Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pathogenic microbiota disrupts the intact structure of cerebral organoids by altering energy metabolism

Abstract

This study investigated the impact of different bacterial populations on the biomolecular structures of cerebral organoids (COs) at various levels. COs were co-cultured with non-pathogenic (NM) and pathogenic (PM) bacterial populations. PM reduced the number of TUJ1+ neurons and disrupted the intact structure of COs. In addition, PM was found to induce changes in the transcript profile of COs, including a decrease in the activity of the glycolysis pathway and an increase in the pentose phosphate pathway, leading to deterioration in cellular energy metabolism, which is linked to neurodegenerative diseases. Proteomic analysis revealed a unique cluster of proteins in COs. PM exposure upregulated proteins related to neurological diseases, consistent with RNA-seq data. Communication between bacteria and neural cells was demonstrated using 18O-stable isotope labeling (SIL)-based metabolic flux analysis. COs showed higher 18O-enrichment of TCA cycle intermediates when co-cultured with NM and PM, indicating increased oxidative phosphorylation activity upon exposure to bacteria. This study provides a useful platform to monitor metabolic signals and communication between microbiotas and human brain cells. The findings suggest that pathogenic bacteria release metabolites that alter biomolecular structures in brain organoids, potentially contributing to neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microscopical and functional assessments of COs before and after co-culture.
Fig. 2: Post-microbial interaction transcript profiles in COs.
Fig. 3: Post-microbial interaction protein profiles in COs (biological replicate=3).
Fig. 4: Metabolomic alterations in COs co-cultured with NM or PM (biological replicate=3).
Fig. 5: Altering metabolic flux rates in COs in response to NM and PM.
Fig. 6: Testing the hypothesis and rescuing PM-mediated neural degeneration with external G6P.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request, see author contributions for specific data sets.

References

  1. Heijtz RD, Wang D, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed Central  Google Scholar 

  2. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65:263–7. https://doi.org/10.1016/j.biopsych.2008.06.026

    Article  PubMed  Google Scholar 

  3. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Curr Mol Med. 2008;8:274–81. https://doi.org/10.1136/gut.2009.202515

  4. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505:559–63. https://doi.org/10.1038/nature12820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mazzoli R, Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol. 2016;7:1934 https://doi.org/10.3389/fmicb.2016.01934

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–75. https://doi.org/10.1016/j.cell.2016.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang Y, Zhang HX, Lu YY, Yang C, Fan YX, Dong YL, et al. Estrogen induces endothelial cell senescence via downregulation of Sirt6. Neuroscience. 2017;371:207–20. https://doi.org/10.1016/j.neuroscience.2017.12.010

    Article  PubMed  CAS  Google Scholar 

  8. Stachowicz A, Olszanecki R, Suski M, Grabowski K, Basta-Kaim A, Korbut R. Depressive-like behavior, its sensitivity to agomelatine and changes in brain redox balance induced by olanzapine co-treatment with fluoxetine in rats subjected to chronic mild stress. Brain Behav Immun. 2016;51:144–53. https://doi.org/10.1016/j.bbi.2015.08.022

    Article  PubMed  CAS  Google Scholar 

  9. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Neuroscience. 2015;298:221–92. https://doi.org/10.1016/j.neuroscience.2015.04.051

    Article  CAS  Google Scholar 

  10. Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2016;65:202–13. https://doi.org/10.1136/gutjnl-2014-308500

    Article  PubMed  CAS  Google Scholar 

  11. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, et al. Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun. 2015;83:2926–34. https://doi.org/10.1128/IAI.00037-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Karve S, Pradhan S, Ward DV, Weiss AA. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS ONE. 2017;12:e0178966. https://doi.org/10.1371/journal.pone.0178966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Finkbeiner S, Zeng X-L, Utama B, Atmar RL, Shroyer NF, Estes MK. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio. 2012;3:e00159-12. https://doi.org/10.1128/mBio.00159-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M, Young VB, et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 2015;83:138–45. https://doi.org/10.1128/IAI.02561-14

    Article  PubMed  CAS  Google Scholar 

  15. Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol. 2018;3:814–23. https://doi.org/10.1038/s41564-018-0177-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li Z, Lai J, Zhang P, Ding J, Jiang J, Liu C, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry. 2022;27:4123–35. https://doi.org/10.1038/s41380-022-01569-9

    Article  PubMed  CAS  Google Scholar 

  17. Liang X, Fu Y, Cao W-T, Wang Z, Zhang K, Jiang Z, et al. Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis. Transl Neurodegener. 2022;11:49. https://doi.org/10.1186/s40035-022-00323-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lai Y, Liu C-W, Yang Y, Hsiao Y-C, Ru H, Lu K. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nat Commun. 2021;12:6000. https://doi.org/10.1038/s41467-021-26209-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xie J, Zhong Q, Wu W-T, Chen JJ. Multi-omics data reveals the important role of glycerophospholipid metabolism in the crosstalk between gut and brain in depression. J Transl Med. 2023;21:93. https://doi.org/10.1186/s12967-023-03942-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhao H, Zhou X, Song Y, Zhao W, Sun Z, Zhu J, et al. Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer’s disease continuum. Alzheimers Res Ther. 2025;17:36 https://doi.org/10.1186/s13195-025-01683-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu Y, Wang H, Gui S, Zheng B, Pu J, Zheng P, et al. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry. 2021;11:568. https://doi.org/10.1038/s41398-021-01689-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Stingl C, Söderquist M, Karlsson O, Boren M, Luider TM. Uncovering effects of ex vivo protease activity during proteomics and peptidomics sample extraction in rat brain tissue by oxygen-18 labeling. J Proteome Res. 2014;13:2807–17. https://doi.org/10.1021/pr401232e

    Article  PubMed  CAS  Google Scholar 

  23. Nemutlu E, Zhang S, Gupta A, juranic NO, Macura SI, Terzic A, et al. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry. Physiol Genomics. 2012;44:386–402. https://doi.org/10.1152/physiolgenomics.00152.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40. https://doi.org/10.1038/nprot.2014.158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Isik M, Eylem CC, Haciefendioglu T, Yildirim E, Sari B, Nemutlu E, et al. Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction. Biomater Sci. 2021;9:8270–84. https://doi.org/10.1039/D1BM01350E

    Article  PubMed  CAS  Google Scholar 

  26. Eylem CC, Yilmaz M, Derkus B, Nemutlu E, Camci C, Yilmaz E, et al. Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of colorectal cancer in both clinical samples and cell culture. Cancer Lett. 2020;469:186–94. https://doi.org/10.1016/j.canlet.2019.10.038

    Article  PubMed  CAS  Google Scholar 

  27. Eylem CC, Baysal I, Erikci A, Yabanoglu-Ciftci S, Zhang S, Kir S, et al. Gas chromatography-mass spectrometry based 18O stable isotope labeling of Krebs cycle intermediates. Anal Chim Acta. 2021;1154:338325. https://doi.org/10.1016/j.aca.2021.338325

    Article  PubMed  CAS  Google Scholar 

  28. Aksu-Menges E, Eylem CC, Nemutlu E, Gizer M, Korkusuz P, Topaloglu H, et al. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of megaconial congenital muscular dystrophy. Sci Rep. 2021;11:18161. https://doi.org/10.1038/s41598-021-97294-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. https://doi.org/10.1038/nature12517

    Article  PubMed  CAS  Google Scholar 

  30. Tamaki Y, Ross JP, Alipour P, Castonguay CÉ, Li B, Catoire H, et al. Spinal cord extracts of amyotrophic lateral sclerosis spread TDP-43 pathology in cerebral organoids. PLoS Genet. 2023;19:e1010606. https://doi.org/10.1371/journal.pgen.1010606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sarubbo F, Cavallucci V, Pani G. The influence of gut microbiota on neurogenesis: evidence and hopes. Cells. 2022;11:382. https://doi.org/10.3390/cells11030382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Conover JC, Shook BA. Aging of the subventricular zone neural stem cell niche. Aging Dis. 2011;2:49–63. https://doi.org/10.1016/j.neuroscience.2010.11.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Saglam-Metiner P, Devamoglu U, Filiz Y, Akbari S, Beceren S, Goker B, et al. Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol. 2023;6:173. https://doi.org/10.1038/s42003-023-04547-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kumar V, Kim S-H, Bishayee K. Dysfunctional glucose metabolism in Alzheimer’s disease onset and potential pharmacological interventions. Int J Mol Sci. 2023;23:9540.

    Article  Google Scholar 

  35. Ghosh A, Cheung YY, Mansfield BC, Chou JY. Brain contains a functional glucose-6-phosphatase complex capable of endogenous glucose production. J Biol Chem. 2005;280:11114–9. https://doi.org/10.1074/jbc.M410894200

    Article  PubMed  CAS  Google Scholar 

  36. Tu D, Gao Y, Yang R, Hong J-S, Gao H-M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J Neuroinflammation. 2019;16:255. https://doi.org/10.1186/s12974-019-1659-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chua XY, Chong JR, Cheng AL. Elevation of inactive cleaved annexin A1 in the neocortex is associated with amyloid, inflammatory and apoptotic markers in neurodegenerative dementias. Neurochem Int. 2021;152:105251. https://doi.org/10.1016/j.neuint.2021.105251

    Article  PubMed  CAS  Google Scholar 

  38. Muraoka S, DeLeo AM, Sethi M, Yukawa-Takamatsu K, Yang Z, Ko J, et al. Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimer’s Dementia. 2020;16:896–907. https://doi.org/10.1002/alz.12089

    Article  PubMed  Google Scholar 

  39. Muraoka S, Jedrychowski MP, Iwahara N. Enrichment of neurodegenerative microglia signature in brain-derived extracellular vesicles isolated from Alzheimer’s disease mouse models. J Proteome Res. 2021;20:1733–43. https://doi.org/10.1021/acs.jproteome.0c00934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Han D, Dong X, Zheng D, Nao J. MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front Pharmacol. 2019;10:1555. https://doi.org/10.3389/fphar.2019.01555

    Article  PubMed  CAS  Google Scholar 

  41. Mendez-Lopez I, Bianco-Luquin I, de Gordoa JS-R, Urdanoz-Casado A, Roldan M, Acha B, et al. Hippocampal LMNA gene expression is increased in late-stage Alzheimer’s disease. Int J Mol Sci. 2019;20:878. https://doi.org/10.3390/ijms20040878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim JH, Franck J, Kang T, Heinsen H, Ravid R, Ferrer I, et al. Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci Rep. 2015;5:11138. https://doi.org/10.1038/srep11138

    Article  Google Scholar 

  43. Zhu Y, Li Y, Zhang Q, Song Y, Wang L, Zhu Z. Interactions between intestinal microbiota and neural mitochondria: a new perspective on communicating pathway from gut to brain. Front Microbiol. 2022;13:798917. https://doi.org/10.3389/fmicb.2022.798917

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S, Shirihai O, et al. Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab. 2015;22:936–47. https://doi.org/10.1016/j.cmet.2015.08.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cheng F, Yuan Q, Yang J, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS ONE. 2014;9:e106680. https://doi.org/10.1371/journal.pone.0106680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Peng Q, Chen W, Yan E, Deng Y, Xu Z, Wang S, et al. The relationship between neuron-specific enolase and clinical outcomes in patients undergoing mechanical thrombectomy. Neuropsychiatric Dis Treat. 2023;19:709–19. https://doi.org/10.2147/NDT.S400925

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially funded by the Scientific and Technological Research Council of Turkey (TUBITAK, grant number: 219S661) and Ankara University - Scientific Research Projects Coordination Unit (grant number: TSA-2024-3217). B.D. also thanks the Turkish Academy of Science (TUBA) and the Science Academy (Istanbul) for their support. The authors thank the NEUROM Cell Culture Unit for their kind help in MEA study.

Author information

Authors and Affiliations

Authors

Contributions

BD developed the concept, received the grant, and supervised this study. BD, MI, and EN designed the experiments. MI, CCE, KE-G performed the experiments. BD, EN, PA-C, and EBM cured and analyzed the data. YY provided cell lines and commented on the manuscript. BD wrote the manuscript. AC, EE, and ARM edited and commented on the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Burak Derkus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Eylem, C.C., Erdogan-Gover, K. et al. Pathogenic microbiota disrupts the intact structure of cerebral organoids by altering energy metabolism. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03152-4

Search

Quick links