Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advance and Prospect of Positron Emission Tomography in Alzheimer’s disease research

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which is continually increasing in prevalence and is attracting more and more attention. Based on the traditional diagnostic framework, imaging biomarkers have shown great prospect in diagnosis. Positron emission tomography (PET) imaging, as a novel biomarker of AD, evaluates the progress and changes at the molecular level and develops many radiotracers corresponding to the hallmark biological targets. Compounds labeled with radioactive elements are transported to specific regions or combine with specific substances such as amyloid β(Aβ), paired helical filaments (PHFs) and neurofibrillary tangles (NFTs), which makes different radioactive uptake in different brain regions of AD. This review will set forth 18F-FDG PET imaging, Aβ-PET imaging, Tau-PET imaging, neuroinflammatory PET imaging, neurotransmitter PET imaging and some other emerging PET imaging. In clinical practices, PET performed with other medical imaging tools shows a great prospect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Z-score and 3D-SSP maps generated by comparing a patient with AD to a database of normal control elderly subjects.
Fig. 2: Group-averaged parametric maps of SUVR and VT for HC, aMCI and AD.
Fig. 3: Visualization of tau pathology in vivo using four tau-PET tracers.
Fig. 4: TSPO-PET imaging in prodromal AD, MCI, and dementia.
Fig. 5: Pearson’s r: correlation graph of synaptic density and overall cognition in all regions of AD patients.

Similar content being viewed by others

References

  1. Petersen RC. Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia. 2000;15.

  2. Portet F, Ousset PJ, Visser PJ, Frisoni GB, Nobili F, Scheltens P, et al. Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J Neurol Neurosurg Psychiatry. 2006;77:714–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jack CR Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    PubMed  Google Scholar 

  5. Alzheimer’s Disease International. World Alzheimer Report 2018. The state of the art of dementia research: new frontiers. September, 2018.

  6. Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020;5:e661–e71.

    PubMed  Google Scholar 

  7. Vöglein J, Franzmeier N, Morris JC, Dieterich M, McDade E, Simons M, et al. Pattern and implications of neurological examination findings in autosomal dominant Alzheimer disease. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association. 2023;19:632–45.

    Google Scholar 

  8. De Roeck EE, De Deyn PP, Dierckx E, Engelborghs S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: a systematic review. Alzheimers Res Ther. 2019;11:21.

    PubMed  PubMed Central  Google Scholar 

  9. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284:643–63.

    CAS  PubMed  Google Scholar 

  10. Klepl D, He F, Wu M, Marco MD, Blackburn DJ, Sarrigiannis PG Characterising Alzheimer’s Disease With EEG-Based Energy Landscape Analysis. IEEE J Biomed Health Inform. 2022;26.

  11. van Oostveen WM, de Lange ECM Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int J Mol Sci. 2021;22.

  12. Kas A, Migliaccio R, Tavitian B. A future for PET imaging in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2020;47:231–34.

    PubMed  Google Scholar 

  13. Mucke L. Neuroscience: Alzheimer’s disease. Nature. 2009;461:895–97.

    CAS  PubMed  Google Scholar 

  14. Khachaturian ZS. Diagnosis of Alzheimer’s disease: two decades of progress. Alzheimer’s & Dementia : the Journal of the Alzheimer’s Association. 2005;1:93–8.

    Google Scholar 

  15. Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16:661–76.

    PubMed  Google Scholar 

  16. Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ. In vivo staging of regional amyloid deposition. Neurology. 2017;89:2031–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg O, et al. Discriminative Accuracy of [18F]flortaucipir Positron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA. 2018;320:1151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wurtman R. Biomarkers in the diagnosis and management of Alzheimer’s disease. Metabolism. 2015;64:S47–S50.

    CAS  PubMed  Google Scholar 

  19. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, et al. Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci. 2014;34:16247–55.

    PubMed  PubMed Central  Google Scholar 

  20. Sala-Llonch R, Contador J, Pérez-Millan A, Falgàs N, Ruiz-Peris M, Tort-Merino A, et al. Functional network alterations in early-onset Alzheimer’s disease studied with resting-state fMRI. Alzheimer’s & Dementia. 2020;16:e043307.

    Google Scholar 

  21. Lattmann R, Vockert N, Wesenberg J, Yakupov R, Suksangkharn Y, Schütze H, et al. Abnormalities in task-fMRI activation are related to disease progression towards Alzheimer’s disease. Alzheimer’s & Dementia. 2024;20:e093844.

    Google Scholar 

  22. Zheng W, Cui B, Han Y, Song H, Li K, He Y, et al. Disrupted Regional Cerebral Blood Flow, Functional Activity and Connectivity in Alzheimer’s Disease: A Combined ASL Perfusion and Resting State fMRI Study. Front Neurosci. 2019;13:738.

    PubMed  PubMed Central  Google Scholar 

  23. Schmidt A, Pahnke J. Efficient near-infrared in vivo imaging of amyoid-β deposits in Alzheimer’s disease mouse models. J Alzheimers Dis. 2012;30:651–64.

    CAS  PubMed  Google Scholar 

  24. Roe CM, Stout SH, Rajasekar G, Ances BM, Jones JM, Head D, et al. A 2.5-Year Longitudinal Assessment of Naturalistic Driving in Preclinical Alzheimer’s Disease. J Alzheimers Dis. 2019;68:1625–33.

    PubMed  PubMed Central  Google Scholar 

  25. Whitwell JL. Alzheimer’s disease neuroimaging. Curr Opin Neurol. 2018;31:396–404.

    PubMed  Google Scholar 

  26. Hess S, Blomberg BA, Zhu HJ, Høilund-Carlsen PF, Alavi A. The pivotal role of FDG-PET/CT in modern medicine. Acad Radiol. 2014;21:232–49.

    PubMed  Google Scholar 

  27. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.

    CAS  PubMed  Google Scholar 

  28. Marcus C, Mena E, Subramaniam RM Brain PET in the diagnosis of Alzheimer’s disease. Clin Nucl Med. 2014;39.

  29. Weiner MW, Aisen PS, Jack CR, Jagust WJ, Trojanowski JQ, Shaw L, et al. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia : the Journal of the Alzheimer’s Association. 2010;6.

  30. Ou Y-N, Xu W, Li J-Q, Guo Y, Cui M, Chen K-L, et al. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: a longitudinal study. Alzheimers Res Ther. 2019;11:57.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Desgranges B, Baron J-C, Lalevée C, Giffard B, Viader F, de La Sayette V, et al. The neural substrates of episodic memory impairment in Alzheimer’s disease as revealed by FDG-PET: relationship to degree of deterioration. Brain. 2002;125:1116–24.

    PubMed  Google Scholar 

  32. Kalpouzos G, Eustache F, de la Sayette V, Viader F, Chételat G, Desgranges B. Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients. J Neurol. 2005;252:548–58.

    CAS  PubMed  Google Scholar 

  33. Gjerum L, Frederiksen KS, Henriksen OM, Law I, Anderberg L, Andersen BB, et al. A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate dementia with Lewy bodies and Alzheimer’s disease. J Neurol Sci. 2020;410:116645.

    CAS  PubMed  Google Scholar 

  34. Minoshima S, Mosci K, Cross D, Thientunyakit T. Brain [F-18]FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer’s Disease and Other Types of Dementing Disorders. Semin Nucl Med. 2021;51:230–40.

    PubMed  Google Scholar 

  35. Drzezga A, Altomare D, Festari C, Arbizu J, Orini S, Herholz K, et al. Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2018;45:1487–96.

    PubMed  Google Scholar 

  36. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging. Alzheimer’s & Dementia : the Journal of the Alzheimer’s Association. 2013;9:e106–e09.

    Google Scholar 

  37. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association. 2015;11.

  38. Villemagne VL, Chételat G Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res Rev. 2016;30.

  39. Ottoy J, Verhaeghe J, Niemantsverdriet E, Wyffels L, Somers C, De Roeck E, et al. Validation of the Semiquantitative Static SUVR Method for 18F-AV45 PET by Pharmacokinetic Modeling with an Arterial Input Function. J Nucl Med. 2017;58:1483–89.

    CAS  PubMed  Google Scholar 

  40. Klunk WE, Mathis CA, Price JC, Lopresti BJ, DeKosky ST. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2805–07.

    PubMed  Google Scholar 

  41. Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH, Moran EK, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol. 2007;62:229–34.

    PubMed  Google Scholar 

  42. Gomperts SN, Locascio JJ, Marquie M, Santarlasci AL, Rentz DM, Maye J, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord. 2012;27:965–73.

    PubMed  PubMed Central  Google Scholar 

  43. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.

    CAS  PubMed  Google Scholar 

  44. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.

    CAS  PubMed  Google Scholar 

  46. Waldron A-M, Wyffels L, Verhaeghe J, Richardson JC, Schmidt M, Stroobants S, et al. Longitudinal Characterization of [18F]-FDG and [18F]-AV45 Uptake in the Double Transgenic TASTPM Mouse Model. J Alzheimers Dis. 2017;55:1537–48.

    CAS  PubMed  Google Scholar 

  47. Williams DR. Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J. 2006;36:652–60.

    CAS  PubMed  Google Scholar 

  48. Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegener. 2017;12:19.

    PubMed  PubMed Central  Google Scholar 

  49. Ossenkoppele R, Hansson O. Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer’s disease. Alzheimer’s & Dementia : the Journal of the Alzheimer’s Association. 2021;17:1998–2008.

    Google Scholar 

  50. Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21:726–34.

    CAS  PubMed  Google Scholar 

  51. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    CAS  PubMed  Google Scholar 

  52. Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J, et al. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease. JAMA Neurol. 2017;74:427–36.

    PubMed  PubMed Central  Google Scholar 

  53. Tetzloff KA, Graff-Radford J, Martin PR, Tosakulwong N, Machulda MM, Duffy JR, et al. Regional Distribution, Asymmetry, and Clinical Correlates of Tau Uptake on [18F]AV-1451 PET in Atypical Alzheimer’s Disease. J Alzheimers Dis. 2018;62:1713–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Singleton E, Hansson O, Pijnenburg YAL, La Joie R, Mantyh WG, Tideman P, et al. Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2021;92:872–80.

    PubMed  Google Scholar 

  55. Sonni I, Lesman Segev OH, Baker SL, Iaccarino L, Korman D, Rabinovici GD, et al. Evaluation of a visual interpretation method for tau-PET with 18F-flortaucipir. Alzheimers Dement (Amst). 2020;12:e12133.

    PubMed  PubMed Central  Google Scholar 

  56. Leuzy A, Smith R, Cullen NC, Strandberg O, Vogel JW, Binette AP, et al. Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurol. 2022;79:149–58.

    PubMed  Google Scholar 

  57. Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, et al. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies. Neuron. 2021;109.

  58. Mohammadi Z, Alizadeh H, Marton J, Cumming P The Sensitivity of Tau Tracers for the Discrimination of Alzheimer’s Disease Patients and Healthy Controls by PET. Biomolecules. 2023;13.

  59. Holt DP, Ravert HT, Dannals RF. Synthesis and quality control of [(18) F]T807 for tau PET imaging. J Labelled Comp Radiopharm. 2016;59:411–15.

    CAS  PubMed  Google Scholar 

  60. Wang M, Gao M, Xu Z, Zheng Q-H. Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer’s disease. Bioorg Med Chem Lett. 2015;25:4587–92.

    CAS  PubMed  Google Scholar 

  61. Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with Postmortem Burden of Tau and Astrogliosis in Alzheimer Disease. J Nucl Med. 2018;59:671–74.

    CAS  PubMed  Google Scholar 

  62. Vermeiren C, Motte P, Viot D, Mairet-Coello G, Courade J-P, Citron M, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33:273–81.

    CAS  PubMed  Google Scholar 

  63. Bischof GN, Dodich A, Boccardi M, van Eimeren T, Festari C, Barthel H, et al. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging. 2021;48:2110–20.

    PubMed  PubMed Central  Google Scholar 

  64. Leuzy A, Smith R, Ossenkoppele R, Santillo A, Borroni E, Klein G, et al. Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders. JAMA Neurol. 2020;77:955–65.

    PubMed  Google Scholar 

  65. Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain. 2020;143:2818–30.

    PubMed  Google Scholar 

  66. Li Y, Yao Z, Yu Y, Zou Y, Fu Y, Hu B. Brain network alterations in individuals with and without mild cognitive impairment: parallel independent component analysis of AV1451 and AV45 positron emission tomography. BMC Psychiatry. 2019;19:165.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao Z-W, Yuan Z, Zhao D-Q, Wang Z-W, Zhu F-Q, Luan P. The effect of V-ATPase function defects in pathogenesis of Alzheimer’s disease. CNS Neurosci Ther. 2018;24:837–40.

    PubMed  PubMed Central  Google Scholar 

  69. Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener. 2022;17:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, et al. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Rep. 2019;27.

  71. Meyer JH, Cervenka S, Kim M-J, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7:1064–74.

    PubMed  PubMed Central  Google Scholar 

  72. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    PubMed  Google Scholar 

  73. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–67.

    CAS  PubMed  Google Scholar 

  74. Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:343–51.

    CAS  PubMed  Google Scholar 

  75. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88.

    CAS  PubMed  Google Scholar 

  76. Guilarte TR. TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther. 2019;194:44–58.

    CAS  PubMed  Google Scholar 

  77. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association. 2015;11.

  78. Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    PubMed  Google Scholar 

  79. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, et al. Depiction of microglial activation in aging and dementia: Positron emission tomography with [11C]DPA713 versus [11C](R)PK11195. J Cereb Blood Flow Metab. 2017;37:877–89.

    CAS  PubMed  Google Scholar 

  80. Barca C, Kiliaan AJ, Wachsmuth L, Foray C, Hermann S, Faber C, et al. Short-Term Colony-Stimulating Factor 1 Receptor Inhibition-Induced Repopulation After Stroke Assessed by Longitudinal 18F-DPA-714 PET Imaging. J Nucl Med. 2022;63:1408–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, et al. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein. J Nucl Med. 2016;57:1753–59.

    CAS  PubMed  Google Scholar 

  82. Hong J, Telu S, Zhang Y, Miller WH, Shetty HU, Morse CL, et al. Translation of 11C-labeled tracer synthesis to a CGMP environment as exemplified by [11C]ER176 for PET imaging of human TSPO. Nat Protoc. 2021;16:4419–45.

    CAS  PubMed  Google Scholar 

  83. Masdeu JC, Pascual B, Fujita M. Imaging Neuroinflammation in Neurodegenerative Disorders. J Nucl Med. 2022;63:45S–52S.

    CAS  PubMed  Google Scholar 

  84. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62:15–30.

    CAS  PubMed  Google Scholar 

  85. Rusjan PM, Wilson AA, Miler L, Fan I, Mizrahi R, Houle S, et al. Kinetic modeling of the monoamine oxidase B radioligand [¹¹C]SL25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab. 2014;34:883–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Parker CA, Nutt DJ, Tyacke RJ Imidazoline-I2 PET Tracers in Neuroimaging. Int J Mol Sci. 2023;24.

  87. Tyacke RJ, Myers JFM, Venkataraman A, Mick I, Turton S, Passchier J, et al. Evaluation of 11C-BU99008, a PET Ligand for the Imidazoline2 Binding Site in Human Brain. J Nucl Med. 2018;59:1597–602.

    CAS  PubMed  Google Scholar 

  88. Calsolaro V, Matthews PM, Donat CK, Livingston NR, Femminella GD, Guedes SS, et al. Astrocyte reactivity with late-onset cognitive impairment assessed in vivo using 11C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry. 2021;26:5848–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci USA. 2019;116:1686–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Janssen B, Vugts DJ, Wilkinson SM, Ory D, Chalon S, Hoozemans JJM, et al. Identification of the allosteric P2X7 receptor antagonist [11C]SMW139 as a PET tracer of microglial activation. Sci Rep. 2018;8:6580.

    PubMed  PubMed Central  Google Scholar 

  91. Lanari A, Amenta F, Silvestrelli G, Tomassoni D, Parnetti L. Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech Ageing Dev. 2006;127:158–65.

    CAS  PubMed  Google Scholar 

  92. Román GC. Cholinergic dysfunction in vascular dementia. Curr Psychiatry Rep. 2005;7:18–26.

    PubMed  Google Scholar 

  93. Horsager J, Okkels N, Hansen AK, Damholdt MF, Andersen KH, Fedorova TD, et al. Mapping Cholinergic Synaptic Loss in Parkinson’s Disease: An [18F]FEOBV PET Case-Control Study. J Parkinsons Dis. 2022;12:2493–506.

    CAS  PubMed  Google Scholar 

  94. Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res. 1990;27:576–86.

    CAS  PubMed  Google Scholar 

  95. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    PubMed  PubMed Central  Google Scholar 

  96. Li W, Wang Y, Lohith TG, Zeng Z, Tong L, Mazzola R, et al. The PET tracer [11C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer’s disease. Sci Transl Med. 2022;14:eabg3684.

    CAS  PubMed  Google Scholar 

  97. Coughlin JM, Rubin LH, Du Y, Rowe SP, Crawford JL, Rosenthal HB, et al. High Availability of the α7-Nicotinic Acetylcholine Receptor in Brains of Individuals with Mild Cognitive Impairment: A Pilot Study Using 18F-ASEM PET. J Nucl Med. 2020;61:423–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Marcone A, Garibotto V, Moresco RM, Florea I, Panzacchi A, Carpinelli A, et al. 11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer’s disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimers Dis. 2012;31:387–99.

    CAS  PubMed  Google Scholar 

  99. Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.

    PubMed  Google Scholar 

  100. Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis. 2013;52:49–65.

    CAS  PubMed  Google Scholar 

  101. Yanai K, Tashiro M The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther. 2007;113.

  102. Paul S, Khanapur S, Rybczynska AA, Kwizera C, Sijbesma JWA, Ishiwata K, et al. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine. J Nucl Med. 2011;52:1293–300.

    PubMed  Google Scholar 

  103. Ding Y-S, Lin K-S, Logan J. PET imaging of norepinephrine transporters. Curr Pharm Des. 2006;12:3831–45.

    CAS  PubMed  Google Scholar 

  104. Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer’s disease. Semin Cell Dev Biol. 2023;139:24–34.

    CAS  PubMed  Google Scholar 

  105. Hamilton A, Zamponi GW, Ferguson SSG. Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Mol Brain. 2015;8:18.

    PubMed  PubMed Central  Google Scholar 

  106. Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem. 2019;62:403–19.

    CAS  PubMed  Google Scholar 

  107. Fuchigami T, Nakayama M, Yoshida S. Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal. 2015;2015:716514.

    PubMed  PubMed Central  Google Scholar 

  108. Luan P, Zhou H-H, Zhang B, Liu A-M, Yang L-H, Weng X-L, et al. Basic fibroblast growth factor protects C17.2 cells from radiation-induced injury through ERK1/2. CNS Neurosci Ther. 2012;18:767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao Z-Y, Luan P, Huang S-X, Xiao S-H, Zhao J, Zhang B, et al. Edaravone protects HT22 neurons from H2O2-induced apoptosis by inhibiting the MAPK signaling pathway. CNS Neurosci Ther. 2013;19:163–69.

    PubMed  Google Scholar 

  110. Rao CV, Farooqui M, Madhavaram A, Zhang Y, Asch AS, Yamada HY. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell. 2020;19:e13221.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hurtado DE, Molina-Porcel L, Carroll JC, Macdonald C, Aboagye AK, Trojanowski JQ, et al. Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer’s disease. J Neurosci. 2012;32:7392–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Prabhakaran J, Zanderigo F, Sai KKS, Rubin-Falcone H, Jorgensen MJ, Kaplan JR, et al. Radiosynthesis and in Vivo Evaluation of [11C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain. ACS Chem Neurosci. 2017;8:1697–703.

    CAS  PubMed  Google Scholar 

  113. Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ, et al. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem. 1993;268:22959–62.

    CAS  PubMed  Google Scholar 

  114. de Barry J, Liégeois CM, Janoshazi A. Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp Gerontol. 2010;45:64–69.

    PubMed  Google Scholar 

  115. Wang M, Xu L, Gao M, Miller KD, Sledge GW, Zheng Q-H. 11C]enzastaurin, the first design and radiosynthesis of a new potential PET agent for imaging of protein kinase C. Bioorg Med Chem Lett. 2011;21:1649–53.

    CAS  PubMed  Google Scholar 

  116. Ha C, Ryu J, Park CB. Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry. 2007;46:6118–25.

    CAS  PubMed  Google Scholar 

  117. Liang SH, Holland JP, Stephenson NA, Kassenbrock A, Rotstein BH, Daignault CP, et al. PET neuroimaging studies of [(18)F]CABS13 in a double transgenic mouse model of Alzheimer’s disease and nonhuman primates. ACS Chem Neurosci. 2015;6:535–41.

    CAS  PubMed  Google Scholar 

  118. Peng L, Bestard-Lorigados I, Song W. The synapse as a treatment avenue for Alzheimer’s Disease. Mol Psychiatry. 2022;27:2940–49.

    CAS  PubMed  Google Scholar 

  119. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci USA. 2012;109:E2895–E903.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Constantinescu CC, Tresse C, Zheng M, Gouasmat A, Carroll VM, Mistico L, et al. Development and In Vivo Preclinical Imaging of Fluorine-18-Labeled Synaptic Vesicle Protein 2A (SV2A) PET Tracers. Mol Imaging Biol. 2019;21:509–18.

    CAS  PubMed  Google Scholar 

  121. Mecca AP, O’Dell RS, Sharp ES, Banks ER, Bartlett HH, Zhao W, et al. Synaptic density and cognitive performance in Alzheimer’s disease: A PET imaging study with [11 C]UCB-J. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association. 2022;18:2527–36.

    CAS  Google Scholar 

  122. Cai Z, Li S, Zhang W, Pracitto R, Wu X, Baum E, et al. Synthesis and Preclinical Evaluation of an 18F-Labeled Synaptic Vesicle Glycoprotein 2A PET Imaging Probe: [18F]SynVesT-2. ACS Chem Neurosci. 2020;11:592–603.

    CAS  PubMed  Google Scholar 

  123. Maroof N, Pardon MC, Kendall DA. Endocannabinoid signalling in Alzheimer’s disease. Biochem Soc Trans. 2013;41:1583–87.

    CAS  PubMed  Google Scholar 

  124. Lahdenpohja S, Rajala NA, Helin JS, Haaparanta-Solin M, Solin O, López-Picón FR, et al. Ruthenium-Mediated 18F-Fluorination and Preclinical Evaluation of a New CB1 Receptor Imaging Agent [18F]FPATPP. ACS Chem Neurosci. 2020;11:2009–18.

    CAS  PubMed  Google Scholar 

  125. Spinelli F, Capparelli E, Abate C, Colabufo NA, Contino M. Perspectives of Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders: Structure-Affinity Relationship (SAfiR) and Structure-Activity Relationship (SAR) Studies. J Med Chem. 2017;60:9913–31.

    CAS  PubMed  Google Scholar 

  126. Chen Z, Hou L, Gan J, Cai Q, Ye W, Chen J, et al. Synthesis and preliminary evaluation of a novel positron emission tomography (PET) ligand for imaging fatty acid amide hydrolase (FAAH). Bioorg Med Chem Lett. 2020;30:127513.

    CAS  PubMed  Google Scholar 

  127. Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, et al. Role of RAGE in Alzheimer’s Disease. Cell Mol Neurobiol. 2016;36:483–95.

    CAS  PubMed  Google Scholar 

  128. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells. 2020;9.

  129. Crunkhorn S. Neurodegenerative disease: Taming the RAGE of Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:351.

    CAS  PubMed  Google Scholar 

  130. Cary BP, Brooks AF, Fawaz MV, Drake LR, Desmond TJ, Sherman P, et al. Synthesis and Evaluation of [(18)F]RAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts. ACS Chem Neurosci. 2016;7:391–98.

    CAS  PubMed  Google Scholar 

  131. Chai AB, Callaghan R, Gelissen IC Regulation of P-Glycoprotein in the Brain. Int J Mol Sci. 2022;23.

  132. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of P-Glycoprotein, a β-Amyloid Transporter at the Blood-Brain Barrier, Is Compromised in Patients with Mild Alzheimer Disease. J Nucl Med. 2014;55:1106–11.

    CAS  PubMed  Google Scholar 

  133. Syvänen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci. 2013;4:225–37.

    PubMed  Google Scholar 

  134. Zoghbi SS, Liow J-S, Yasuno F, Hong J, Tuan E, Lazarova N, et al. 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux. J Nucl Med. 2008;49:649–56.

    CAS  PubMed  Google Scholar 

  135. Levchenko A, Mehta BM, Lee JB, Humm JL, Augensen F, Squire O, et al. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J Nucl Med. 2000;41:493–501.

    CAS  PubMed  Google Scholar 

  136. Froklage FE, Syvänen S, Hendrikse NH, Huisman MC, Molthoff CF, Tagawa Y, et al. [11C]Flumazenil brain uptake is influenced by the blood-brain barrier efflux transporter P-glycoprotein. EJNMMI Res. 2012;2:12.

    PubMed  PubMed Central  Google Scholar 

  137. Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P. Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med. 2003;44:1330–39.

    CAS  PubMed  Google Scholar 

  138. Bao Y-W, Chau ACM, Chiu PK-C, Shea YF, Kwan JSK, Chan FHW, et al. Heterogeneity of Amyloid Binding in Cognitively Impaired Patients Consecutively Recruited from a Memory Clinic: Evaluating the Utility of Quantitative 18F-Flutemetamol PET-CT in Discrimination of Mild Cognitive Impairment from Alzheimer’s Disease and Other Dementias. J Alzheimers Dis. 2021;79:819–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee S, Jung JH, Kim D, Lim HK, Park M-A, Kim G, et al. PET/CT for Brain Amyloid: A Feasibility Study for Scan Time Reduction by Deep Learning. Clin Nucl Med. 2021;46:e133–e40.

    PubMed  Google Scholar 

  140. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR Imaging: New Frontier in Alzheimer’s Disease and Other Dementias. Front Mol Neurosci. 2017;10:343.

    PubMed  PubMed Central  Google Scholar 

  141. Bollack A, Collij LE, García DV, Shekari M, Altomare D, Payoux P, et al. A Centiloid cut-off to help predict true amyloid accumulation. Alzheimer’s & Dementia. 2023;19:e074619.

    Google Scholar 

  142. Gueorguieva I, Chua L, Chow KH, Ernest CS, Willis BA, Shcherbinin S, et al. Donanemab exposure-efficacy relationship in patients with early symptomatic Alzheimer’s disease. Alzheimer’s & Dementia. 2023;19:e062599.

    Google Scholar 

  143. Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of Amyloid Positron Emission Tomography With Subsequent Change in Clinical Management Among Medicare Beneficiaries With Mild Cognitive Impairment or Dementia. JAMA. 2019;321:1286–94.

    PubMed  PubMed Central  Google Scholar 

  144. Weiner MW, Kanoria S, Miller MJ, Aisen PS, Beckett LA, Conti C, et al. Overview of Alzheimer’s Disease Neuroimaging Initiative and future clinical trials. Alzheimer’s & Dementia. 2025;21:e14321.

    Google Scholar 

Download references

Acknowledgements

We acknowledge that: 1.the key Project of Basic Research of Shenzhen, NO: JCYJ20200109113603854; 2.the Screening and Intervention Research of Preclinical Cohort of Alzheimer’s Disease, Science and Technology Planning Project of Guangzhou, NO:2024A03J1134; 3.the key Laboratory of the Prevention and Treatment Technology of Alzheimer’s Disease of Guangzhou; 4. National Natural Science Foundation of China, No. 32361143787.

Author information

Authors and Affiliations

Authors

Contributions

YW: conceptualization, visualization, writing—original draft; WL: visualization, conceptualization, writing—original draft; LW: methodology, data curation; JL: investigation, formal analysis; DH: methodology, project administration; WC: writing—review and editing; JT: conceptualization, writing—review and editing; PL: writing—review and editing, supervision.

Corresponding authors

Correspondence to Weibin Cheng, Junzhang Tian or Ping Luan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liao, W., Wang, L. et al. Advance and Prospect of Positron Emission Tomography in Alzheimer’s disease research. Mol Psychiatry 30, 4899–4909 (2025). https://doi.org/10.1038/s41380-025-03081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03081-2

Search

Quick links