Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The mechanisms underlying TDP-43-associated neurodegeneration in Alzheimer’s disease and related dementias

Abstract

Alzheimer’s disease (AD) and Alzheimer’s disease-related dementias (ADRDs) are among the most prevalent neurodegenerative diseases, characterized by progressive cognitive decline driven by complex and overlapping pathological mechanisms. While amyloid plaques, neurofibrillary tangles, and Lewy bodies are well-established hallmarks, TAR DNA-binding protein 43 (TDP-43) pathology has emerged as a critical contributor to disease progression, particularly in cases exhibiting hippocampal sclerosis and severe brain atrophy. TDP-43 pathology is defined by its cytoplasmic mislocalization, aberrant aggregation, and nuclear depletion, leading to disruptions in RNA metabolism, stress granule dynamics, and mitochondrial function. Increasing evidence suggests that TDP-43 pathology not only exacerbates neuronal degeneration but also interacts with Aβ plaques, tau tangles, and α-synuclein aggregates, compounding neurodegenerative processes and accelerating cognitive decline. Despite its growing recognition, TDP-43 pathology remains underexplored compared to other proteinopathies in AD and ADRDs, highlighting the need for further mechanistic studies and targeted therapeutic development. In this review, we summarize the current understanding of TDP-43 pathology in AD and ADRDs, with a focus on its role in disease progression. We further discuss the molecular mechanisms underlying TDP-43-associated neurodegeneration in AD and ADRDs, emphasizing RNA dysregulation, mitochondrial dysfunction, disrupted protein homeostasis, stress response alternations, and nuclear-cytoplasmic transport impairments. Lastly, given the significant impact on disease pathology, we review ongoing efforts to treat TDP-43-associated neurodegeneration, including antisense oligonucleotides, small-molecule inhibitors, and peptide-based interventions aimed at restoring TDP-43 function or preventing its neurotoxicity and pathological aggregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TDP-43 pathology in vulnerable cell types and its anatomical spread across brain regions in ADRD.
Fig. 2: Pathomechanism of TDP-43 proteinopathies.
Fig. 3: Targeting TDP-43 in neurodegeneration.

Similar content being viewed by others

References

  1. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11:718–26.

    Article  PubMed  Google Scholar 

  2. Livingston G, Huntley J, Liu KY, Costafreda SG, Selbaek G, Alladi S, et al. Dementia prevention, intervention, and care: 2024 report of the lancet standing commission. Lancet. 2024;404:572–628.

    Article  PubMed  Google Scholar 

  3. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20:3708–821.

  4. Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995;69:3584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem. 2005;280:37572–84.

    Article  CAS  PubMed  Google Scholar 

  6. Wang HY, Wang IF, Bose J, Shen CK. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics. 2004;83:130–9.

    Article  CAS  PubMed  Google Scholar 

  7. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    Article  CAS  PubMed  Google Scholar 

  8. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–11.

    Article  CAS  PubMed  Google Scholar 

  9. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40:572–4.

    Article  CAS  PubMed  Google Scholar 

  10. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319:1668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ, et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol. 2007;171:227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007;61:435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chanson JB, Echaniz-Laguna A, Vogel T, Mohr M, Benoilid A, Kaltenbach G, et al. TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson’s disease. Neurodegener Dis. 2010;7:260–4.

    Article  PubMed  Google Scholar 

  14. Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol. 2008;67:1159–65.

    Article  PubMed  Google Scholar 

  15. Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, et al. Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 2007;1184:284–94.

    Article  CAS  PubMed  Google Scholar 

  16. Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79:1186–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, et al. “New Old Pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J Neuropathol Exp Neurol. 2016;75:482–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raji CA, Lopez OL, Kuller LH, Carmichael OT, Becker JT. Age, Alzheimer disease, and brain structure. Neurology. 2009;73:1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith MA. Alzheimer disease. Int Rev Neurobiol. 1998;42:1–54.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G, et al. Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol. 2005;31:205–17.

    Article  CAS  PubMed  Google Scholar 

  22. Czech C, Tremp G, Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog Neurobiol. 2000;60:363–84.

    Article  CAS  PubMed  Google Scholar 

  23. Tanahashi H, Tabira T. Alzheimer’s disease-associated presenilin 2 interacts with DRAL, an LIM-domain protein. Hum Mol Genet. 2000;9:2281–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 2014;127:441–50.

    Article  CAS  PubMed  Google Scholar 

  27. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131:571–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain. 2016;139:2983–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gomes LA, Hipp SA, Rijal Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ, et al. Abeta-induced acceleration of Alzheimer-related tau-pathology spreading and its association with prion protein. Acta Neuropathol. 2019;138:913–41.

    Article  CAS  PubMed  Google Scholar 

  30. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141:2181–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tome SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M, et al. Distinct molecular patterns of TDP-43 pathology in Alzheimer’s disease: relationship with clinical phenotypes. Acta Neuropathol Commun. 2020;8:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katsumata Y, Fardo DW, Kukull WA, Nelson PT. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer’s disease and cerebrovascular disease pathologies. Acta Neuropathol Commun. 2018;6:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Power MC, Mormino E, Soldan A, James BD, Yu L, Armstrong NM, et al. Combined neuropathological pathways account for age-related risk of dementia. Ann Neurol. 2018;84:10–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, et al. Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol. 2008;67:555–64.

    Article  CAS  PubMed  Google Scholar 

  35. Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 2023;145:159–73.

    Article  PubMed  Google Scholar 

  36. Katsumata Y, Wu X, Aung KZ, Fardo DW, Woodworth DC, Sajjadi SA, et al. Pure LATE-NC: Frequency, clinical impact, and the importance of considering APOE genotype when assessing this and other subtypes of non-Alzheimer’s pathologies. Acta Neuropathol. 2024;148:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.

    Article  CAS  PubMed  Google Scholar 

  38. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and Pick’s disease. Arch Neurol. 2001;58:1803–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol. 2009;117:15–18.

    Article  PubMed  Google Scholar 

  40. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119:1–4.

    Article  PubMed  Google Scholar 

  41. Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 2015;129:469–91.

    Article  PubMed  Google Scholar 

  42. Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169:1343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mackenzie IR, Baborie A, Pickering-Brown S, Du Plessis D, Jaros E, Perry RH, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112:539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122:111–3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK, et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017;134:65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan RH, Guennewig B, Dobson-Stone C, Kwok JBJ, Kril JJ, Kiernan MC, et al. The underacknowledged PPA-ALS: a unique clinicopathologic subtype with strong heritability. Neurology. 2019;92:e1354–e1366.

    Article  CAS  PubMed  Google Scholar 

  48. Clark CN, Quaegebeur A, Nirmalananthan N, MacKinnon AD, Revesz T, Holton JL, et al. Foix-Chavany-Marie syndrome due to type E TDP43 pathology. Neuropathol Appl Neurobiol. 2020;46:292–5.

    Article  CAS  PubMed  Google Scholar 

  49. Koga S, Zhou X, Murakami A, Fernandez De Castro C, Baker MC, Rademakers R, et al. Concurrent tau pathologies in frontotemporal lobar degeneration with TDP-43 pathology. Neuropathol Appl Neurobiol. 2022;48:e12778.

    Article  CAS  PubMed  Google Scholar 

  50. Cykowski MD, Powell SZ, Schulz PE, Takei H, Rivera AL, Jackson RE, et al. Hippocampal sclerosis in older patients: practical examples and guidance with a focus on cerebral age-related TDP-43 with sclerosis. Arch Pathol Lab Med. 2017;141:1113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amador-Ortiz C, Ahmed Z, Zehr C, Dickson DW. Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathol. 2007;113:245–52.

    Article  PubMed  Google Scholar 

  52. Dickson DW, Baker M, Rademakers R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis. 2010;7:170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murray ME, Cannon A, Graff-Radford NR, Liesinger AM, Rutherford NJ, Ross OA, et al. Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathol. 2014;128:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014;127:825–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 2014;10:e1004606.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nelson PT, Schmitt FA, Lin Y, Abner EL, Jicha GA, Patel E, et al. Hippocampal sclerosis in advanced age: clinical and pathological features. Brain. 2011;134:1506–18.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee EB, Lee VM, Trojanowski JQ, Neumann M. TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol. 2008;115:305–11.

    Article  CAS  PubMed  Google Scholar 

  58. McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131:75–86.

    Article  CAS  PubMed  Google Scholar 

  59. Johnson VE, Stewart W, Trojanowski JQ, Smith DH. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol. 2011;122:715–26.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage. 2002;17:618–30.

    Article  CAS  PubMed  Google Scholar 

  61. Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009;132:195–203.

    Article  CAS  PubMed  Google Scholar 

  62. Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14:5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA. 2000;97:4897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol. 2013;9:13–24.

    Article  CAS  PubMed  Google Scholar 

  66. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keogh MJ, Kurzawa-Akanbi M, Griffin H, Douroudis K, Ayers KL, Hussein RI, et al. Exome sequencing in dementia with Lewy bodies. Transl Psychiatry. 2016;6:e728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bras J, Guerreiro R, Darwent L, Parkkinen L, Ansorge O, Escott-Price V, et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet. 2014;23:6139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guerreiro R, Ross OA, Kun-Rodrigues C, Hernandez DG, Orme T, Eicher JD, et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol. 2018;17:64–74.

    Article  PubMed  Google Scholar 

  70. Vergouw LJM, van Steenoven I, van de Berg WDJ, Teunissen CE, van Swieten JC, Bonifati V, et al. An update on the genetics of dementia with Lewy bodies. Parkinsonism Relat Disord. 2017;43:1–8.

    Article  PubMed  Google Scholar 

  71. Nalls MA, Duran R, Lopez G, Kurzawa-Akanbi M, McKeith IG, Chinnery PF, et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013;70:727–35.

    Article  PubMed  Google Scholar 

  72. Heckman MG, Soto-Ortolaza AI, Contreras MYS, Murray ME, Pedraza O, Diehl NN, et al. LRRK2 variation and dementia with Lewy bodies. Parkinsonism Relat Disord. 2016;31:98–103.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Labbe C, Ogaki K, Lorenzo-Betancor O, Soto-Ortolaza AI, Walton RL, Rayaprolu S, et al. Role for the microtubule-associated protein tau variant p.A152T in risk of alpha-synucleinopathies. Neurology. 2015;85:1680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 2017;27:472–9.

    Article  CAS  PubMed  Google Scholar 

  75. Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117:125–36.

    Article  CAS  PubMed  Google Scholar 

  76. Nakashima-Yasuda H, Uryu K, Robinson J, Xie SX, Hurtig H, Duda JE, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007;114:221–9.

    Article  CAS  PubMed  Google Scholar 

  77. Uchino A, Takao M, Hatsuta H, Sumikura H, Nakano Y, Nogami A, et al. Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol Commun. 2015;3:35.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yokota O, Davidson Y, Arai T, Hasegawa M, Akiyama H, Ishizu H, et al. Effect of topographical distribution of alpha-synuclein pathology on TDP-43 accumulation in Lewy body disease. Acta Neuropathol. 2010;120:789–801.

    Article  CAS  PubMed  Google Scholar 

  79. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64.

    Article  PubMed  Google Scholar 

  80. Atherton K, Han X, Chung J, Cherry JD, Baucom Z, Saltiel N, et al. Association of APOE genotypes and chronic traumatic encephalopathy. JAMA Neurol. 2022;79:787–96.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cherry JD, Mez J, Crary JF, Tripodis Y, Alvarez VE, Mahar I, et al. Variation in TMEM106B in chronic traumatic encephalopathy. Acta Neuropathol Commun. 2018;6:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Amerongen S, Kamps S, Kaijser KKM, Pijnenburg YAL, Scheltens P, Teunissen CE, et al. Severe CTE and TDP-43 pathology in a former professional soccer player with dementia: a clinicopathological case report and review of the literature. Acta Neuropathol Commun. 2023;11:77.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–9.

    Article  CAS  PubMed  Google Scholar 

  84. Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018. https://doi.org/10.1111/jnc.14327.

  85. Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, et al. Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol. 2005;348:575–88.

    Article  CAS  PubMed  Google Scholar 

  86. Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res. 2009;37:1799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buratti E, Baralle FE. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem. 2001;276:36337–43.

    Article  CAS  PubMed  Google Scholar 

  88. Prudencio M, Jansen-West KR, Lee WC, Gendron TF, Zhang YJ, Xu YF, et al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proc Natl Acad Sci USA. 2012;109:21510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fiesel FC, Weber SS, Supper J, Zell A, Kahle PJ. TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR. Nucleic Acids Res. 2012;40:2668–82.

    Article  CAS  PubMed  Google Scholar 

  90. Shiga A, Ishihara T, Miyashita A, Kuwabara M, Kato T, Watanabe N, et al. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS ONE. 2012;7:e43120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mohagheghi F, Prudencio M, Stuani C, Cook C, Jansen-West K, Dickson DW, et al. TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet. 2016;25:534–45.

    Article  CAS  PubMed  Google Scholar 

  92. De Conti L, Akinyi MV, Mendoza-Maldonado R, Romano M, Baralle M, Buratti E. TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways. Nucleic Acids Res. 2015;43:8990–9005.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ayala YM, De Conti L, Avendano-Vazquez SE, Dhir A, Romano M, D’Ambrogio A, et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2011;30:277–88.

    Article  CAS  PubMed  Google Scholar 

  94. Colombrita C, Onesto E, Buratti E, de la Grange P, Gumina V, Baralle FE, et al. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. Biochim Biophys Acta. 2015;1849:1398–410.

    Article  CAS  PubMed  Google Scholar 

  95. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011;14:452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science. 2015;349:650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Melamed Z, Lopez-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature. 2022;603:124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Seddighi S, Qi YA, Brown AL, Wilkins OG, Bereda C, Belair C, et al. Mis-spliced transcripts generate de novo proteins in TDP-43-related ALS/FTD. Sci Transl Med. 2024;16:eadg7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Irwin KE, Jasin P, Braunstein KE, Sinha IR, Garret MA, Bowden KD, et al. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS-FTD. Nat Med. 2024;30:382–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. Human genomics. The human transcriptome across tissues and individuals. Science. 2015;348:660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Susnjar U, Skrabar N, Brown AL, Abbassi Y, Phatnani H, Consortium NA. et al. Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Commun Biol. 2022;5:314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci. 2007;120:838–48.

    Article  CAS  PubMed  Google Scholar 

  107. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26:207–10.

    Article  CAS  PubMed  Google Scholar 

  108. Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol. 2007;292:C641–657.

    Article  CAS  Google Scholar 

  109. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010;30:10851–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang W, Li L, Lin WL, Dickson DW, Petrucelli L, Zhang T, et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet. 2013;22:4706–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Magrane J, Cortez C, Gan WB, Manfredi G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Human Mol Genet. 2014;23:1413–24.

    Article  CAS  Google Scholar 

  113. Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J, et al. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull. 2012;89:185–90.

    Article  CAS  PubMed  Google Scholar 

  114. Stribl C, Samara A, Trumbach D, Peis R, Neumann M, Fuchs H, et al. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J Biol Chem. 2014;289:10769–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Salvatori I, Ferri A, Scaricamazza S, Giovannelli I, Serrano A, Rossi S, et al. Differential toxicity of TDP-43 isoforms depends on their sub-mitochondrial localization in neuronal cells. J Neurochem. 2018;146:585–97.

    Article  CAS  PubMed  Google Scholar 

  116. Genin EC, Bannwarth S, Lespinasse F, Ortega-Vila B, Fragaki K, Itoh K, et al. Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial localisation, are likely associated with severity of CHCHD10-related diseases. Neurobiol Dis. 2018;119:159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Davis SA, Itaman S, Khalid-Janney CM, Sherard JA, Dowell JA, Cairns NJ, et al. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci Lett. 2018;678:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Woo JA, Liu T, Trotter C, Fang CC, De Narvaez E, LePochat P, et al. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat Commun. 2017;8:15558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Izumikawa K, Nobe Y, Yoshikawa H, Ishikawa H, Miura Y, Nakayama H, et al. TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci Rep. 2017;7:7709.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kawamata H, Peixoto P, Konrad C, Palomo G, Bredvik K, Gerges M, et al. Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo. Molecular Neurodegeneration. 2017;12:37.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang W, Wang L, Lu J, Siedlak SL, Fujioka H, Liang J, et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med. 2016;22:869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183:636–49.e618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baek M, Choe YJ, Bannwarth S, Kim J, Maitra S, Dorn GW, et al. TDP-43 and PINK1 mediate CHCHD10(S59L) mutation-induced defects in Drosophila and in vitro. Nat Commun. 2021;12:1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang P, Deng J, Dong J, Liu J, Bigio EH, Mesulam M, et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019;15:e1007947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zuo X, Zhou J, Li Y, Wu K, Chen Z, Luo Z, et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol. 2021;28:132–42.

    Article  CAS  PubMed  Google Scholar 

  126. Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 2014;5:3996.

    Article  CAS  PubMed  Google Scholar 

  127. Ceron-Codorniu M, Torres P, Fernandez-Bernal A, Rico-Rios S, Serrano JC, Miralles MP, et al. TDP-43 dysfunction leads to bioenergetic failure and lipid metabolic rewiring in human cells. Redox Biol. 2024;75:103301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang W, Arakawa H, Wang L, Okolo O, Siedlak SL, Jiang Y, et al. Motor-coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization. Mol Ther. 2017;25:127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165580.

    Article  CAS  PubMed  Google Scholar 

  130. Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol. 2021;22:483–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Russo A, Scardigli R, La Regina F, Murray ME, Romano N, Dickson DW, et al. Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes. Hum Mol Genet. 2017;26:1407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. MacNair L, Xiao S, Miletic D, Ghani M, Julien JP, Keith J, et al. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain. 2016;139:86–100.

    Article  PubMed  Google Scholar 

  133. Charif SE, Luchelli L, Vila A, Blaustein M, Igaz LM. Cytoplasmic expression of the ALS/FTD-related protein TDP-43 decreases global translation both in vitro and in vivo. Front Cell Neurosci. 2020;14:594561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lehmkuhl EM, Loganathan S, Alsop E, Blythe AD, Kovalik T, Mortimore NP, et al. TDP-43 proteinopathy alters the ribosome association of multiple mRNAs including the glypican Dally-like protein (Dlp)/GPC6. Acta Neuropathol Commun. 2021;9:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Altman T, Ionescu A, Ibraheem A, Priesmann D, Gradus-Pery T, Farberov L, et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun. 2021;12:6914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 2010;9:1104–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chu JF, Majumder P, Chatterjee B, Huang SL, Shen CJ. TDP-43 regulates coupled dendritic mRNA transport-translation processes in co-operation with FMRP and Staufen1. Cell Rep. 2019;29:3118–33.e3116.

    Article  CAS  PubMed  Google Scholar 

  138. Majumder P, Chen YT, Bose JK, Wu CC, Cheng WC, Cheng SJ, et al. TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1. Acta Neuropathol. 2012;124:231–45.

    Article  CAS  PubMed  Google Scholar 

  139. Nagano S, Jinno J, Abdelhamid RF, Jin Y, Shibata M, Watanabe S, et al. TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol. 2020;140:695–713.

    Article  CAS  PubMed  Google Scholar 

  140. Briese M, Saal-Bauernschubert L, Luningschror P, Moradi M, Dombert B, Surrey V, et al. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol Commun. 2020;8:116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hyman AA, Weber CA, Julicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–58.

    Article  CAS  PubMed  Google Scholar 

  142. Ditlev JA, Case LB, Rosen MK. Who’s in and who’s out-compositional control of biomolecular condensates. J Mol Biol. 2018;430:4666–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mann JR, Gleixner AM, Mauna JC, Gomes E, DeChellis-Marks MR, Needham PG, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron. 2019;102:321–38.e328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gasset-Rosa F, Lu S, Yu H, Chen C, Melamed Z, Guo L, et al. Cytoplasmic TDP-43 De-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron. 2019;102:339–57.e337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem. 2018;293:6090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li HR, Chen TC, Hsiao CL, Shi L, Chou CY, Huang JR. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43. Biochim Biophys Acta Proteins Proteom. 2018;1866:214–23.

    Article  CAS  PubMed  Google Scholar 

  147. Lim LZ, Wei YY, Lu YM, Song JX. ALS-causing mutations significantly perturb the self-assembly and interaction with nucleic acid of the intrinsically disordered prion-like domain of TDP-43. Plos Biology. 2016;14:e1002338.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24:1537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gao J, Wang L, Ren X, Dunn JR, Peters A, Miyagi M, et al. Translational regulation in the brain by TDP-43 phase separation. J Cell Biol. 2021;220:e202101019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P 3rd, Good SK, et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol. 2011;31:1098–108.

    Article  CAS  PubMed  Google Scholar 

  152. Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem. 2009;111:1051–61.

    Article  CAS  PubMed  Google Scholar 

  153. Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderweyde T, Citro A, Mehta T, et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE. 2010;5:e13250.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20:649–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aulas A, Stabile S, Vande Velde C. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener. 2012;7:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mori F, Yasui H, Miki Y, Kon T, Arai A, Kurotaki H, et al. Colocalization of TDP-43 and stress granules at the early stage of TDP-43 aggregation in amyotrophic lateral sclerosis. Brain Pathol. 2024;34:e13215.

    Article  CAS  PubMed  Google Scholar 

  157. McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb RG, et al. Poly(ADP-Ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell. 2018;71:703–17.e709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol. 2008;64:60–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol. 2013;74:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nonaka T, Suzuki G, Tanaka Y, Kametani F, Hirai S, Okado H, et al. Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1delta triggers mislocalization and accumulation of TDP-43. J Biol Chem. 2016;291:5473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hicks DA, Cross LL, Williamson R, Rattray M. Endoplasmic reticulum stress signalling induces casein kinase 1-dependent formation of cytosolic TDP-43 inclusions in motor neuron-like cells. Neurochem Res. 2020;45:1354–64.

    Article  CAS  PubMed  Google Scholar 

  162. Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 2018;37:e97452.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Cohen TJ, Hwang AW, Unger T, Trojanowski JQ, Lee VM. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J. 2012;31:1241–52.

    Article  CAS  PubMed  Google Scholar 

  164. Verde EM, Antoniani F, Mediani L, Secco V, Crotti S, Ferrara MC, et al. SUMO2/3 conjugation of TDP-43 protects against aggregation. Sci Adv. 2025;11:eadq2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Maraschi A, Gumina V, Dragotto J, Colombrita C, Mompean M, Buratti E, et al. SUMOylation regulates TDP-43 splicing activity and nucleocytoplasmic distribution. Mol Neurobiol. 2021;58:5682–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Marino R, Buccarello L, Hassanzadeh K, Akhtari K, Palaniappan S, Corbo M, et al. A novel cell-permeable peptide prevents protein SUMOylation and supports the mislocalization and aggregation of TDP-43. Neurobiol Dis. 2023;188:106342.

    Article  CAS  PubMed  Google Scholar 

  167. Xiao S, Sanelli T, Chiang H, Sun Y, Chakrabartty A, Keith J, et al. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol. 2015;130:49–61.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, et al. Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci. 2007;27:10530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4:e1000193.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA. 2009;106:7607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, et al. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun. 2012;3:1307.

    Article  PubMed  Google Scholar 

  172. Suzuki H, Lee K, Matsuoka M. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem. 2011;286:13171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, et al. Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem. 2009;284:8516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem. 2009;284:20329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fuentealba RA, Udan M, Bell S, Wegorzewska I, Shao J, Diamond MI, et al. Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem. 2010;285:26304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. D’Angelo MA, Hetzer MW. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 2008;18:456–66.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018;555:475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I, Liu F, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci. 2018;21:228–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Baskerville V, Rapuri S, Mehlhop E, Coyne AN. SUN1 facilitates CHMP7 nuclear influx and injury cascades in sporadic amyotrophic lateral sclerosis. Brain. 2024;147:109–21.

    Article  PubMed  Google Scholar 

  180. Coyne AN, Zaepfel BL, Hayes L, Fitchman B, Salzberg Y, Luo EC, et al. G(4)C(2) repeat RNA Initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron. 2020;107:1124–40.e1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, Bennett F, et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med. 2021;13:eabe1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee KH, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525:129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Giampetruzzi A, Danielson EW, Gumina V, Jeon M, Boopathy S, Brown RH, et al. Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun. 2019;10:3827.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Jovicic A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci. 2015;18:1226–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miyagi T, Kanekura K. Intricate roles of spacers and stickers of Arg-rich C9ORF72 dipeptide repeat proteins; from toxicity to targeting to membraneless organelles. Organelle 2024; 1. https://doi.org/10.61747/0ifp.202311001.

  187. Khalil B, Chhangani D, Wren MC, Smith CL, Lee JH, Li X, et al. Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy. Mol Neurodegener. 2022;17:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Takeuchi T, Maeta K, Ding X, Oe Y, Takeda A, Inoue M, et al. Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. Mol Ther Nucleic Acids. 2023;31:353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Baughn MW, Melamed Z, Lopez-Erauskin J, Beccari MS, Ling K, Zuberi A, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379:1140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wilkins OG, Chien M, Wlaschin JJ, Barattucci S, Harley P, Mattedi F, et al. Creation of de novo cryptic splicing for ALS and FTD precision medicine. Science. 2024;386:61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Matthew JKPH, Eugeni R, Rachel EJ, Matteo Z, Oscar GW. Loss of TDP-43 induces synaptic dysfunction that is rescued by UNC13A splice-switching ASOs. bioRxiv. 2024.

  192. Prasad A, Raju G, Sivalingam V, Girdhar A, Verma M, Vats A, et al. An acridine derivative, [4,5-bis(N-carboxy methyl imidazolium)methylacridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci Rep. 2016;6:39490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Babinchak WM, Dumm BK, Venus S, Boyko S, Putnam AA, Jankowsky E, et al. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat Commun. 2020;11:5574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Francois-Moutal L, Felemban R, Scott DD, Sayegh MR, Miranda VG, Perez-Miller S, et al. Small molecule targeting TDP-43’s RNA recognition motifs reduces locomotor defects in a drosophila model of amyotrophic lateral sclerosis (ALS). ACS Chem Biol. 2019;14:2006–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mollasalehi N, Francois-Moutal L, Scott DD, Tello JA, Williams H, Mahoney B, et al. An allosteric modulator of RNA binding targeting the N-terminal domain of TDP-43 yields neuroprotective properties. ACS Chem Biol. 2020;15:2854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tseng YL, Lu PC, Lee CC, He RY, Huang YA, Tseng YC, et al. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J Biomed Sci. 2023;30:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JL and XW provided expert insights, critical revisions, and conceptual guidance. XW finalized the manuscript. JG, MD, SQ, DS, LV, JL, and XW all contributed to the literature review and drafting of the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Xinglong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Ding, M., Qin, S. et al. The mechanisms underlying TDP-43-associated neurodegeneration in Alzheimer’s disease and related dementias. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03089-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03089-8

Search

Quick links