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Adolescent major depressive disorder (AMDD) is a heterogeneous condition with rising global prevalence and limited treatment
efficacy. This study integrates morphometric similarity networks (MSN) and spatial transcriptomics to identify neurobiologically
distinct AMDD subtypes and their underlying molecular mechanisms. Using the HYDRA algorithm, we delineate two subtypes:
AMDD1, characterized by reduced MSN strength in frontoparietal networks, heightened impulsivity, and preserved cognition; and
AMDD?2, marked by elevated MSN strength in limbic-visual circuits, severe emotional dysregulation, and rumination. Transcriptomic
analyses reveal subtype-specific gene expression patterns, with AMDD1 associated with synaptic pruning deficits and AMDD2
linked to GABAergic inhibition deficits. Cell-type mapping highlights astrocytic dysregulation in AMDD1 and microglial activation in
AMDD?2, while pathway enrichment identifies distinct molecular networks, including endocannabinoid signaling in AMDD1 and
MAPK-driven neuroinflammation in AMDD2. Developmental trajectory analysis uncovers critical windows for intervention, with
AMDD1 showing delayed cerebellar maturation and AMDD?2 exhibiting early hippocampal-striatal priming. These findings advance
a precision framework for AMDD, linking spatially patterned gene expression to neurodevelopmental trajectories and offering
targeted therapeutic strategies tailored to subtype-specific mechanisms. By bridging molecular, cellular, and network-level insights,
this study provides a transformative approach to understanding and treating adolescent depression.
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INTRODUCTION

Adolescent major depressive disorder (AMDD) represents a
significant global public health challenge, with rapidly increasing
prevalence rates and long-term outcomes that include recurrent
episodes and functional impairment into adulthood [1, 2]. Unlike
adult-onset depression, AMDD is uniquely intertwined with
adolescence—a period of dynamic neural reorganization. Norma-
tive developmental processes, such as synaptic pruning in the
prefrontal cortex and heightened limbic reactivity, may become
maladaptive in vulnerable individuals, amplifying emotional
dysregulation and impulsive behaviors [3, 4]. Compounding this
complexity, nearly 50% of adolescents exhibit inadequate
response to first-line antidepressants [5], highlighting the need
to move beyond symptom-based classifications.

Current diagnostic frameworks, such as the DSM-5, while
clinically operable, reduce AMDD’s neurobiological diversity to
subjective symptom clusters. For instance, irritability—a hallmark
of adolescent depression—often overlaps with anxiety or
behavioral disorders, leading to diagnostic delays [6]. Neuroima-
ging advances underscore a notable paradox: identical symptoms,
such as anhedonia, map onto divergent neural mechanisms. For
example, prefrontal hypometabolism may co-occur with amygdala

hyperactivity in AMDD, reflecting distinct neurodevelopmental
pathways [7, 8]. These inconsistencies suggested that conven-
tional case-control designs conflate biologically distinct sub-
groups, which perpetuating the translational gap in AMDD
research.

Transcriptomic studies in adult depression have identified
corticolimbic dysregulation of synaptic plasticity (e.g., GRIN2A)
and neuroinflammatory pathways (e.g., IL6R) [9]. However,
adolescence, a period characterized by dynamic changes in gene
expression, presents distinct vulnerabilities that are not yet fully
understood. For instance, BDNF, a gene critical for synaptic
pruning, peaked in expression during puberty—a developmental
window coinciding with AMDD onset—but exhibited region-
specific declines in prefrontal cortical hubs among affected
adolescents [10, 11]. This divergence suggested that normative
neurodevelopmental processes may become maladaptive when
disrupted by genetic or environmental stressors. While spatial
transcriptomic mapping in adults linked gene expression to
structural networks [12], such approaches had not been applied to
adolescents, whose rapidly evolving brains may prioritize distinct
molecular pathways. Cortical regions enriched for synaptic genes
in adulthood, such as the dorsolateral prefrontal cortex, could
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Fig. 1

Study overview. A: MSN construction. The MSN was computed using a 308 x 308 matrix incorporating five features (surface area,

cortical thickness, gray matter volume, Gaussian curvature, and mean curvature).The MSN strength was derived by calculating the average
weighted correlation coefficients between each brain region and all other regions. B: Classification and Genes analysis: The HYDRA method
was applied to identify distinct AMDD subtypes based on MSN strength profiles. PLS regression was employed to determine imaging-
transcriptomic associations. The relationship between whole-brain gene expression patterns and morphometric alterations across different
AMDD subtypes was elucidated through PLS weight mapping, functional enrichment analysis, and cellular transcriptional signature

assessment.

undergo localized expression shifts during adolescence, poten-
tially amplifying vulnerability to maladaptive connectivity. Resol-
ving this gap is imperative: if AMDD subtypes reflect spatially
patterned gene expression signatures, they may unveil neurode-
velopmental mechanisms that are both temporally sensitive and
regionally specific, offering novel targets for timed interventions.

To bridge these gaps, we integrate morphometric similarity
networks (MSN)—a structural connectivity measure reflecting
synchronized neurodevelopmental processes—with spatial tran-
scriptomics. Unlike functional connectivity, which captures tran-
sient activity states, MSN is thought to encode enduring
developmental signatures, such as shared genetic influences or
coordinated synaptic pruning [11]. We spatially correlate MSN-
derived neuroanatomical gradients with transcriptomic profiles
from the Allen Human Brain Atlas (AHBA). This approach allows us
to interrogate how regionally patterned gene expression shapes
structural network maturation and its dysregulation in AMDD. For
example, in early-onset schizophrenia, MSN subtypes align with
synaptic versus immune gene dysregulation [13], suggesting
similar approaches could disentangle AMDD heterogeneity. By
applying this framework to adolescents, we aim to uncover
subtype-specific interactions between gene expression gradients
and structural network maturation, ultimately linking molecular
mechanisms to clinical phenotypes.

Guided by these advances, we address three critical questions:
First, can neuroanatomical subtypes derived from MSN delineate
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clinically distinct AMDD subgroups with divergent symptom
profiles. Second, do these subtypes reflect spatially patterned gene
expression signatures. Third, how do subtype-specific trajectories
interact with normative adolescent brain maturation. By addressing
these questions, we aim to advance a precision framework for
AMDD, linking molecular gradients to targeted interventions.

METHODS

This study employed a multi-modal framework to delineate neurobiolo-
gical subtypes of AMDD by integrating structural neuroimaging, tran-
scriptomic profiling, and deep phenotyping (Fig. 1).

Participant and clinical assessment

Participants. A total of 282 adolescents aged 12-18 years were enrolled in
this study, including 188 patients diagnosed with AMDD and 94 healthy
controls (HC). AMDD patients were recruited from psychiatric departments
at two hospitals: the First Affiliated Hospital of China Medical University
(n=163) and Shengjing Hospital of China Medical University (n = 25). HC
were selected from local communities and universities through advertise-
ments. Our study’s sample size was determined based on previous studies
and enrollment capacity. This study was approved by the Ethics
Committees of Shengjing Hospital of China Medical University and The
First Affiliated Hospital of China Medical University. All methods were
performed in accordance with the Declaration of Helsinki and relevant
guidelines and regulations. Written informed consent was obtained from
all participants and their legal guardians.
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MDD diagnosis was confirmed by two board-certified psychiatrists who
were blinded to the study hypotheses, using the Structured Clinical
Interview for DSM-IV and DSM-V. Inclusion criteria for patients included:

First-time MDD diagnosis with a 17-item Hamilton Depression Rating
Scale (HAMD-17) score >7 [14, 15]; (2) No comorbid Axis I/Il disorders.
(3) Absence of severe neurological or systemic illnesses. Exclusion
criteria for all participants included (1) MRI contraindications (e.g.,
metallic implants) and non-right-handedness (2) Any current or prior
diagnosis of a mental disorder, including but not limited to autism
spectrum disorders, attention deficit hyperactivity disorder, depres-
sion, anxiety disorders, etc.; (3) Family history of mental illness; (4)
severe organic brain or systemic disease. The study protocol was
approved by the ethics committees of both institutions, and written
informed consent was obtained from all participants and their legal
guardians.

Clinical assessment. Clinical evaluations were conducted within 72 h of
enrollment and included: (1) Symptom severity:HAMD-1, 14-item Hamilton
Anxiety Rating Scale, Brief Psychiatric Rating Scale (BPRS), Young Mania
Rating Scale (YMRS). (2) Cognitive and behavioral profiles: MATRICS
Consensus Cognitive Battery, Barratt Impulsiveness Scale (BIS-11), Auto-
matic Thoughts Questionnaire (ATQ) [16-18]. (3) Environmental and
psychological factors: Adolescent Self-Rating Life Events Checklist (ASLEC),
Egna Minnen Betréffande Uppfostran (EMBU), Cognitive Emotion Regula-
tion Questionnaire (CERQ) [19-23]. (4) Suicidality assessment: Suicidal
ideation (SI) was defined as affirmative responses to structured questions
(e.g., “In the past two weeks, have you planned or considered suicide?”).
Suicide attempts (SA) were identified via the Beck Suicide Scale, with
detailed follow-up on intent and methods.

MRI data acquisition
Structural T1-weighted MRI scans were acquired using two 3.0 T scanners:

GE Sigma Scanner (n = 242): High-resolution 3D-FSPGR sequence. Siemens
PRISMA Scanner (n = 22): 3D-MPRAGE sequence. (parameters in Table S1,
Supporting Information 1).

To mitigate potential inter-site variability, we implemented three
strategies: (1) standardized phantom calibration preceding human scans,
(2) identical participant positioning protocols across sites, and (3) statistical
control of site effects through covariate adjustment in all group-level
analyses.

MRI image preprocessing

The T1-weighted images were preprocessed in a surface-based framework
using the latest version of  FreeSurfer (v7.3.2, http://
surfer.nmr.mgh.harvard.edu/) [24]. The processing pipeline included robust
skull stripping, bias field correction, and comprehensive tissue segmenta-
tion to delineate gray matter, white matter, and cerebrospinal fluid. In
subsequent steps, each brain was partitioned into hemispheric and
subcortical structures, and cortical surfaces were accurately reconstructed
by generating precise gray/white matter interfaces and pial surfaces.

To ensure high data quality, images that demonstrated excessive motion
artifacts or other quality issues were visually inspected and excluded from
further analysis. Key quality metrics, including the Euler number and total
intracranial volume (TIV) [25], were computed for each T1-weighted image
to assess the integrity of the cortical reconstructions and to control for
head size differences in downstream analyses. 18 cases were excluded due
to poor quality.

Construction of MSN

Cortical parcellation and feature extraction. For each participant, the
cortical surface was segmented into 308 spatially contiguous regions
derived from the 68 cortical areas defined in the Desikan—Killiany (D-K)
atlas [26, 27]. This parcellation, implemented through a backtracking
algorithm, produced regions of approximately equal size (~500 mm?),
thereby minimizing variability attributable to parcel size differences
[28, 29]. The parcellated D-K atlas was then registered to each participant’s
native cortical surface to generate individualized parcellation maps.From
each of the 308 regions, five morphometric features were extracted from
the T1-weighted images: surface area, cortical thickness, gray matter
volume, Gaussian curvature, and mean curvature [11]. To account for
differences in the distribution of these features, each morphometric
feature vector was z-score normalized across regions [26, 27].
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Network construction. Pairwise Pearson’s correlation analyses were
subsequently performed on the normalized feature vectors, resulting in
an unthresholded 308 x 308 MSN for each participant. The connectivity
strength, or MSN strength, of a given region was quantified by calculating
the average weighted correlation coefficient between that region and all
other regions [30]. Age, sex, education, TIV and site effects were regressed
out from global MSN strength.

Subtyping AMDD with HYDRA

HYDRA algorithm overview. HYDRA (Heterogeneity Through Discrimina-
tive Analysis, https://github.com/evarol/HYDRA) was employed to identify
neuroanatomical subtypes of AMDD by integrating supervised classifica-
tion and unsupervised clustering [31]. The algorithm operates in two
stages: (1) Classification: A convex polytope is constructed using linear
maximum-margin classifiers to separate AMDD patients from HCs based on
MSN strength patterns. (2) Clustering: AMDD patients are grouped into
subtypes according to their proximity to distinct hyperplanes (polytope
faces), which represent divergent neuroanatomical trajectories.(HYDRA
METHOD, Supporting Information 1).

Key parameters and stability assessment. For our analyses, HYDRA was
configured with 50 iterations that alternated between hyperplane
estimation and cluster assignment, complemented by 20 consensus steps
to enhance clustering stability. A regularization parameter of 0.25 was
employed, and tenfold cross-validation was performed to ensure the
robustness of the clustering solution. To quantitatively assess the stability
and consistency of the clustering, we computed the Adjusted Rand Index
(ARI) [32], which corrects for chance agreement and provides a
conservative measure of clustering overlap.

Case-control analysis of MSN strength for AMDD subtypes
Statistical modeling framework. To compare MSN strength between
AMDD subtypes and HCs, we employed a hierarchical linear regression
model (LRM): MSN strength as the dependent variable. Age, sex,
education,site effect and TIV were included as covariates to control for
potential confounding effects. For each participant, global MSN strength
was computed as the average MSN strength across all brain regions.

To further examine regional variations, we modeled the MSN strength
for each region (MSNi) using the following equation:

MSN; = intercept + 8, x age + 3, x sex + B3 x TIV ++ B, x education + f3; x site

Two-sample t-tests comparing each AMDD subtype against HC, were
performed to identify regional differences in MSN strength. A Bonferroni
correction was employed to adjust for multiple comparisons, with
significance defined at p < 0.05.

Functional network and developmental trajectory analysis. To examine the
functional network-level abnormalities distinguishing AMDD subtypes
from healthy controls, we conducted systematic analyses of MSN strength
across established brain parcellations-Yeo Functional 7 Networks and von
Economo atlas [33, 34]. A Bonferroni correction was employed to adjust for
multiple comparisons, with significance defined at p < 0.05.

In addition, to investigate the developmental trajectories of AMDD
subtypes from childhood to adolescence, we employed quadratic non-
linear modeling to characterize developmental trajectories of both global
MSN strength and functional network-specific MSN strength. We selected
this non-linear approach based on established evidence that neurodeve-
lopmental processes follow complex, non-linear patterns across age rather
than simple linear progressions. The quadratic model allowed us to
capture potential curvilinear relationships, inflection points, and rate
changes in MSN development [35].

Transcriptomic correlates of MSN alterations

Regional gene expression data acquisition. Transcriptomic profiles were
obtained from the AHBA (http://human.brain-map.org) [36], encompassing
microarray data from 3,702 spatially annotated tissue samples across six
postmortem brains (Detailed information see Supporting Information 1,
Section 3). Gene expression matrices were preprocessed using the Abagen
toolbox (https://github.com/rmarkello/abagen) [37] with the following
steps: (1) Probe Filtering: Removed probes with expression levels below
background noise in >50% of samples. (2) Probe Selection: For genes with
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multiple probes, retained the probe showing the highest regional
specificity. (3) Spatial Registration:Allocating samples to brain regions if
they were within a 2 mm Euclidean distance from the region boundary. (4)
Normalization: Scaled expression values across samples using a robust
sigmoid function.

Due to limited right-hemisphere coverage in AHBA, analyses focused on
the left hemisphere, yielding expression data for 15,631 genes across 152
cortical regions [38].

Spatial covariation analysis. To identify transcriptional signatures asso-
ciated with MSN alterations, we employed Partial Least Squares (PLS)
regression: Predictors are normalized gene expression matrices (15,631
genes x 152 regions). Response Variables are case-control t-statistic maps
of MSN strength differences [39]. Analysis Steps: (1) Component Extraction:
The first PLS component (PLS1) was derived to maximize covariance
between gene expression and MSN t-values. (2) Significance Testing:
Permutation tests (10,000 iterations) assessed the statistical significance of
PLS1 (p-perm <0.0001, p-perm indicated significance assessed using
standard permutation testing with 10,000 random permutations) [40]. (3)
Gene Weighting: Genes with absolute Z-scores > |5| were classified as
PLS1+ (positively weighted) or PLS1— (negatively weighted) [11]. Spear-
man’s correlations confirmed regional alignment between PLS1 scores and
MSN t-maps.

Analysis of depression-related genes. We examined specific depression-
associated genes from the AHBA’s 1000 Genes Characterized by ISH in the
Cortex Gene Survey (help.brain-map.org/display/humanbrain/Documenta-
tion). 24 depression-associated genes were analyzed: ADRA2A, AVPRI1B,
CHRM2, CNR1, CREB1, CRH, CRHRI1, CRHR2, CUX2, GAD2, GPR50, HTRIA,
HTR1B, HTR1D, HTR3A, HTR5A, MAOA, PDETA, SLC6A2, SLC6A4, SST, TACI,
TPH1, and TPH2 [41].

To assess their contribution to MSN alterations, we first identified
overlapping genes from the 24 MDD-related genes and 15,631 background
genes. We then estimated the relationship between overlapping gene
expression and left hemisphere MSN case-control changes, pFDR < 0.05
was considered significant.

Functional enrichment analysis of PLS1 positive or

negative genes

For functional characterization of PLS1 associated genes, we conducted
comprehensive enrichment analysis: (1) Gene Selection: Applied stringent
significance thresholds (Z > 5 for PLS1+ genes; Z < —5 for PLS1- genes); (2)
Enrichment Analysis: Examined Gene Ontology Biological Processes (GO-
BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
Enriched GO terms and KEGG pathways were considered statistically
significant at pFDR < 0.05; (3) Analyzed and visualized results using the
online bioinformatics platform (https://www.bioinformatics.com.cn, last
accessed on 10 Dec 2024) [42], which provides comprehensive data
analysis and visualization capabilities.

Cell-type mapping and developmental trajectory analysis of
AMDD subtype specific gene signatures

Cellular characterization of regional MSN alterations. To understand the
cellular basis of MSN alterations in AMDD subtypes, we mapped PLS1-
weighted genes to specific cortical cell populations. We integrated cell-
type reference panels derived from five independent single-cell transcrip-
tomic studies of human postmortem cortical tissue. This approach yielded
comprehensive gene signatures for seven major cell types: endothelial
cells, astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor
cells (OPCs), excitatory neurons, and inhibitory neurons [43].

We quantified cell-type enrichment scores for each brain region using
single-sample Gene Set Enrichment Analysis (ssGSEA) implemented
through the “gsva” function with Gaussian parameters in the GSVA R
package [44]. This method computed enrichment scores reflecting the
relative abundance of each cell type based on their characteristic gene
expression profiles. We then systematically compared PLS1+ and PLS1-
gene lists against these cell-type-specific reference panels to identify
predominant cellular contributors to subtype-related brain changes.
Statistical significance of cell-type enrichments was evaluated using
permutation testing with pFDR < 0.05).

Functional pathway analysis of cell-type-specific gene signatures. To
elucidate the biological mechanisms in cell-type-specific gene signatures,
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we conducted functional enrichment analysis. For the overlapping genes,
functional enrichment analysis was performed using bioinformatics
platform (https://www.bioinformatics.com.cn, last accessed on 10 Dec
2024) [42]. Enriched GO terms and KEGG pathways were considered
statistically significant at pFDR < 0.05.

Developmental expression mapping of AMDD-associated genes. For devel-
opmental trajectory analysis, subtype-specific gene lists (PLS1+ genes)
were cross-referenced with the Brainspan developmental transcriptome
atlas using the cell-type specific expression analysis (CSEA) tool (http://
doughertytools.wustl.edu/CSEAtool.html) [45]. Enrichment scores were
computed for each gene set across 15 developmental stages (prenatal
to adulthood) and 12 brain regions. The tool integrates human data from
the Brainspan collection to provide parallel analysis of transcripts enriched
in specific human brain regions and/or developmental windows.We
investigated the correlation between PLS weighted genes and develop-
mental time spans across different brain regions in distinct AMDD
subtypes through developmental gene expression enrichment analysis.

RESULTS

Demographic and clinical characteristics

The AMDD group (n=179) and HC (n = 85) were matched for age
and education but differed significantly in sex distribution (70.95%
female in AMDD vs. 51.76% in HC, x* = 9.30, p = 0.002), aligning with
epidemiological reports of higher female vulnerability to adolescent
depression [46]. Clinically, AMDD patients exhibited elevated
depressive (HAMD-17, p < 0.001), anxiety (HAMA-14, p <0.001), and
cognitive impairment scores (MCCB, p < 0.001), alongside heightened
impulsivity (BIS-11, p < 0.001) and negative automatic thoughts (ATQ,
p <0.001). Environmental stressors further distinguished the groups,
with AMDD participants reporting greater academic pressure (ASLEC,
p <0.001) and paternal rejection (EMBU, p =0.011).Notably, 55.87%
of AMDD patients endorsed suicidal ideation, with 36.31% reporting
prior suicide attempts—a subgroup demonstrating significantly
higher impulsivity scores than non-attempters (p < 0.001). (Table S4,
Supporting Information 1). Homogeneity of variance was assessed
using Levene’s test prior to conducting t-tests.

Identification of AMDD subtypes using HYDRA

The HYDRA algorithm identified two distinct neurobiological
subtypes within the AMDD cohort, demonstrating robust clustering
stability with an ARI of 0.83 across 50 iterations. (Fig. S1, Supporting
Information 1). Comparative model evaluation confirmed the two-
cluster solution as optimal, balancing biological interpretability and
statistical rigor, with AMDD1 (n=86) and AMDD2 (n=93)
representing phenotypically divergent subgroups. This classification
emerged from tenfold cross-validation, where regularization para-
meters (A=0.25) and consensus clustering minimized overfitting
while preserving inter-subtype heterogeneity.

Clinical features across AMDD subtypes

The neurobiological differentiation of AMDD subtypes translated
into distinct clinical phenotypes. AMDD2 exhibited heightened
emotional dysregulation, marked by elevated depressive (HAMD-
17: p=0.020) and anxiety (HAMA-14: p=0.001) severity com-
pared to AMDD1. In contrast, AMDD1 demonstrated pronounced
behavioral disinhibition, with higher impulsivity (BIS-11: p = 0.013)
and negative cognitive distortions (ATQ: p=0.025), despite
preserved global cognitive performance (MCCB: p =0.030). This
dissociation suggests divergent neural substrates for emotional
and cognitive regulation.

Coping strategies further distinguished the subtypes: AMDD2
relied heavily on maladaptive internalizing behaviors, including
rumination (p=0.011) and self-blame (p=0.038), whereas
AMDD1 reported greater externalizing stressors, such as academic
pressure (p =0.008) and paternal punishment (p < 0.001). Suicidal
ideation prevalence was comparable between subtypes (AMDD1:
53.5% vs. AMDD2: 58.1%, x* = 0.38, p = 0.538), yet suicide attempt
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Table 1. Demographic and clinical characteristics between AMDD1 and AMDD2.

Variables Total (n=179) AMDD1 (n =86) AMDD2 (n =93) Statistic P
Age(years) 15.75+ 1.66 15.88 +1.57 1562+ 1.73 t=1.05 0.295
Education(years) 10.20 + 1.80 10.36 +1.88 10.05+1.71 t=1.14 0.255
Sex, n(%) x> =0.97 0.326
Female 127 (70.95) 64 (74.42) 63 (67.74)
Male 52 (29.05) 22 (25.58) 30 (32.26)
HAMD-17 19.97 +7.56 18.60+7.15 21.24+7.75 t=-236 0.020
HAMA-14 18.55 + 8.06 16.21 +7.43 20.71+8.05 t=-3.88 <.001
BPRS 30.61+7.46 30.98+7.11 30.27 £7.80 t=0.63 0.527
YMRS 1.86 +£2.25 1.78£2.19 1.94£2.32 t=-046 0.644
MCCB Total scores 46.97 + 8.82 48.45 +9.37 45.60 + 8.09 t=2.18 0.030
BIS Total scores 63.41+7.64 64.88 £7.50 62.05+7.55 t=251 0.013
ATQ Total scores 99.39+30.41 104.62 + 25.40 94.55 +33.82 t=226 0.025
CERQ(Mean + SD)
Self-blame 12.62 +3.28 12.09 +3.07 13.11 £3.41 t=-2.09 0.038
Acceptance 12,47 +3.21 12.76 +3.33 12.22+3.10 t=1.13 0.262
Rumination 12.75+3.12 12.14+3.24 13.32+2.90 t=-258 0.011
Positive refocusing 11.96+3.19 11.83+£3.11 12.09 +3.29 t=-054 0.587
Refocus on planning 11.51 £3.01 11.59+3.15 11.43 +£2.89 t=0.36 0.719
Positive reappraisal 11.14+3.23 11.37 £3.81 10.92 +2.58 t=0.91 0.363
Putting into perspective 12.01 £2.79 12.22 +3.05 11.81+£2.52 t=0.99 0.322
Catastrophizing 11.03 +3.07 11.05+3.19 11.01 £2.97 t=0.08 0.938
Other-blame 11.95+2.95 11.40+3.18 12.46 + 2.64 t=-245 0.015
Suicidal Ideation, n(%) x> =0.38 0.538
No 79 (44.13) 40 (46.51) 39 (41.94)
Yes 100 (55.87) 46 (53.49) 54 (58.06)
Suicide Attempt, n(%) x> =1.01 0315
No 114 (63.69) 58 (67.44) 56 (60.22)
Yes 65 (36.31) 28 (32.56) 37 (39.78)

t t-test, x? chi-square test, SD standard deviation.

rates trended higher in AMDD2 (39.8% vs. 32.6%, X2:1.01,
p=0.315), paralleling their elevated emotional distress. There
were no statistically significant differences in sex, age, and
education between AMDD1 and AMDD2. (Tables 1, 2).

MSN in AMDD subtypes
Neuroanatomical divergence between subtypes. AMDD1 exhibited
reduced MSN strength in the dorsolateral prefrontal cortex (dIPFC;
left lateral occipital cortex) and anterior cingulate cortex (ACC; left
precentral gyrus), networks central to executive function and motor
planning. In contrast, AMDD2 demonstrated elevated MSN strength
in emotion-processing hubs, notably the amygdala (right perical-
carine cortex) and parahippocampal gyrus (right parahippocampal
part2). This hyperconnectivity extended to visual association areas
such as the cuneus (right cuneus part3) and lingual gyrus (right
lingual part4). (Tables S1, S2; Supporting Information 2).

Compared to HC, AMDD1 showed widespread MSN weakening in
frontoparietal networks, including the superior frontal gyrus (right
superior frontal part1) and inferior parietal lobule (left inferior
temporal part4), regions essential for attentional control.Conversely,
AMDD?2 displayed selective hyperconnectivity in limbic-striatal
circuits, such as the nucleus accumbens (left lateral occipital part5)
and hippocampus (right lingual part6) (Fig. 2a-c).

In addition, we divided the individuals with AMDD into two
subgroups: drug-naive (n =81) and drug-used groups (n = 98), to
explore the medication effects on MSN. We found that irrespective
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of medication status, similar patterns to the case-control t-map were
observed. (Fig. S4, Supporting Information 1), detailed medication
records (n = 45) of specific medications and dosages were shown in
Table S3.

Spatial correlation with healthy controls. The spatial correlation
between MSN strength in HC and case-control differences in AMDD
subtypes revealed distinct neurodevelopmental patterns. For
AMDD1, the MSN strength of HC exhibited a positive spatial
correlation with case-control t-values across cortical regions
(r(308) = 0.88, p-spin < 0.0001; p-spin indicates significance assessed
using spin permutation testing that accounts for spatial auto
correlation in brain maps), indicating that regions with higher
baseline connectivity in HC showed amplified reductions in AMDD1.
Specifically, 24% of regions with positive MSN strength in HC
demonstrated hyperdifferentiation in AMDD1, while 12% of regions
with negative MSN strength in HC displayed decoupling. AMDD2
exhibited a negative spatial correlation between HC MSN strength
and case-control t-values (r(308) = —0.676, p-spin < 0.0001), where
regions with lower baseline connectivity in HC showed marked
hyperconnectivity in AMDD2. 15% of regions with negative MSN
strength in HC demonstrated hyperscoping, while 48% of regions
with positive MSN strength in HC exhibited decoupling (Fig. 2d).

Functional network abnormalities. In Yeo 7 functional networks,
AMDD1 exhibited reduced MSN strength in the somatomotor
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Table 2. Environmental factors between AMDD1 and AMDD?2.

Variables Total (n=179) AMDD1 (n=86) AMDD2 (n=93) Statistic P

ASLEC(Mean + SD)
ASLEC Total scores 79.09 £ 18.45 83.35+18.33 7515+£17.77 t=3.04 0.003
Interpersonal Relationships 17.85+4.37 17.83+3.94 17.88+4.75 t=-0.09 0.932
Academic Stress 17.59 £ 8.59 19.35+8.66 15.96 +£8.23 t=2.69 0.008
Punishment 15.63+4.78 16.92 +5.01 14.43+4.24 t=3.57 <0.001
Loss 8.93+449 8.87 +4.65 8.98 +4.37 t=-0.16 0.875
Health Adaptation 14.96 + 5.30 14.91+5.62 15.01 £ 5.01 t=-0.13 0.896
Other Events 8.74+3.36 8.91+3.31 8.58+3.41 t=0.65 0.517

EMBU(Mean * SD)

Paternal Emotional Warmth 17.55+5.56 16.73£6.12 18.31 £4.90 t=-1.91 0.057
Paternal Punishment 21.11£5.97 20.16 £ 6.79 21.98 £4.98 t=-2.05 0.042
Paternal Interference 20.87 £ 6.87 21.21£7.91 20.56 £5.78 t=0.62 0.534
Paternal Favoritism, 19.00 + 6.87 19.36 +7.75 18.67 +5.95 t=0.67 0.501
Paternal Rejection 17.30+6.59 18.07 £ 7.08 16.58 + 6.05 t=1.52 0.131
Paternal Overprotection 20.50 + 6.83 20.19+7.57 20.80 + 6.09 t=-0.60 0.552
Maternal Emotional Warmth 21.58+5.59 21.67 £6.39 21.49+4.77 t=0.21 0.831
Maternal Punishment 23.02+5.73 22.71£6.95 23.31+£433 t=-0.69 0.492
Maternal Interference 22.76 £6.37 23.05+6.76 22.49 +6.00 t=0.58 0.564
Maternal Favoritism 21.03£6.17 22.14£6.50 20.01 £5.70 t=233 0.021
Maternal Rejection 19.61+£7.13 20.42 +7.40 18.87 + 6.82 t=1.46 0.147
Maternal Overprotection 2398 +6.91 23.67 £8.02 24.27 +5.72 t=-0.57 0.572

t t-test, x° chi-square test, SD standard deviation.

network and visual network compared to HC, whereas AMDD?2
showed increased MSN strength in the visual network.

For the von Economo atlas, AMDD1 showed reduced MSN
strength in both the primary motor network and primary sensory
network. Conversely, AMDD2 displayed significantly increased
MSN strength in the primary motor. (Fig. S5, Supporting
Information 1).

Developmental trajectories. For the developmental trajectories
of AMDD subtypes from childhood to adolescence. The
somatomotor network of AMDD1 showed a rapid increase
followed by a sustained decline (r = —0.24, p = 0.027). AMDD2's
ventral attention networks declined consistently during child-
hood and stabilized during adolescence. (Fig. S6, Supporting
Information 1).

Transcriptomic correlates of MSN alterations

PLS regression analysis revealed significant spatial covariation
between regional gene expression profiles and MSN alterations
across AMDD subtypes. In AMDD1, PLS1 explained 46.93% of the
variance in case-control MSN t-values (p-perm < 0.0001), while in
AMDD2, PLS1 accounted for 30.22% of the variance
(p-perm < 0.0001), underscoring distinct transcriptomic contribu-
tions to neuroanatomical changes. (Fig. S8, Supporting Informa-
tion 1). The spatial distribution of PLS1-weighted gene expression
maps demonstrated robust correlations with MSN strength
patterns: AMDD1 exhibited a strong positive association
(r=0.66, p-spin <0.0001), whereas AMDD2 showed a moderate
yet significant correlation (r=0.48, p-spin <0.0001), reflecting
subtype specific gene-brain structure interaction.

Among 24 MDD associated genes, 13 overlapped with our PLS1
gene sets. In AMDDI1, five genes showed significant spatial
correlations with MSN t-values (|r|>0.35, pFDR<0.05): TACI
(r=0.58, p-spin<0.0001), CNR1 (r=0.51, p-spin <0.0001), SST
(r=0.39, p-spin <0.0001), CUX2 (r= —0.54, p-spin <0.0001). For
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AMDD?2, only GAD2 (r=0.38, pFDR = 0.002) exhibited significant
associations, highlighting divergent molecular mechanisms.
(Fig. 3c—d, Table S4 Supporting Information 2).

Subtype-specific molecular pathways

Using univariate Z-tests, we identified 2072 PLS1+ genes and 1071
PLS1— genes for AMDD1, alongside 1807 PLS1+ genes and 6
PLS1— genes for AMDD2 (all pFDR<0.0001, Table S2, 3
Supporting Information 2). These gene sets encapsulated tran-
scriptional signatures strongly linked to MSN alterations.

To delineate the biological significance of PLS1+ gene sets, functional
enrichment analysis was performed. In AMDD1, PLS1+ genes were
enriched in neurotransmitter regulation (e.g., alcohol metabolic process)
and synaptic protein homeostasis (ubiquitin-mediated proteolysis)
(Fig. 4a, b). These pathways implicate astrocytic detoxification deficits
and disrupted synaptic pruning—mechanisms converging on impul-
sive phenotypes (Fig. 4a, b). For AMDD2, PLS1+ genes dominated
chromatin remodeling (histone deacetylation) and stress-responsive
signaling (MAPK pathway) (Fig. 4c, d). PLS1— genes uniquely associated
with efferocytosis, suggesting microglial phagocytic dysfunction may
sustain neuroinflammation, amplifying rumination in this subtype
(Fig. 4c, d).

Functional and cellular specificity of MSN-associated genes

Cell-type mapping of AMDD subtypes. Cell-type mapping revealed
subtype-specific molecular mechanisms underlying MSN altera-
tions (Fig. 5a, Table S6, 7 Supporting Information 2). In AMDD1,
PLS1+ genes showed pronounced enrichment in astrocytes (230
genes, p-perm =0.0069) and excitatory neurons (177 genes,
p-perm = 0.0157), with pathways implicating synaptic plasticity
(e.g., glutamatergic transmission, pFDR <0.001) and metabolic
detoxification. These findings align with AMDD1’s frontoparietal
hypoconnectivity, suggesting that astrocytic dysregulation dis-
rupts synaptic pruning—a process critical for adolescent cognitive
maturation (Fig. 5b). Conversely, PLS1— genes in AMDD1 were
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Fig.2 AMDD subtypes’ regional changes in MSN strength. a. The MSN strength of AMDD subtypes and HC. b, c. Case-control comparison
of MSN strength for AMDD1 and AMDD2. d. Scatterplot of the control MSN strength and case-control t-map.

enriched in excitatory (148 genes, pperm = 0.0034) and inhibitory
neurons (114 genes, pperm = 0.0035) (Fig. 5d).

In contrast, AMDD2’s PLS1+ genes were uniquely enriched in
inhibitory neurons (131 genes, p-perm = 0.0069), with functional
terms highlighting GABAergic synapse dysfunction (GO:0098982,
pFDR =0.002) and neuroinflammatory responses (KEGG:04668,
pFDR = 0.004) This inhibitory neuron signature correlates with the
limbic hyperconnectivity observed in AMDD2, potentially amplify-
ing emotional salience through disrupted interneuron-mediated
feedforward inhibition (Fig. 5f).

Functional enrichment analysis of cell-type-specific genes. Functional
analysis of cell-type-specific genes revealed distinct molecular
pathways underlying MSN alterations in each subtype (Table S8,
Supporting Information 2). For AMDD1, PLS1+ genes overlapped
with astrocytes and excitatory neurons were enriched in synaptic
plasticity pathways such as glutamatergic synaptic transmission and
PPAR signaling, suggesting a coordinated role of glia-neuron
interactions in maintaining network resilience. In contrast, PLS1—
genes in AMDD1, predominantly localized to inhibitory neurons,
were linked to calcium ion transport and ubiquitin-mediated
proteolysis, pointing to dysregulated calcium signaling and impaired
protein homeostasis as drivers of cognitive-impulsive dissonance.
For AMDD2, PLS1+ genes overlapped with inhibitory neurons
showed enrichment in glutamatergic synapse and long-term
potentiation pathways, reflecting maladaptive synaptic strengthen-
ing in limbic circuits that may amplify emotional hypersynchrony. The
absence of significant functional enrichment in AMDD2 PLS1— genes
(Fig. 5¢, e, 9).

SPRINGER NATURE

Developmental trajectory analysis for subtype-specific gene expres-
sion. Developmental trajectory analysis uncovered critical spa-
tiotemporal windows for subtype-specific gene expression. In
AMDD1, PLS1+ genes exhibited pronounced enrichment in the
amygdala during adolescence and the cortex during late fetal
stages. These genes also peaked in the cerebellum during middle-
late childhood, suggesting delayed motor coordination develop-
ment. Conversely, PLS1— genes in AMDD1 were dynamically
active in the cerebellum across childhood and young adulthood.
For AMDD2, PLS1+ genes showed robust expression in the
hippocampus during late mid fetal stages and the striatum during
adolescence. Notably, both subtypes shared transient enrichment
in the late fetal amygdala, indicating early-life origins of emotional
dysregulation that diverge in later developmental trajectories
(Fig. 6).

DISCUSSION

Our study delineated two neurobiologically distinct subtypes of
adolescent major depressive disorder characterized by divergent
structural network alterations, molecular signatures, and clinical
trajectories. AMDD1 exhibited reduced MSN strength in fronto-
parietal networks crucial for cognitive control, accompanied by
heightened impulsivity and negative automatic thoughts despite
preserved general cognitive function. In contrast, AMDD2
demonstrated elevated MSN strength in limbic-visual circuits
involved in emotion processing, alongside more severe depressive
and anxiety symptoms with maladaptive coping strategies
centered on rumination and self-blame. These findings challenge
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traditional symptom-based classifications of depression, instead
proposing a neurodevelopmental framework where spatially
patterned gene expression interacts with maturational processes
to shape disease heterogeneity.

AMDD1 exhibited a pattern of reduced MSN strength in
frontoparietal regions critical for cognitive control and executive
function. This pattern likely reflected disrupted neurodevelopmental
processes rather than conventional connectivity deficits. For instance,
diminished MSN strength in the supra-frontal region may reflect
aberrant synaptic pruning during a critical developmental window.
When adolescents with this frontoparietal pattern face emotional
challenges, their diminished top-down regulatory capacity may
manifest as difficulty suppressing maladaptive behavioral responses,
despite intact cognitive understanding of consequences. The
somatomotor developmental trajectory in AMDD1 showed an
atypical pattern—rapid early increase followed by sustained decline
—contrasting with normative adolescent development where motor
networks typically stabilize post-puberty [47].

Conversely, AMDD?2 presented a different neurobiological profile.
These patients exhibited increased morphometric similarity
between limbic and visual processing regions, alongside clinical
symptoms dominated by rumination and emotional reactivity. This
pattern suggested aberrant developmental synchronization
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between regions processing emotional and sensory information—
a finding consistent with the subjective experience of being unable
to disengage from negative emotional content that characterizes
rumination [48]. Visual imagery became tightly coupled with
emotional content, creating a self-reinforcing circuit of negative
thought patterns. Toenders et al. directly observed this phenom-
enon, finding that rumination in adolescent depression correlates
with heightened amygdala-visual cortex connectivity during emo-
tional face processing [49]. Meanwhile, the differences in HAMD-17
scores between subtypes appeared modest, their clinical signifi-
cance became apparent when considering the distinct symptom
clusters. These divergent symptom patterns reflected different
pathophysiological mechanisms, as evidenced by their correlation
with distinct MSN alterations and gene expression profiles.

The subtype-specific patterns of environmental stress respon-
sivity further illuminate these neurobiological differences.
AMDD1’s heightened sensitivity to academic pressure and
paternal punishment suggests that frontoparietal network disrup-
tions impair stress buffering without directly intensifying emo-
tional experience. This aligns with Mulders et al.'s meta-analysis
showing that cognitive control network dysfunction in depression
primarily affects emotional regulation rather than generation [50].
AMDD?2’s paradoxical pattern—higher symptom severity despite
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Fig. 6 Developmental trajectory analysis for cell-type-specific genes. The dot plots represent the results of the enrichment analysis for
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lower reported stressors—revealed how limbic connectivity
amplifies emotional responses to even moderate environmental
challenges, driving maladaptive rumination and self-blame.

Our molecular analyses identified potential genetic correlates of
the observed morphometric alterations. PLS analysis revealed
TACT as a gene with strong positive weighting in AMDD1. TACT
encodes substance P and related neuropeptides, and correlates
strongly with frontoparietal hypoconnectivity [51]. Mechanistically,
substance P modulates prefrontal glutamatergic signaling and
synaptic plasticity, with elevated levels disrupting the excitatory-
inhibitory balance needed for cognitive control [52]. TACT
overexpression in animal models produces impulsivity and reward
dysregulation by impairing prefrontal inhibition of striatal path-
ways—oprecisely the clinical profile observed in AMDD1 [53, 54].
Similarly, CNRT encoding cannabinoid receptor 1, regulates
presynaptic neurotransmitter release during synaptic pruning.
Disrupted endocannabinoid signaling during adolescence impairs
the selective elimination of redundant synapses in frontoparietal
circuits [55], leading to inefficient network connectivity despite
intact cognitive processing—explaining AMDD1’s preserved
cognition alongside elevated impulsivity [56]. In addition, CUX2
is a transcription factor critical for neuronal maturation and
synaptic pruning, showed a strong negative correlation with MSN
strength in AMDD1. Reduced CUX2 expression may impair
synaptic refinement in frontoparietal region [57, 58]. This finding
suggests that CUX2 dysregulation, potentially exacerbated by
environmental stressors, may further disrupt the developmental
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trajectory of cognitive control networks in AMDD1. Although our
current analyses controlled for sex to minimize confounding,
preliminary evidence suggested that sex hormones differences
may associate to divergent neurodevelopmental trajectories and
stress responses between males and females.

AMDD?2’s association with GAD2—the gene encoding glutamic
acid decarboxylase—pointed to fundamentally different patho-
physiology centered on GABAergic inhibitory dysfunction [59].
GAD2 catalyzes GABA synthesis primarily in limbic interneurons
that normally dampen emotional reactivity [60]. Fee et al. directly
observed reduced GABA levels in the anterior cingulate cortex of
depressed adolescents correlating with rumination severity [61].
This mechanism differs markedly from adult depression models
dominated by microglial inflammation and monoamine deficiency
[62], highlighting adolescence-specific vulnerabilities in inhibitory
circuit maturation [63]. Moreover, sex differences may regulate
emotional processing and GABAergic inhibitory functions, conse-
quently affecting the operation of negative affect systems in
AMDD2. Longitudinal studies showed accelerated cortical thinning
precedes adolescent depression onset [64], while animal models
demonstrate stress-induced transcriptional changes correlate with
connectivity alterations [65], providing plausible mechanisms for
the morphometric alterations we observed.

The spatial covariation of PLS1-weighted gene expression with
MSN alterations revealed distinct molecular pathways driving
subtype-specific pathology. In AMDD1, PLS1+ genes showed
significant enrichment in cellular metabolism, neurotransmission,
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and alcohol metabolic processes, suggesting alterations in
detoxification functions crucial for synaptic environment main-
tenance during neurodevelopment [66]. Disruption of these
processes could impair the precisely timed mechanism of synaptic
pruning in frontoparietal regions, potentially contributing to the
reduced MSN strength we observed in AMDD1.Most compelling
was the enrichment of retrograde endocannabinoid signaling
among AMDD1’s PLS1+ genes. This system played a pivotal role in
regulating synaptic pruning during adolescence, with CB1
receptors abundantly expressed in frontoparietal regions under-
going active remodeling [67]. Disruption of this pathway could
impair the adaptive neural circuits while compromising redundant
connection elimination, potentially explaining the reduced
morphometric similarity in cognitive control networks and linking
AMDD1's gene expression profile to its clinical impulsivity
manifestation.

The pathway enrichment findings in AMDD2 reveal a molecular
landscape dominated by stress-responsive signaling and epige-
netic regulation. The significant enrichment of MAPK signaling
among PLS1+ genes is particularly noteworthy. This pathway
serves as a critical transducer of stress signals, activating down-
stream transcriptional machinery that can fundamentally reshape
neural circuit function [68]. In the context of adolescent brain
development, MAPK hyperactivation could alter the trajectory of
limbic circuit maturation through persistent modifications to the
epigenetic landscape, as suggested by the concurrent enrichment
in histone deacetylation pathways. The unique enrichment of
efferocytosis pathways in AMDD2's PLS1— genes adds another
dimension to its biological signature. Efferocytosis—the process
by which microglia clear apoptotic cells—plays a crucial role in
maintaining neural homeostasis. Impairments in this cleaning
function could lead to accumulated cellular debris and sustained
inflammatory signaling in emotion-processing circuits [69]. This
finding aligns with evidence implicating neuroinflammation in
depressive disorders, particularly those characterized by persistent
rumination.

The cellular specificity analysis further clarified these mechan-
isms by identifying the cell populations driving subtype pathol-
ogy. AMDD1’s PLS1+ genes showed significant enrichment in
astrocyte markers, positioning glia as central players in frontopar-
ietal network disruption. During adolescence, astrocytes orches-
trate synaptic pruning through phagocytosis of weak synapses
and regulation of extracellular glutamate [70]. Dysfunction in
these astrocyte-mediated processes could impair the precise
elimination of redundant connections needed for mature
cognitive control networks. In contrast, AMDD2's selective
enrichment in inhibitory neuron signatures reinforced GABAergic
dysfunction as the primary driver of limbic hyperreactivity. During
adolescence, GABAergic interneurons undergo substantial matura-
tion, with disruption of this process leading to improper emotion
regulation [71]. McKlveen et al. demonstrated that stress-induced
alterations in prefrontal inhibitory interneurons lead to emotional
dysregulation in rodent models—a process potentially accelerated
in AMDD2 by developmental vulnerability [72].

The developmental trajectory analysis reveals critical temporal
windows that illuminate both etiology and intervention timing.
AMDD1-associated genes peak in the amygdala during adoles-
cence, aligning with the critical role of this region in pubertal
stress reactivity [73, 74]. The amygdala’s reciprocal connections
with prefrontal regions—undergoing active pruning during this
period. This mechanism contrasted with adult models where
chronic inflammation, not developmental pruning errors, dom-
inates pathology [40]. AMDD2-associated genes, conversely,
showed strongest expression in the hippocampus during late
mid-fetal development and striatum during adolescence, indi-
cating early developmental vulnerabilities that emerge clinically
during adolescent stress exposure. This temporal pattern
suggested fundamentally different developmental origins:
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AMDD?1 represented contemporaneous disruption of adolescent
brain maturation, while AMDD?2 involved early-life priming that
manifests during adolescent stress exposure. The subtypes’
divergent trajectories—AMDD1’s delayed cerebellar maturation
versus AMDD2's fetal hippocampal-striatal priming—aligned
with preclinical models where prenatal stress accelerates
limbic development at the expense of regulatory circuits [75],
creating vulnerability that emerges during adolescent stress
exposure [76].

Given these subtype-specific mechanisms, a pressing challenge
emerged: How can we leverage developmental timing to optimize
interventions? For AMDD!1, targeting pubertal synaptic plasticity
through cognitive or pharmacological means may recalibrate
frontoparietal networks. Cognitive remediation therapies designed
to strengthen prefrontal-striatal connectivity have shown promise
in improving impulse control in similar neuropsychological
profiles. Motter et al. demonstrated that targeted cognitive
exercises improved executive function and reduced depressive
symptoms in patients with prefrontal hypoconnectivity [77].
Pharmacologically, the TACT pathway offers a novel target:
neurokinin-1 receptor (NK1R) antagonists, which block substance
P signaling, could potentially normalize prefrontal inhibitory
control networks. Animal studies show that NK1R antagonists
reduce impulsivity and improve prefrontal function during stress
—directly addressing AMDD1’s core pathophysiology [78]. While
NK1R antagonists such as aprepitant had established safety
profiles in adolescents for chemotherapy-induced nausea [79],
limited evidence exists for psychiatric indications. Developmental
considerations, including potential impacts on neural plasticity
and brain maturation, required careful evaluation before these
agents could be considered for adolescent mood disorders.

For AMDD2, our findings pointed toward dual therapeutic
targeting of GABAergic and inflammatory mechanisms. GABAergic
modulators might address the core inhibitory deficit, while anti-
inflammatory agents—particularly JNK inhibitors targeting the
MAPK pathway—could attenuate the stress-responsive signaling
cascade that appears to drive this subtype’s pathology [80].
However, JNK inhibitors remain largely investigational with
minimal adolescent safety data, necessitating rigorous preclinical
studies in developmental models before clinical translation. Novel
GABA-enhancing compounds that specifically upregulate GAD2
activity, rather than acting directly on GABA receptors, could offer
mechanistic precision with fewer side effects in adolescents
[81, 82]. Furthermore, with its emotion regulation difficulties,
AMDD2 might benefit more from interventions addressing
rumination and emotional reactivity, such as mindfulness-based
approaches or interpersonal therapy [83, 84].

The temporal origins of these subtypes demand
developmentally-timed prevention strategies. For AMDD2, fetal
hippocampal gene enrichment suggests that interventions during
childhood—before adolescent symptom emergence—could buf-
fer limbic circuit development in high-risk populations, such as
offspring of mothers with prenatal depression [85]. Early life stress-
reduction programs have demonstrated lasting effects on
amygdala reactivity and emotion regulation [86, 87], potentially
preventing the emergence of AMDD2-like phenotypes. For
AMDD!1, preventive interventions during early adolescence focus-
ing on executive function development could potentially normal-
ize frontoparietal maturation before impulsivity becomes
entrenched [88]. Recent clinical trials confirm that cognitive
training during early adolescence significantly reduces subse-
quent depression risk in vulnerable youth [89], supporting this
developmental approach.

Our findings extended existing theoretical frameworks in key
ways. The Cognitive Control Deficit Model identified frontoparietal
dysfunction in adolescent depression [90], but our
AMDD?1 subtype implicated TAC1/CNR1 pathways may as specific
molecular drivers. Similarly, while the Affective Processing Bias
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Model emphasized emotional reactivity [91], our AMDD2 findings
challenged its glutamatergic focus by demonstrating primary
GABAergic dysfunction in adolescents. Within the RDoC frame-
work [92], these subtypes demonstrated how similar clinical
presentations arose from different domain disruptions—AMDD1
primarily affecting Cognitive Systems and AMDD2 predominantly
disrupting Negative Valence Systems—explaining why symptom-
based approaches often failed to yield consistent neurobiological
correlates. Furthermore, translating these neurobiological patterns
to individual prediction represents an important bridge toward
clinical application. This translation requires developing validated
classification algorithms for reliable subtype assignment, simplify-
ing assessment through targeted biomarkers like peripheral blood
biomarkers, and conducting prospective studies confirming that
subtype classification meaningfully predicts treatment outcomes.

LIMITATIONS AND FUTURE DIRECTIONS

There are still some limitations in our study. (1) The cross-sectional
design limited causal inferences regarding subtype trajectories
and treatment responses. Validating potential subtype-specific
interventions would require longitudinal studies tracking subtype
stability, target engagement studies confirming pathway modula-
tion, and stratified clinical trials evaluating differential treatment
responses. (2) AHBA represented only six adult neurotypical
donors and could not distinguish finer neuron subtypes. As age-
appropriate transcriptomic and single-cell technologies evolve,
future studies may better elucidate precise neuronal circuits
affected in adolescent depression. (3) While we controlled for sex
as a covariate, sex-stratified analyses were not performed. Given
known sex differences in depression pathophysiology and
treatment response, future research should explicitly examine
neurodevelopmental trajectories and molecular pathways by sex
to inform targeted interventions. (4) Our study lacked peripheral
biomarker data that could enhance clinical translation. Future
research should integrate blood markers with neuroimaging to
identify accessible signatures. (5) Finally, although depression
mechanisms show conservation across populations, environmen-
tal and sociocultural factors may influence subtype expression,
necessitating international replications to validate these subtypes
across diverse populations.

CONCLUSION

In conclusion, our study advanced adolescent depression hetero-
geneity by identifying two neurobiologically distinct subtypes
with differential morphometric network patterns, clinical presen-
tations, and molecular signatures. By integrating structural
neuroimaging with spatial transcriptomics, we provided novel
insights into the molecular architecture underlying these network
disruptions, highlighting subtype-specific cellular processes and
developmental windows that may inform targeted therapeutic
approaches. As we continue to unravel the complex interplay
between genes, brain, and behavior during adolescent develop-
ment, such integrated approaches may ultimately transform our
ability to diagnose, treat, and prevent the devastating impact of
depression during this critical developmental period.
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