Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PET imaging evidence of HDAC6 suppression in the amygdala across species in PTSD

Abstract

Histone deacetylases (HDACs), typically known for regulating gene expression, also play a major role in protein regulation outside of histone modification. Emerging evidence suggests the HDACs may be novel pharmacologic targets in complex disorders such as posttraumatic stress disorder (PTSD). Histone deacetylase 6 (HDAC6) regulates microtubule function and plays a role in stress-related cortisol signaling in serotonergic regions of the brain by maintaining the nuclear translocation of glucocorticoid receptors. Here, we report results of a translational positron emission tomography brain imaging study using a novel HDAC6-selective radiotracer, [18F]Bavarostat. In humans, we demonstrate significantly lower availability of HDAC6 in the amygdala of individuals with PTSD compared to non-trauma exposed controls. These proof-of-concept human findings are supported by rodent findings of reduced HDAC6 availability both in case-control groups and within-subject longitudinal analysis using a single prolonged stress model. Together, our translational findings demonstrate a potential role for HDAC6 in the pathophysiology of PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [18F]Bavarostat VT values for the primary ROI in three groups, non-trauma exposed control (n = 10), trauma exposed control (n = 10), and PTSD (n = 8).
Fig. 2: Behavior testing results for SPS animals.
Fig. 3: Rodent SPS model demonstrates lower HDAC6 on PET imaging.
Fig. 4: Rodent HDAC6 PET imaging results.

Similar content being viewed by others

Data availability

Due to the sensitive nature of human participant information, data are available upon reasonable request by contacting the corresponding author.

Code availability

Computer codes are written and property of Yale PET Center and can be accessed upon request.

References

  1. Kirkpatrick HA, Heller GM. Post-traumatic stress disorder: theory and treatment update. Int J Psychiatry Med. 2014;47:337–46.

    Article  PubMed  Google Scholar 

  2. Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47:2260–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Primers. 2015;1:15057.

    Article  PubMed  Google Scholar 

  4. Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To predict, prevent, and manage Post-Traumatic Stress Disorder (PTSD): a review of pathophysiology, treatment, and biomarkers. Int J Mol Sci. 2023;24:5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.

    Article  CAS  PubMed  Google Scholar 

  6. Olff M. Sex and gender differences in post-traumatic stress disorder: an update. Eur J Psychotraumatol. 2017;8:1351204.

    Article  PubMed Central  Google Scholar 

  7. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002;21:6820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saunders HAJ, Johnson-Schlitz DM, Jenkins BV, Volkert PJ, Yang SZ, Wildonger J. Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Curr Biol. 2022;32:614–30.e615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Espallergues J, Teegarden SL, Veerakumar A, Boulden J, Challis C, Jochems J, et al. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci. 2012;32:4400–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jochems J, Teegarden SL, Chen Y, Boulden J, Challis C, Ben-Dor GA, et al. Enhancement of stress resilience through histone deacetylase 6-mediated regulation of glucocorticoid receptor chaperone dynamics. Biol Psychiatry. 2015;77:345–55.

    Article  PubMed  Google Scholar 

  12. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–7.

    Article  CAS  PubMed  Google Scholar 

  13. Winkler R, Benz V, Clemenz M, Bloch M, Foryst-Ludwig A, Wardat S, et al. Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes. 2012;61:513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jochems J, Boulden J, Lee BG, Blendy JA, Jarpe M, Mazitschek R, et al. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology. 2014;39:389–400.

    Article  CAS  PubMed  Google Scholar 

  15. Xie S-T, Chen A-X, Song B, Fan J, Li W, Xing Z, et al. Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behavior Immun. 2020;89:400–13.

    Article  CAS  Google Scholar 

  16. Yan B, Xie S, Liu Y, Liu W, Li D, Liu M, et al. Histone deacetylase 6 modulates macrophage infiltration during inflammation. Theranostics. 2018;8:2927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Youn GS, Park JK, Lee CY, Jang JH, Yun SH, Kwon HY, et al. MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages. BMB Rep. 2020;53:223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol. 2019;163:458–71.

    Article  CAS  PubMed  Google Scholar 

  19. Celen S, Rokka J, Gilbert TM, Koole M, Vermeulen I, Serdons K, et al. Translation of HDAC6 PET imaging using [(18)F]EKZ-001-cGMP production and measurement of HDAC6 target occupancy in nonhuman primates. ACS Chem Neurosci. 2020;11:1093–101.

    Article  CAS  PubMed  Google Scholar 

  20. Koole M, Van Weehaeghe D, Serdons K, Herbots M, Cawthorne C, Celen S, et al. Clinical validation of the novel HDAC6 radiotracer [(18)F]EKZ-001 in the human brain. Eur J Nucl Med Mol Imaging. 2020;48:596–611.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Strebl MG, Campbell AJ, Zhao W-N, Schroeder FA, Riley MM, Chindavong PS, et al. HDAC6 brain mapping with [18F]Bavarostat enabled by a ru-mediated deoxyfluorination. ACS Cent Sci. 2017;3:1006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seibenhener ML, Wooten MC Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 2015:e52434. https://doi.org/10.3791/52434.

  23. De Carvalho LM, Wiers CE, Sun H, Wang GJ, Volkow ND. Increased transcription of TSPO, HDAC2, and HDAC6 in the amygdala of males with alcohol use disorder. Brain Behav. 2020;11:e01961.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hannestad J, DellaGioia N, Gallezot J-D, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C] PBR28 PET study. Brain Behav Immun. 2013;33:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ceccarini G, Flavell RR, Butelman ER, Synan M, Willnow TE, Bar-Dagan M, et al. PET imaging of leptin biodistribution and metabolism in rodents and primates. Cell Metab. 2009;10:148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. First MB, Gibbon M The structured clinical interview for DSM-IV axis I disorders (SCID-I) and the structured clinical interview for DSM-IV axis II disorders (SCID-II). In: Hilsenroth M J, D L Segal editors. Comprehensive handbook of psychological assessment Personality assessment. John Wiley & Sons, Inc. 2004. Vol. 2. pp. 134–143.

  27. First MB. Structured clinical interview for the DSM (SCID). Encycl Clin Psychol. In: R L Cautin and S O Lilienfeld editors. The Encyclopedia of Clinical Psychology 2015;1-6 https://doi.org/10.1002/9781118625392.wbecp351.

  28. Sobell LC, Sobell MB Timeline follow-back. In: Litten RZ, Allen JP, editors. Measuring alcohol consumption: psychosocial and biochemical methods. Totowa, NJ: Humana Press, 1992, pp 41-72.

  29. Naganawa M, Zheng MQ, Gallezot JD, Bonomi R, Gu J, Gao H, et al. Assessment of test-retest reproducibility by [18F]Bavarostat for PET imaging of HDAC6. EJNMMI Res. 2025;15:76.

  30. Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress Anxiety. 2016;33:592–605.

    Article  PubMed  Google Scholar 

  31. Jin X, Chan C, Mulnix T, Panin V, Casey ME, Liu C, et al. List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction. Phys Med Biol. 2013;58:5567–91.

    Article  PubMed  Google Scholar 

  32. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  33. Knox D, Perrine SA, George SA, Galloway MP, Liberzon I. Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett. 2010;480:16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-prolonged stress: a review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psychiatry. 2018;9:196.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gould TD, Dao DT, Kovacsics CE The open field test. Mood and anxiety related phenotypes in mice: characterization using behavioral tests 2009; 1-20.

  36. Barrière DA, Magalhães R, Novais A, Marques P, Selingue E, Geffroy F, et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat Commun. 2019;10:5699.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pratchett LC, Yehuda R. Foundations of posttraumatic stress disorder: does early life trauma lead to adult posttraumatic stress disorder? Dev Psychopathol. 2011;23:477–91.

    Article  PubMed  Google Scholar 

  38. Eagle AL, Fitzpatrick CJ, Perrine SA. Single prolonged stress impairs social and object novelty recognition in rats. Behav Brain Res. 2013;256:591–7. https://doi.org/10.1016/j.bbr.2013.1009.1014

    Article  PubMed  Google Scholar 

  39. Zhang L, Hu XZ, Li H, Li X, Yu T, Dohl J, et al. Updates in PTSD animal models characterization. Methods Mol Biol. 2019;2011:331–44.

    Article  CAS  PubMed  Google Scholar 

  40. Fukada M, Hanai A, Nakayama A, Suzuki T, Miyata N, Rodriguiz RM, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS One. 2012;7:e30924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iaconelli J, Xuan L, Karmacharya R. HDAC6 modulates signaling pathways relevant to synaptic biology and neuronal differentiation in human stem-cell-derived neurons. Int J Mol Sci. 2019;20:1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh H, Wray N, Schappi JM, Rasenick MM. Disruption of lipid-raft localized Gαs/tubulin complexes by antidepressants: a unique feature of HDAC6 inhibitors, SSRI and tricyclic compounds. Neuropsychopharmacology. 2018;43:1481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y, Zhang B, Yang Y, Su P, Samsom JN, Wong AHC, et al. Sex and age differences in glucocorticoid signaling after an aversive experience in mice. Cells. 2024;13:2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li H, Su P, Lai TK, Jiang A, Liu J, Zhai D, et al. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Invest. 2020;130:877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhatt S, Hillmer AT, Rusowicz A, Nabulsi N, Matuskey D, Angarita GA, et al. Imaging brain cortisol regulation in PTSD with a target for 11β-hydroxysteroid dehydrogenase type 1. J Clin Invest. 2021;131:e150452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keller SM, Schreiber WB, Staib JM, Knox D. Sex differences in the single prolonged stress model. Behav Brain Res. 2015;286:29–32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bielajew C, Konkle AT, Merali Z. The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behav Brain Res. 2002;136:583–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the expertise of the staff at the Yale PET Center and Yale PET animal facility, for their support of radiochemistry and imaging, particularly Dr. Takuya Toyonaga and Krista Fowles. We thank Alexa-Nicole Leverington, Rosemarie Terwilliger, and the animal staff at the Yale Animal Facilities and Charles Rivers. Additionally, we thank the Veterans Affairs National Center for PTSD for significant support of this work. We are thankful for our funding from the National Institute of Mental Health grants 5T32MH019961-24, the Veterans Affairs National Center for PTSD (KPC, MJG), and the Thomas P. Detre Award for Neurosciences (REB). This work was supported with resources and use of facilities at the VA Connecticut Health Care System, West Haven, CT and the National Center for PTSD, U.S. Department of Veterans Affairs. This work was funded in part by the State of Connecticut, Department of Mental Health and Addiction Services. The views expressed here are those of the authors and do not necessarily reflect the position or policy of the US Department of Veterans Affairs (VA) or the U.S. government or the views of the Department of Mental Health and Addiction Services or the State of Connecticut.

Author information

Authors and Affiliations

Authors

Contributions

REB, KPC, and MJG conceived and designed the study. REB and DM conducted human subjects’ recruitment, medical clearance, characterization, and oversight. REB conducted all animal studies and behavior analysis. REB and MN analyzed the PET data with input from REC and RP REB performed animal studies and CD performed immunohistochemistry with oversight from MJG REB analyzed rodent and human PET, and rodent behavior. REB, MJG, RP, and KPC wrote the manuscript. All authors edited and contributed comments and intellectual content to the manuscript.

Corresponding authors

Correspondence to Matthew J. Girgenti or Kelly P. Cosgrove.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonomi, R.E., Naganawa, M., McRiley, D. et al. PET imaging evidence of HDAC6 suppression in the amygdala across species in PTSD. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03124-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03124-8

Search

Quick links