Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The therapeutic potential of psilocybin beyond psychedelia through shared mechanisms with ketamine

Abstract

Major depressive disorder is a debilitating condition, with many patients unresponsive to conventional monoaminergic antidepressants. Rapid-acting antidepressants such as ketamine and psilocybin offer promising alternatives, relieving symptoms within hours. Ketamine, an NMDA receptor antagonist, and psilocybin, a serotonergic psychedelic primarily targeting 5-HT2A receptors, both enhance synaptic plasticity in mood-regulating circuits through distinct mechanisms. This review synthesizes recent clinical and preclinical findings on ketamine and psilocybin, emphasizing their molecular targets, circuit-level effects, and converging downstream pathways. A key shared mechanism involves BDNF–TrkB signaling, which promotes spinogenesis and synaptogenesis critical for sustained antidepressant efficacy. We also discuss 5-HT2A receptor biased agonism as a potential strategy to dissociate psilocybin’s therapeutic effects from its hallucinogenic actions. By comparing their mechanistic profiles, we identify both overlapping and distinct features that may inform the development of next-generation rapid-acting antidepressants. Understanding how serotonergic, glutamatergic, and neurotrophic systems converge may guide the development of fast-acting, durable, and non-hallucinogenic antidepressants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of NMDARs complexed with ketamine.
Fig. 2: Schematic overview of the mechanisms underlying the rapid antidepressant effects of ketamine and psilocybin.
Fig. 3: Structural models of psilocin and ketamine binding to the TM domain of TrkB receptor.
Fig. 4: Binding sites of 5-HT, psilocin, and other hallucinogenic or non-hallucinogenic compounds at the 5-HT2A receptor.

Similar content being viewed by others

References

  1. World Health Organization (WHO). Depressive disorder (Depression) fact sheet. https://www.who.int/news-room/fact-sheets/detail/depression, 2023.

  2. Sussman M, O’Sullivan AK, Shah A, Olfson M, Menzin J. Economic burden of treatment-resistant depression on the U.S. health care system. J Manag Care Spec Pharm. 2019;25:823–35.

    PubMed  Google Scholar 

  3. Shin D, Kim NW, Kim MJ, Rhee SJ, Park CHK, Kim H, et al. Cost analysis of depression using the national insurance system in South Korea: a comparison of depression and treatment-resistant depression. BMC Health Serv Res. 2020;20:286.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Machado-Vieira R, Baumann J, Wheeler-Castillo C, Latov D, Henter ID, Salvadore G, et al. The timing of antidepressant effects: a comparison of diverse pharmacological and somatic treatments. Pharmaceuticals. 2010;3:19–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391:1357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  7. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-Methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  8. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goodwin GM, Aaronson ST, Alvarez O, Atli M, Bennett JC, Croal M, et al. Single-dose psilocybin for a treatment-resistant episode of major depression: Impact on patient-reported depression severity, anxiety, function, and quality of life. J Affect Disord. 2023;327:120–7.

    Article  CAS  PubMed  Google Scholar 

  10. von Rotz R, Schindowski EM, Jungwirth J, Schuldt A, Rieser NM, Zahoranszky K, et al. Single-dose psilocybin-assisted therapy in major depressive disorder: a placebo-controlled, double-blind, randomised clinical trial. EClinicalMedicine. 2023;56:101809.

    Article  Google Scholar 

  11. Short B, Fong J, Galvez V, Shelker W, Loo CK. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry. 2018;5:65–78.

    Article  PubMed  Google Scholar 

  12. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Wang B, Yuan S, Wu S, Liu J, He M, et al. Neurological adverse events associated with esketamine: a disproportionality analysis for signal detection leveraging the FDA adverse event reporting system. Front Pharmacol. 2022;13:849758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JW, Autry AE, Na ES, Adachi M, Bjorkholm C, Kavalali ET, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24:1100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, et al. Brain region-specific action of ketamine as a rapid antidepressant. Science. 2024;385:eado7010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

  19. Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, et al. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci. 2001;21:9856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt M, Hoffrichter A, Davoudi M, Horschitz S, Lau T, Meinhardt M, et al. Psilocin fosters neuroplasticity in iPSC-derived human cortical neurons. eLife [Preprint]. 2025. https://doi.org/10.7554/eLife.104006.1.

  22. Hofmann A. The discovery of LSD and subsequent investigations on naturally occurring hallucinogens. Discoveries in biological psychiatry 1970: 91–106.

  23. Wasson RG. Seeking the magic mushroom. Life. 1957;42:100–20.

    Google Scholar 

  24. Wasson RG. Division of mycology: the hallucinogenic mushrooms of mexico: an adventure in ethnomycological exploration. Trans N Y Acad Sci. 1959;21:325–39.

    Article  Google Scholar 

  25. Heim R, Wasson RG. Les champignons hallucinogènes du Mexique-Etudes ethnologiques, taxinomiques, biologiques, physiologiques et chimiques. Archives du Mus Nat d’Hist Nat, 7ème Sér. 1958;6:1–445.

    Google Scholar 

  26. Hofmann A, Heim R, Brack A, Kobel H. Psilocybin, ein psychotroper Wirkstoff aus dem mexikanischen Rauschpilz Psilocybe mexicana Heim. Experientia. 1958;14:107–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann A, Heim R, Brack A, Kobel H, Frey A, Ott H, et al. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta. 1959;42:1557–72.

    Article  CAS  Google Scholar 

  28. Sharma P, Nguyen QA, Matthews SJ, Carpenter E, Mathews DB, Patten CA, et al. Psilocybin history, action and reaction: a narrative clinical review. J Psychopharmacol. 2023;37:849–65.

    Article  PubMed  Google Scholar 

  29. Carhart-Harris RL, Goodwin GM. The therapeutic potential of psychedelic drugs: past, present, and future. Neuropsychopharmacology. 2017;42:2105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffiths RR, Richards WA, McCann U, Jesse R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology. 2006;187:268–83.

    Article  CAS  PubMed  Google Scholar 

  31. Moreno FA, Wiegand CB, Taitano EK, Delgado PL. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry. 2006;67:1735–40.

    Article  CAS  PubMed  Google Scholar 

  32. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PC, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol. 2015;29:289–99.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol. 2014;28:983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raison CL, Sanacora G, Woolley J, Heinzerling K, Dunlop BW, Brown RT, et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. JAMA. 2023;330:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67:139–45.

    Article  CAS  PubMed  Google Scholar 

  36. Rasmussen KG, Lineberry TW, Galardy CW, Kung S, Lapid MI, Palmer BA, et al. Serial infusions of low-dose ketamine for major depression. J Psychopharmacol. 2013;27:444–50.

    Article  CAS  PubMed  Google Scholar 

  37. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74:250–6.

    Article  CAS  PubMed  Google Scholar 

  38. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry. 2019;176:401–9.

    Article  PubMed  Google Scholar 

  39. Rosenblat JD, Meshkat S, Doyle Z, Kaczmarek E, Brudner RM, Kratiuk K, et al. Psilocybin-assisted psychotherapy for treatment resistant depression: a randomized clinical trial evaluating repeated doses of psilocybin. Med. 2024;5:190–200.e195.

    Article  CAS  PubMed  Google Scholar 

  40. Carhart-Harris RL, Bolstridge M, Rucker J, Day CM, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27.

    Article  PubMed  Google Scholar 

  41. Nierenberg AA, Farabaugh AH, Alpert JE, Gordon J, Worthington JJ, Rosenbaum JF, et al. Timing of onset of antidepressant response with fluoxetine treatment. Am J Psychiatry. 2000;157:1423–8.

    Article  CAS  PubMed  Google Scholar 

  42. Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88:17–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiger M, Varnas K, Okubo Y, Lundberg J. The 5-HT(1B) receptor - a potential target for antidepressant treatment. Psychopharmacology. 2018;235:1317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hjorth S, Sharp T. Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci. 1991;48:1779–86.

    Article  CAS  PubMed  Google Scholar 

  45. Morikawa H, Manzoni OJ, Crabbe JC, Williams JT. Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Mol Pharmacol. 2000;58:1271–8.

    CAS  PubMed  Google Scholar 

  46. Di Matteo V, De Blasi A, Di Giulio C, Esposito E. Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol Sci. 2001;22:229–32.

    Article  PubMed  Google Scholar 

  47. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65:40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bortolozzi A, Castane A, Semakova J, Santana N, Alvarado G, Cortes R, et al. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol Psychiatry. 2012;17:612–23.

    Article  CAS  PubMed  Google Scholar 

  49. Gray NA, Milak MS, DeLorenzo C, Ogden RT, Huang YY, Mann JJ, et al. Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry. 2013;74:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neumaier JF, Root DC, Hamblin MW. Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. Neuropsychopharmacology. 1996;15:515–22.

    Article  CAS  PubMed  Google Scholar 

  51. Prisco S, Esposito E. Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol. 1995;116:1923–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Mascio M, Di Giovanni G, Di Matteo V, Prisco S, Esposito E. Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull. 1998;46:547–54.

    Article  PubMed  Google Scholar 

  53. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article  CAS  PubMed  Google Scholar 

  54. Luckenbaugh DA, Niciu MJ, Ionescu DF, Nolan NM, Richards EM, Brutsche NE, et al. Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affect Disord. 2014;159:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol Lett. 2013;34:287–93.

    CAS  PubMed  Google Scholar 

  56. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–11500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chowdhury GM, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry. 2017;22:120–6.

    Article  CAS  PubMed  Google Scholar 

  59. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2014;18:pyu033.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA. 2015;112:8106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology. 1999;145:193–204.

    Article  CAS  PubMed  Google Scholar 

  62. Acevedo-Diaz EE, Cavanaugh GW, Greenstein D, Kraus C, Kadriu B, Park L, et al. Can ‘floating’ predict treatment response to ketamine? data from three randomized trials of individuals with treatment-resistant depression. J Psychiatr Res. 2020;130:280–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020;25:1592–603.

    Article  CAS  PubMed  Google Scholar 

  64. Kim JW, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res. 2020;380:112378.

    Article  CAS  PubMed  Google Scholar 

  65. Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA Jr, Thompson SM, et al. NMDA receptor activation-dependent antidepressant-relevant behavioral and synaptic actions of ketamine. J Neurosci. 2023;43:1038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Irifune M, Shimizu T, Nomoto M. Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice. Pharmacol Biochem Behav. 1991;40:399–407.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang JC, Li SX, Hashimoto KR. (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav. 2014;116:137–41.

    Article  CAS  PubMed  Google Scholar 

  68. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–313.e1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffiths RR, Johnson MW, Richards WA, Richards BD, McCann U, Jesse R. Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology. 2011;218:649–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry. 2012;72:898–906.

    Article  CAS  PubMed  Google Scholar 

  72. Kraehenmann R, Preller KH, Scheidegger M, Pokorny T, Bosch OG, Seifritz E, et al. Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol Psychiatry. 2015;78:572–81.

    Article  CAS  PubMed  Google Scholar 

  73. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roseman L, Nutt DJ, Carhart-Harris RL. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front Pharmacol. 2017;8:974.

    Article  PubMed  Google Scholar 

  75. Yaden DB, Griffiths RR. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharmacol Transl Sci. 2021;4:568–72.

    Article  CAS  PubMed  Google Scholar 

  76. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sloshower J, Skosnik PD, Safi-Aghdam H, Pathania S, Syed S, Pittman B, et al. Psilocybin-assisted therapy for major depressive disorder: an exploratory placebo-controlled, fixed-order trial. J Psychopharmacol. 2023;37:698–706.

    Article  CAS  PubMed  Google Scholar 

  79. Rosenblat JD, Leon-Carlyle M, Ali S, Husain MI, McIntyre RS. Antidepressant effects of psilocybin in the absence of psychedelic effects. Am J Psychiatry. 2023;180:395–6.

    Article  PubMed  Google Scholar 

  80. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. Identification of 5-HT(2A) receptor signaling pathways associated with psychedelic potential. Nat Commun. 2023;14:8221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science. 2022;375:403–11.

    Article  CAS  PubMed  Google Scholar 

  82. Kossatz E, Diez-Alarcia R, Gaitonde SA, Ramon-Duaso C, Stepniewski TM, Aranda-Garcia D, et al. G protein-specific mechanisms in the serotonin 5-HT(2A) receptor regulate psychosis-related effects and memory deficits. Nat Commun. 2024;15:4307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang Y, Ye F, Zhang T, Lv S, Zhou L, Du D, et al. Structural basis of ketamine action on human NMDA receptors. Nature. 2021;596:301–5.

    Article  CAS  PubMed  Google Scholar 

  84. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-Methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol. 2008;28:631–7.

    Article  CAS  PubMed  Google Scholar 

  85. Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, et al. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. 1995;34:1239–58.

    Article  CAS  PubMed  Google Scholar 

  86. Berman FW, Murray TF. Characterization of [3H]MK-801 binding to N-methyl-D-aspartate receptors in cultured rat cerebellar granule neurons and involvement in glutamate-mediated toxicity. J Biochem Toxicol. 1996;11:217–26.

    Article  CAS  PubMed  Google Scholar 

  87. McCarthy B, Bunn H, Santalucia M, Wilmouth C, Muzyk A, Smith CM. Dextromethorphan-bupropion (Auvelity) for the treatment of major depressive disorder. Clin Psychopharmacol Neurosci. 2023;21:609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, et al. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology. 1998;88:768–74.

    Article  CAS  PubMed  Google Scholar 

  89. Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR. Evaluation of sigma (σ) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol. 2012;22:308–17.

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen L, Robson MJ, Healy JR, Scandinaro AL, Matsumoto RR. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan. PLoS ONE. 2014;9:e89985.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology. 2018;43:2154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci. 2004;24:9760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130:1336–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dwyer JM, Maldonado-Aviles JG, Lepack AE, DiLeone RJ, Duman RS. Ribosomal protein S6 kinase 1 signaling in prefrontal cortex controls depressive behavior. Proc Natl Acad Sci USA. 2015;112:6188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Averill LA, Averill CL, Gueorguieva R, Fouda S, Sherif M, Ahn KH, et al. mTORC1 inhibitor effects on rapid ketamine-induced reductions in suicidal ideation in patients with treatment-resistant depression. J Affect Disord. 2022;303:91–97.

    Article  CAS  PubMed  Google Scholar 

  97. Abdallah CG, Averill LA, Gueorguieva R, Goktas S, Purohit P, Ranganathan M, et al. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology. 2020;45:990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci. 2013;33:6990–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA. 2014;111:8649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell. 2006;125:785–99.

    Article  CAS  PubMed  Google Scholar 

  101. Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 2021;36:109513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Adaikkan C, Taha E, Barrera I, David O, Rosenblum K. Calcium/calmodulin-dependent protein kinase II and eukaryotic elongation factor 2 kinase pathways mediate the antidepressant action of ketamine. Biol Psychiatry. 2018;84:65–75.

    Article  CAS  PubMed  Google Scholar 

  103. Ma ZZ, Guzikowski NJ, Kim JW, Kavalali ET, Monteggia LM. Enhanced ERK activity extends ketamine’s antidepressant effects by augmenting synaptic plasticity. Science. 2025;388:646–55.

    Article  CAS  PubMed  Google Scholar 

  104. Parise EM, Alcantara LF, Warren BL, Wright KN, Hadad R, Sial OK, et al. Repeated ketamine exposure induces an enduring resilient phenotype in adolescent and adult rats. Biol Psychiatry. 2013;74:750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sonkusare S, Ding Q, Zhang Y, Wang L, Gong H, Mandali A, et al. Power signatures of habenular neuronal signals in patients with bipolar or unipolar depressive disorders correlate with their disease severity. Transl Psychiatry. 2022;12:72.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci. 2020;21:277–95.

    Article  CAS  PubMed  Google Scholar 

  107. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang K, Jia G, Xia L, Du J, Gai G, Wang Z, et al. Efficacy of anticonvulsant ethosuximide for major depressive disorder: a randomized, placebo-control clinical trial. Eur Arch Psychiatry Clin Neurosci. 2021;271:487–93.

    Article  PubMed  Google Scholar 

  109. Yabuki Y, Matsuo K, Yu M, Xu J, Sakimura K, Shioda N, et al. Cav3.1 t-type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus. Acta Physiol. 2021;232:e13613.

    Article  CAS  Google Scholar 

  110. Ma Z, Zang T, Birnbaum SG, Wang Z, Johnson JE, Zhang CL, et al. TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nat Commun. 2017;8:1668.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kim JW, Oh HA, Lee SH, Kim KC, Eun PH, Ko MJ, et al. T-type calcium channels are required to maintain viability of neural progenitor cells. Biomol Ther. 2018;26:439–45.

    Article  CAS  Google Scholar 

  112. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shirayama Y, Hashimoto K. Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression. Eur Arch Psychiatry Clin Neurosci. 2017;267:177–82.

    Article  PubMed  Google Scholar 

  114. Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, et al. Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry. 2018;83:18–28.

    Article  CAS  PubMed  Google Scholar 

  115. Yao W, Cao Q, Luo S, He L, Yang C, Chen J, et al. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry. 2022;27:1618–29.

    Article  CAS  PubMed  Google Scholar 

  116. Leal GC, Souza-Marques B, Mello RP, Bandeira ID, Caliman-Fontes AT, Carneiro BA, et al. Arketamine as adjunctive therapy for treatment-resistant depression: a placebo-controlled pilot study. J Affect Disord. 2023;330:7–15.

    Article  CAS  PubMed  Google Scholar 

  117. Zanos P, Highland JN, Stewart BW, Georgiou P, Jenne CE, Lovett J, et al. (2R,6R)-hydroxynorketamine exerts mGlu(2) receptor-dependent antidepressant actions. Proc Natl Acad Sci USA. 2019;116:6441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for (2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol. 2024;131:64–74.

    Article  CAS  PubMed  Google Scholar 

  119. Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, et al. A phase 1 assessment of the safety, tolerability, pharmacokinetics and pharmacodynamics of (2R,6R)-hydroxynorketamine in healthy volunteers. Clin Pharmacol Ther. 2024;116:1314–24.

    Article  CAS  PubMed  Google Scholar 

  120. Williams NR, Heifets BD, Bentzley BS, Blasey C, Sudheimer KD, Hawkins J, et al. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatry. 2019;24:1779–86.

    Article  CAS  PubMed  Google Scholar 

  121. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry. 2019;76:337–8.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Marton T, Barnes DE, Wallace A, Woolley JD. Concurrent use of buprenorphine, methadone, or naltrexone does not inhibit ketamine’s antidepressant activity. Biol Psychiatry. 2019;85:e75–6.

    Article  PubMed  Google Scholar 

  124. Klein ME, Chandra J, Sheriff S, Malinow R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc Natl Acad Sci USA. 2020;117:2656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jiang C, DiLeone RJ, Pittenger C, Duman RS. The endogenous opioid system in the medial prefrontal cortex mediates ketamine’s antidepressant-like actions. Transl Psychiatry. 2024;14:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang K, Hashimoto K. Lack of opioid system in the antidepressant actions of ketamine. Biol Psychiatry. 2019;85:e25–e27.

    Article  CAS  PubMed  Google Scholar 

  127. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbaek DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31:1091–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, et al. 5-HT2ARs mediate therapeutic behavioral effects of psychedelic tryptamines. ACS Chem Neurosci. 2023;14:351–8.

    Article  CAS  PubMed  Google Scholar 

  131. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    Article  CAS  PubMed  Google Scholar 

  132. Sekssaoui M, Bockaert J, Marin P, Becamel C. Antidepressant-like effects of psychedelics in a chronic despair mouse model: is the 5-HT(2A) receptor the unique player? Neuropsychopharmacology. 2024;49:747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gadgaard C, Jensen AA. Functional characterization of 5-HT(1A) and 5-HT(1B) serotonin receptor signaling through G-protein-activated inwardly rectifying K(+) channels in a fluorescence-based membrane potential assay. Biochem Pharmacol. 2020;175:113870.

    Article  CAS  PubMed  Google Scholar 

  135. Adell A, Celada P, Artigas F. The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. J Neurochem. 2001;79:172–82.

    Article  CAS  PubMed  Google Scholar 

  136. Ruf BM, Bhagwagar Z. The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets. 2009;10:1118–38.

    Article  CAS  PubMed  Google Scholar 

  137. Fleury S, Nautiyal KM. The non-hallucinogenic serotonin 1B receptor is necessary for the antidepressant-like effects of psilocybin in mice. BioRxiv [Preprint]. 2024. https://doi.org/10.1101/2024.10.18.618582.

  138. Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA. Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience. 2007;146:1677–88.

    Article  CAS  PubMed  Google Scholar 

  139. Bubar MJ, Cunningham KA. Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience. 2007;146:286–97.

    Article  CAS  PubMed  Google Scholar 

  140. Serrats J, Mengod G, Cortes R. Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat. 2005;29:83–91.

    Article  CAS  PubMed  Google Scholar 

  141. De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci. 2004;24:3235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res. 2000;865:85–90.

    Article  PubMed  Google Scholar 

  143. Erkizia-Santamaria I, Alles-Pascual R, Horrillo I, Meana JJ, Ortega JE. Serotonin 5-HT(2A), 5-HT(2c) and 5-HT(1A) receptor involvement in the acute effects of psilocybin in mice. In vitro pharmacological profile and modulation of thermoregulation and head-twich response. Biomed Pharmacother. 2022;154:113612.

    Article  CAS  PubMed  Google Scholar 

  144. Marti-Solano M, Iglesias A, de Fabritiis G, Sanz F, Brea J, Loza MI, et al. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation. Mol Pharmacol. 2015;87:740–6.

    Article  CAS  PubMed  Google Scholar 

  145. Kaplan AL, Confair DN, Kim K, Barros-Alvarez X, Rodriguiz RM, Yang Y, et al. Bespoke library docking for 5-HT(2A) receptor agonists with antidepressant activity. Nature. 2022;610:582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bhattacharyya S, Puri S, Miledi R, Panicker MM. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci USA. 2002;99:14470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Berry SA, Shah MC, Khan N, Roth BL. Rapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro. Mol Pharmacol. 1996;50:306–13.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem. 2001;276:8269–77.

    Article  CAS  PubMed  Google Scholar 

  150. Bhattacharya A, Sankar S, Panicker MM. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions. J Neurochem. 2010;112:723–32.

    Article  CAS  PubMed  Google Scholar 

  151. Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci. 2010;30:13513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qu Y, Chang L, Ma L, Wan X, Hashimoto K. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharmacol Biochem Behav. 2023;222:173500.

    Article  CAS  PubMed  Google Scholar 

  153. Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH. Comparative pharmacological effects of lisuride and lysergic acid diethylamide revisited. ACS Pharmacol Transl Sci. 2024;7:641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, et al. Structure of a hallucinogen-activated Gq-coupled 5-HT(2A) serotonin receptor. Cell. 2020;182:1574–88.e1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gross-Isseroff R, Salama D, Israeli M, Biegon A. Autoradiographic analysis of age-dependent changes in serotonin 5-HT2 receptors of the human brain postmortem. Brain Res. 1990;519:223–7.

    Article  CAS  PubMed  Google Scholar 

  157. Hall H, Farde L, Halldin C, Lundkvist C, Sedvall G. Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse. 2000;38:421–31.

    Article  CAS  PubMed  Google Scholar 

  158. Xu T, Pandey SC. Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Res Bull. 2000;51:499–505.

    Article  CAS  PubMed  Google Scholar 

  159. Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse. 1997;27:79–82.

    Article  CAS  PubMed  Google Scholar 

  160. de Almeida J, Mengod G. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem. 2007;103:475–86.

    Article  PubMed  Google Scholar 

  161. Miner LA, Backstrom JR, Sanders-Bush E, Sesack SR. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience. 2003;116:107–17.

    Article  CAS  PubMed  Google Scholar 

  162. Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA. 2007;104:9870–5.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhou FM, Hablitz JJ. Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol. 1999;82:2989–99.

    Article  CAS  PubMed  Google Scholar 

  164. Hasuo H, Matsuoka T, Akasu T. Activation of presynaptic 5-hydroxytryptamine 2A receptors facilitates excitatory synaptic transmission via protein kinase C in the dorsolateral septal nucleus. J Neurosci. 2002;22:7509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McDonald AJ, Mascagni F. Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience. 2007;146:306–20.

    Article  CAS  PubMed  Google Scholar 

  166. Bremner JD. Traumatic stress: effects on the brain. Dialogues Clin Neurosci. 2006;8:445–61.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Klug M, Enneking V, Borgers T, Jacobs CM, Dohm K, Kraus A, et al. Persistence of amygdala hyperactivity to subliminal negative emotion processing in the long-term course of depression. Mol Psychiatry. 2024;29:1501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51:693–707.

    Article  PubMed  Google Scholar 

  169. Kvarta MD, Bradbrook KE, Dantrassy HM, Bailey AM, Thompson SM. Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. J Neurophysiol. 2015;114:1713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cai X, Kallarackal AJ, Kvarta MD, Goluskin S, Gaylor K, Bailey AM, et al. Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci. 2013;16:464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature. 2004;431:699–703.

    Article  CAS  PubMed  Google Scholar 

  172. Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C, et al. Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry. 2016;80:62–72.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yan CG, Chen X, Li L, Castellanos FX, Bai TJ, Bo QJ, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci USA. 2019;116:9078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Siegel JS, Subramanian S, Perry D, Kay BP, Gordon EM, Laumann TO, et al. Psilocybin desynchronizes the human brain. Nature. 2024;632:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hamilton JP, Chen G, Thomason ME, Schwartz ME, Gotlib IH. Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data. Mol Psychiatry. 2011;16:763–72.

    Article  CAS  PubMed  Google Scholar 

  176. Barba T, Buehler S, Kettner H, Radu C, Cunha BG, Nutt DJ, et al. Effects of psilocybin versus escitalopram on rumination and thought suppression in depression. BJPsych Open. 2022;8:e163.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Carhart-Harris RL, Roseman L, Bolstridge M, Demetriou L, Pannekoek JN, Wall MB, et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep. 2017;7:13187.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sakashita Y, Abe K, Katagiri N, Kambe T, Saitoh T, Utsunomiya I, et al. Effect of psilocin on extracellular dopamine and serotonin levels in the mesoaccumbens and mesocortical pathway in awake rats. Biological and Pharmaceutical Bulletin. 2015;38:134–8.

    Article  CAS  PubMed  Google Scholar 

  179. Grandjean J, Buehlmann D, Buerge M, Sigrist H, Seifritz E, Vollenweider FX, et al. Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. Neuroimage. 2021;225:117456.

    Article  CAS  PubMed  Google Scholar 

  180. Bjorkholm C, Monteggia LM. BDNF - a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–79.

    Article  PubMed  Google Scholar 

  181. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA. 2004;101:10827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Deyama S, Bang E, Kato T, Li XY, Duman RS. Neurotrophic and antidepressant actions of brain-derived neurotrophic factor require vascular endothelial growth factor. Biol Psychiatry. 2019;86:143–52.

    Article  CAS  PubMed  Google Scholar 

  184. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry. 2003;54:994–1005.

    Article  CAS  PubMed  Google Scholar 

  185. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    Article  CAS  PubMed  Google Scholar 

  186. Lopez JP, Lucken MD, Brivio E, Karamihalev S, Kos A, De Donno C, et al. Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron. 2022;110:2283–98.e2289.

    Article  CAS  PubMed  Google Scholar 

  187. Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martinez A, et al. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun. 2024;15:9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dore BP, Rodrik O, Boccagno C, Hubbard A, Weber J, Stanley B, et al. Negative autobiographical memory in depression reflects elevated amygdala-hippocampal reactivity and hippocampally associated emotion regulation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:358–66.

    PubMed  Google Scholar 

  189. Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci. 2004;29:417–26.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Kozorovitskiy Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol Psychiatry. 2021;89:1096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takaba R, Ibi D, Yoshida K, Hosomi E, Kawase R, Kitagawa, H et al. Ethopharmacological evaluation of antidepressant-like effect of serotonergic psychedelics in C57BL/6J male mice. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-3138705/v1.

  193. Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun. 2020;11:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology. 2024;49:1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Graef JD, Newberry K, Newton A, Pieschl R, Shields E, Luan FN, et al. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res. 2015;1609:31–39.

    Article  CAS  PubMed  Google Scholar 

  197. Widman AJ, Stewart AE, Erb EM, Gardner E, McMahon LL. Intravascular ketamine increases theta-burst but not high frequency tetanus induced LTP at CA3-CA1 synapses within three hours and devoid of an increase in spine density. Front Synaptic Neurosci. 2018;10:8.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Belujon P, Grace AA. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry. 2014;76:927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rawat R, Tunc-Ozcan E, McGuire TL, Peng CY, Kessler JA. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat Commun. 2022;13:2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91.

    Article  CAS  PubMed  Google Scholar 

  201. Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006;163:153–5.

    Article  PubMed  Google Scholar 

  202. Klein AK, Austin EW, Cunningham MJ, Dvorak D, Gatti S, Hulls SK, et al. GM-1020: a novel, orally bioavailable NMDA receptor antagonist with rapid and robust antidepressant-like effects at well-tolerated doses in rodents. Neuropsychopharmacology. 2024;49:905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Burgdorf JS, Zhang XL, Stanton PK, Moskal JR, Donello JE. Zelquistinel is an orally bioavailable novel NMDA receptor allosteric modulator that exhibits rapid and sustained antidepressant-like effects. Int J Neuropsychopharmacol. 2022;25:979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci. 1995;56:PL45–50.

    Article  CAS  PubMed  Google Scholar 

  205. Bernstein G, Davis K, Mills C, Wang L, McDonnell M, Oldenhof J, et al. Characterization of the safety and pharmacokinetic profile of D-methadone, a novel N-methyl-D-aspartate receptor antagonist in healthy, opioid-naive subjects: results of two phase 1 studies. J Clin Psychopharmacol. 2019;39:226–37.

    Article  CAS  PubMed  Google Scholar 

  206. Bettini E, Stahl SM, De Martin S, Mattarei A, Sgrignani J, Carignani C, et al. Pharmacological comparative characterization of REL-1017 (Esmethadone-HCl) and other NMDAR channel blockers in human heterodimeric N-Methyl-D-aspartate receptors. Pharmaceuticals. 2022;15:997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Donello JE, McIntyre RS, Pickel DB, Stahl SM. Demystifying the antidepressant mechanism of action of stinels, a novel class of neuroplastogens: positive allosteric modulators of the NMDA receptor. Pharmaceuticals. 2025;18:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tiliwaerde M, Gao N, Yang Y, Jin Z. A novel NMDA receptor modulator: the antidepressant effect and mechanism of GW043. CNS Neurosci Ther. 2024;30:e14598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gomez-Mancilla B, Levy JA, Ganesan S, Faller T, Issachar G, Peremen Z, et al. MIJ821 (onfasprodil) in healthy volunteers: first-in-human, randomized, placebo-controlled study (single ascending dose and repeated intravenous dose). Clin Transl Sci. 2023;16:2236–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sanacora G, Smith MA, Pathak S, Su HL, Boeijinga PH, McCarthy DJ, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry. 2014;19:978–85.

    Article  CAS  PubMed  Google Scholar 

  211. Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology. 2017;42:844–53.

    Article  CAS  PubMed  Google Scholar 

  212. Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR, Burch RM, et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21:140–9.

    Article  PubMed  Google Scholar 

  213. Zanos P, Piantadosi SC, Wu HQ, Pribut HJ, Dell MJ, Can A, et al. The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/GlycineB-site inhibition. J Pharmacol Exp Ther. 2015;355:76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Park LT, Kadriu B, Gould TD, Zanos P, Greenstein D, Evans JW, et al. A randomized trial of the N-Methyl-D-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol. 2020;23:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kemp JA, Foster AC, Leeson PD, Priestley T, Tridgett R, Iversen LL, et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci USA. 1988;85:6547–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, et al. A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32:551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol. 1997;333:99–104.

    Article  CAS  PubMed  Google Scholar 

  218. Bonaventura J, Lam S, Carlton M, Boehm M, Gomez JL, Solis O, et al. Time will tell. Reply to “Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al.” by Chen et al. Mol Psychiatry. 2022;27:1863–5.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Hustveit O, Maurset A, Oye I. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol Toxicol. 1995;77:355–9.

    Article  CAS  PubMed  Google Scholar 

  220. Kapur S, Seeman P. Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D2 receptor. Biol Psychiatry. 2001;49:954–7.

    Article  CAS  PubMed  Google Scholar 

  221. Kapur S, Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry. 2002;7:837–44.

    Article  CAS  PubMed  Google Scholar 

  222. Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D, Cumbay MG, Watts VJ, Barker EL, et al. Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem. 2000;43:4701–10.

    Article  CAS  PubMed  Google Scholar 

  223. McKenna DJ, Repke DB, Lo L, Peroutka SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology. 1990;29:193–8.

    Article  CAS  PubMed  Google Scholar 

  224. Suzuki K, Kim JW, Nosyreva E, Kavalali ET, Monteggia LM. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep. 2021;37:109918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Petruskova A, Guhathakurta D, Akdas EY, Perello-Amoros B, Frischknecht R, Weiss EM, et al. Serotonergic psychedelics rapidly modulate evoked glutamate release in cultured cortical neurons. J Neurochem. 2025;169:e70020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, et al. Ketamine’s rapid antidepressant effects are mediated by Ca(2+)-permeable AMPA receptors. Elife. 2023;12:e86022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Xue SG, He JG, Lu LL, Song SJ, Chen MM, Wang F, et al. Enhanced TARP-gamma8-PSD-95 coupling in excitatory neurons contributes to the rapid antidepressant-like action of ketamine in male mice. Nat Commun. 2023;14:7971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Widman AJ, McMahon LL. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc Natl Acad Sci USA. 2018;115:E3007–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005.

    Article  CAS  PubMed  Google Scholar 

  231. Zhang J, Qu Y, Chang L, Pu Y, Hashimoto K. (R)-ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. Int J Neuropsychopharmacol. 2019;22:675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, et al. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol. 2024;38:489–99.

    Article  CAS  PubMed  Google Scholar 

  233. Soumier A, Carter RM, Schoenfeld TJ, Cameron HA. New hippocampal neurons mature rapidly in response to ketamine but are not required for its acute antidepressant effects on neophagia in rats. eNeuro 2016; 3. https://doi.org/10.1523/ENEURO.0116-15.2016.

Download references

Acknowledgements

This work was supported by a grant from the BK21 FOUR program of Graduate School, Kyung Hee University (GS-1-JO-NON-info21 20240422 to DP and GL), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00212118 to JK), and the Korean Ministry of Environment under the ’Environmental Health R&D Program’ (No. 2021003310005 to YL).

Author information

Authors and Affiliations

Authors

Contributions

DP, GL, WGL, BK, YL, and JWK wrote the manuscript and drew the figures and Tables.

Corresponding authors

Correspondence to Yoonji Lee or Ji-Woon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Lee, G., Lee, WG. et al. The therapeutic potential of psilocybin beyond psychedelia through shared mechanisms with ketamine. Mol Psychiatry 30, 4910–4927 (2025). https://doi.org/10.1038/s41380-025-03100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03100-2

Search

Quick links