavioral flexibility. J Neurosci. 2018;38:2569–78. https://doi.org/10.1523/JNEUROSCI.1728-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69. https://doi.org/10.1016/j.biopsych.2017.11.033.

    Article  CAS  PubMed  Google Scholar 

  197. Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: an essential partner of the prefrontal cortex for cognition. Biol Psychiatry. 2018;83:648–56. https://doi.org/10.1016/j.biopsych.2017.11.008.

    Article  PubMed  Google Scholar 

  198. Ouhaz, Z, Perry, BAL, Nakamura, K, Mitchell, AS Mediodorsal thalamus is critical for updating during extradimensional shifts but not reversals in the attentional set-shifting task. eNeuro 2022;9, https://doi.org/10.1523/ENEURO.0162-21.2022.

  199. Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron. 2024;112:893–908. https://doi.org/10.1016/j.neuron.2024.01.002.

    Article  CAS  PubMed  Google Scholar 

  200. Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. Thalamic amplification of cortical connectivity sustains attentional control. Nature. 2017;545:219–23. https://doi.org/10.1038/nature22073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, et al. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci. 2022;25:714–25. https://doi.org/10.1038/s41593-022-01072-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Petersen, D, Raudales, R, Silva, AK, Kellendonk, C, Canetta, S Adolescent thalamoprefrontal inhibition leads to changes in intrinsic prefrontal network connectivity. eNeuro 11, https://doi.org/10.1523/ENEURO.0284-24.2024 (2024).

  203. Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549–79. https://doi.org/10.1146/annurev.neuro.27.070203.144327.

    Article  CAS  PubMed  Google Scholar 

  204. Benoit LJ, Canetta S, Kellendonk C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol Psychiatry. 2022;92:491–500. https://doi.org/10.1016/j.biopsych.2022.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N, et al. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature. 2021;598:483–8. https://doi.org/10.1038/s41586-021-03953-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Carlen M. What constitutes the prefrontal cortex? Science. 2017;358:478–82. https://doi.org/10.1126/science.aan8868.

    Article  CAS  PubMed  Google Scholar 

  207. Moreau CA, Urchs SGW, Kuldeep K, Orban P, Schramm C, Dumas G, et al. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat Commun. 2020;11:5272 https://doi.org/10.1038/s41467-020-18997-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Welch KA, Stanfield AC, McIntosh AM, Whalley HC, Job DE, Moorhead TW, et al. Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia. Br J Psychiatry. 2011;199:386–90. https://doi.org/10.1192/bjp.bp.110.090175.

    Article  PubMed  Google Scholar 

  209. Mashhoon Y, Sava S, Sneider JT, Nickerson LD, Silveri MM. Cortical thinness and volume differences associated with marijuana abuse in emerging adults. Drug Alcohol Depend. 2015;155:275–83. https://doi.org/10.1016/j.drugalcdep.2015.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhou T, Ho YY, Lee RX, Fath AB, He K, Scott J, et al. Enhancement of mediodorsal thalamus rescues aberrant belief dynamics in a mouse model with schizophrenia-associated mutation. bioRxiv, [Preprint]. https://doi.org/10.1101/2024.01.08.574745 (2024).

  211. Bird ED, Spokes EG, Barnes J, MacKay AV, Iversen LL, Shepherd M. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet. 1977;2:1157–8. https://doi.org/10.1016/s0140-6736(77)91542-2.

    Article  CAS  PubMed  Google Scholar 

  212. Perry TL, Kish SJ, Buchanan J, Hansen S. Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet. 1979;1:237–9. https://doi.org/10.1016/s0140-6736(79)90767-0.

    Article  CAS  PubMed  Google Scholar 

  213. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66. https://doi.org/10.1001/archpsyc.1995.03950160008002.

    Article  CAS  PubMed  Google Scholar 

  214. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017;22:936–43. https://doi.org/10.1038/mp.2017.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fujihara K, Miwa H, Kakizaki T, Kaneko R, Mikuni M, Tanahira C, et al. Glutamate decarboxylase 67 deficiency in a subset of GABAergic neurons induces schizophrenia-related phenotypes. Neuropsychopharmacology. 2015;40:2475–86. https://doi.org/10.1038/npp.2015.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brown JA, Ramikie TS, Schmidt MJ, Baldi R, Garbett K, Everheart MG, et al. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. Mol Psychiatry. 2015;20:1499–507. https://doi.org/10.1038/mp.2014.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11. https://doi.org/10.1016/j.schres.2014.09.041.

    Article  PubMed  Google Scholar 

  218. Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72. https://doi.org/10.1038/mp.2017.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, et al. Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci. 2014;34:14948–60. https://doi.org/10.1523/JNEUROSCI.2204-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gilani AI, Chohan MO, Inan M, Schobel SA, Chaudhury NH, Paskewitz S, et al. Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc Natl Acad Sci USA. 2014;111:7450–5. https://doi.org/10.1073/pnas.1316488111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci. 2007;27:11424–30. https://doi.org/10.1523/JNEUROSCI.2847-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. https://doi.org/10.1038/nature07991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry. 1999;56:1001–5. https://doi.org/10.1001/archpsyc.56.11.1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW. Abnormal neural synchrony in schizophrenia. J Neurosci. 2003;23:7407–11. https://doi.org/10.1523/JNEUROSCI.23-19-07407.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13. https://doi.org/10.1038/nrn2774.

    Article  CAS  PubMed  Google Scholar 

  226. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2:704–16. https://doi.org/10.1038/35094565.

    Article  CAS  PubMed  Google Scholar 

  227. Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol. 2024;84:102820 https://doi.org/10.1016/j.conb.2023.102820.

    Article  CAS  PubMed  Google Scholar 

  228. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83. https://doi.org/10.1038/nn.2447.

    Article  CAS  PubMed  Google Scholar 

  229. Pafundo DE, Miyamae T, Lewis DA, Gonzalez-Burgos G. Presynaptic Effects of N-Methyl-D-Aspartate receptors enhance parvalbumin cell-mediated inhibition of pyramidal cells in mouse prefrontal cortex. Biol Psychiatry. 2018;84:460–70. https://doi.org/10.1016/j.biopsych.2018.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci USA. 2015;112:3535–40. https://doi.org/10.1073/pnas.1413625112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, et al. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry. 2021;26:3461–75. https://doi.org/10.1038/s41380-020-0840-3.

    Article  PubMed  Google Scholar 

  232. Cho KKA, Shi J, Phensy AJ, Turner ML, Sohal VS. Long-range inhibition synchronizes and updates prefrontal task activity. Nature. 2023;617:548–54. https://doi.org/10.1038/s41586-023-06012-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/−) mice. Neuron. 2015;85:1332–43. https://doi.org/10.1016/j.neuron.2015.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cho KKA, Davidson TJ, Bouvier G, Marshall JD, Schnitzer MJ, Sohal VS. Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. Nat Neurosci. 2020;23:892–902. https://doi.org/10.1038/s41593-020-0647-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hutsler JJ, Lee DG, Porter KK. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res. 2005;1052:71–81. https://doi.org/10.1016/j.brainres.2005.06.015.

    Article  CAS  PubMed  Google Scholar 

  236. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573:61–8. https://doi.org/10.1038/s41586-019-1506-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Knoll AT, Jiang K, Levitt P. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits. Genes Brain Behav. 2018;17:e12431 https://doi.org/10.1111/gbb.12431.

    Article  CAS  PubMed  Google Scholar 

  238. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9. https://doi.org/10.1038/78682.

    Article  CAS  PubMed  Google Scholar 

  239. Muehlan C, Roch C, Vaillant C, Dingemanse J. The orexin story and orexin receptor antagonists for the treatment of insomnia. J Sleep Res. 2023;32:e13902 https://doi.org/10.1111/jsr.13902.

    Article  PubMed  Google Scholar 

  240. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009;106:2029–34. https://doi.org/10.1073/pnas.0812394106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, et al. Modeling rett syndrome using TALEN-Edited MECP2 mutant cynomolgus monkeys. Cell. 2017;169:945–55.e910. https://doi.org/10.1016/j.cell.2017.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21:4915–22. https://doi.org/10.1523/JNEUROSCI.21-13-04915.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Violante IR, Alania K, Cassara AM, Neufeld E, Acerbo E, Carron R, et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci. 2023;26:1994–2004. https://doi.org/10.1038/s41593-023-01456-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, et al. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron. 2024;112:3252–66.e3255. https://doi.org/10.1016/j.neuron.2024.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Oh S, Jekal J, Liu J, Kim J, Park J-U, Lee T, et al. Bioelectronic implantable devices for physiological signal recording and closed-loop neuromodulation. Advanced Functional Materials. 2024;34:2403562. https://doi.org/10.1002/adfm.202403562.

    Article  CAS  Google Scholar 

  246. Herbozo Contreras LF, Truong ND, Eshraghian JK, Xu Z, Huang Z, Bersani-Veroni TV, et al. Neuromorphic neuromodulation: Towards the next generation of closed-loop neurostimulation. PNAS Nexus. 2024;3:pgae488. https://doi.org/10.1093/pnasnexus/pgae488.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:1591–609. https://doi.org/10.1093/brain/awr039.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83. https://doi.org/10.1038/nature16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what’s next? Mol Psychiatry. 2020;25:114–30. https://doi.org/10.1038/s41380-019-0479-0.

    Article  CAS  PubMed  Google Scholar 

  250. Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci. 2015;18:883–91. https://doi.org/10.1038/nn.4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ragy Girgis, Sarah Canetta, and Mark Ansorge for providing valuable feedback to the manuscript. Figures were created using assets from BioRender. This work was supported by the National Institute of Health (R01 MH136672, R01 MH128293 and R01 MH124858 to C.K. and K08 MH138822 to J.M.V).

Author information

Authors and Affiliations

Authors

Contributions

JMV and CK both conceptualized and wrote the manuscript.

Corresponding authors

Correspondence to Joseph M. Villarin or Christoph Kellendonk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarin, J.M., Kellendonk, C. An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology. Mol Psychiatry 30, 4384–4398 (2025). https://doi.org/10.1038/s41380-025-03060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03060-7

Search

Quick links