Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multilevel white matter degeneration associated cognitive dysfunction in mild cognitive impairment

Abstract

Mild cognitive impairment (MCI), the prodromal stage of dementia, is characterized by cognitive dysfunction and white matter (WM) disruption. To investigate the WM microstructure degeneration at different scales in MCI, the orientation-sensitive fixel-based analysis was performed with fixelwise, fiberwise fiber-specific measures in 50 patients with MCI compared to 75 healthy controls. Moreover, to clarify the patterns of the organization operating at different scales in MCI, the potential mediated effects of structural connectome in networkwise on the associations between microstructure alterations of 24 anatomical tracts and cognitive dysfunction were analyzed. Compared to healthy controls, specific tracts were widely disrupted in fiberwise in patients with MCI, represented by the decrease of fiber density and cross-section in most commissural fibers and many association fibers, which was consistent with previous findings. The associations between WM microstructural degeneration and multi-domain cognitive dysfunction were also observed. Interestingly, the structural connectome between visual and salience networks played a potential mediating role in the relationship between disruption of WM microstructure and worse language performance, and we also found a similar situation in the memory domain. The present study provides mechanistic insight into the relationship between microstructure damage and cognitive dysfunction in prodromal dementia under a multilevel WM hierarchy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration for multilevel fixel-based analysis.
Fig. 2: Group comparisons of FBA measures.
Fig. 3: Mediation model hypothesis and potential main effects of the model.
Fig. 4: Mediation results in patients with MCI and HC, respectively.

Similar content being viewed by others

Data availability

The data and relevant code that support the findings of this study are available upon reasonable request to the corresponding author. ADNI data are available and can be searched from adni.loni.usc.edu after applying to the ADNI database.

References

  1. Reuben DB, Kremen S, Maust DT. Dementia prevention and treatment: a narrative review. JAMA Intern Med. 2024;184:563–72.

    Article  CAS  PubMed  Google Scholar 

  2. Stephan BC, Hunter S, Harris D, Llewellyn DJ, Siervo M, Matthews FE, et al. The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol Psychiatry. 2012;17:1056–76.

    Article  CAS  PubMed  Google Scholar 

  3. Jack CR Jr., Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 2024;20:5143–69.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brueggen K, Dyrba M, Cardenas-Blanco A, Schneider A, Fliessbach K, Buerger K, et al. Structural integrity in subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease based on multicenter diffusion tensor imaging. J Neurol. 2019;266:2465–74.

    Article  PubMed  Google Scholar 

  5. Crous-Bou M, Minguillon C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9:71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karim HT, Aizenstein HJ, Mizuno A, Ly M, Andreescu C, Wu M, et al. Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction. Mol Psychiatry. 2022;27:5235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Wang Y, Song Z, Fan Y, Gao T, Tang X. Abnormal white matter changes in Alzheimer’s disease based on diffusion tensor imaging: a systematic review. Ageing Res Rev. 2023;87:101911.

    Article  PubMed  Google Scholar 

  9. Meinert S, Nowack N, Grotegerd D, Repple J, Winter NR, Abheiden I, et al. Association of brain white matter microstructure with cognitive performance in major depressive disorder and healthy controls: a diffusion-tensor imaging study. Mol Psychiatry. 2022;27:1103–10.

    Article  PubMed  Google Scholar 

  10. Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, et al. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry. 2022;27:4244–51.

    Article  CAS  PubMed  Google Scholar 

  11. Yan T, Wang W, Yang L, Chen K, Chen R, Han Y. Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer’s disease. Theranostics. 2018;8:3237–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Selnes P, Fjell AM, Gjerstad L, Bjornerud A, Wallin A, Due-Tonnessen P, et al. White matter imaging changes in subjective and mild cognitive impairment. Alzheimers Dement. 2012;8:S112–21.

    Article  PubMed  Google Scholar 

  13. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.

    Article  PubMed  Google Scholar 

  14. Douaud G, Jbabdi S, Behrens TE, Menke RA, Gass A, Monsch AU, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage. 2011;55:880–90.

    Article  PubMed  Google Scholar 

  15. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73.

    Article  PubMed  Google Scholar 

  16. Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141:888–902.

    Article  PubMed  Google Scholar 

  17. Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, et al. Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage. 2021;241:118417.

    Article  PubMed  Google Scholar 

  18. Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, et al. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry. 2016;23:413–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017;20:340–52.

    Article  CAS  PubMed  Google Scholar 

  20. Maier-Hein, Neher KH, Houde PF, Cote MA JC, Garyfallidis E, Zhong J, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8:1349.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vriend C, de Joode NT, Pouwels PJW, Liu F, Otaduy MCG, Pastorello B, et al. Age of onset of obsessive-compulsive disorder differentially affects white matter microstructure. Mol Psychiatry. 2024;29:1033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s disease neuroimaging initiative (ADNI) clinical characterization. Neurology. 2010;74:201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mukherjee S, Choi S-E, Lee ML, Scollard P, Trittschuh EH, Mez J, et al. Cognitive domain harmonization and cocalibration in studies of older adults. Neuropsychology. 2023;37:409–23.

    Article  PubMed  Google Scholar 

  24. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. P Natl Acad Sci USA. 2000;97:11050–5.

    Article  CAS  Google Scholar 

  25. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, the Alzheimer’s Disease Neuroimaging. Initiative. CAT: a computational anatomy toolbox for the analysis of structural MRI data. GigaScience. 2024;13:giae049.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137.

    Article  PubMed  Google Scholar 

  27. Wasserthal J, Neher P, Maier-Hein KH. TractSeg - Fast and accurate white matter tract segmentation. NeuroImage. 2018;183:239–53.

    Article  PubMed  Google Scholar 

  28. Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed Central  Google Scholar 

  29. Tustison NJ, Cook PA, Klein A, Song G, Das SR, Duda JT, et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage. 2014;99:166–79.

    Article  PubMed  Google Scholar 

  30. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298–312.

    Article  PubMed  Google Scholar 

  31. Raffelt DA, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, et al. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.

    Article  PubMed  Google Scholar 

  32. Mak E, Gabel S, Mirette H, Su L, Williams GB, Waldman A, et al. Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Res Rev. 2017;35:250–64.

    Article  PubMed  Google Scholar 

  33. Dewenter A, Jacob MA, Cai M, Gesierich B, Hager P, Kopczak A, et al. Disentangling the effects of Alzheimer’s and small vessel disease on white matter fibre tracts. Brain. 2023;146:678–89.

    Article  PubMed  Google Scholar 

  34. Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khan UA, Liu L, Provenzano FA, Berman DE, Profaci CP, Sloan R, et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci. 2014;17:304–11.

    Article  CAS  PubMed  Google Scholar 

  36. Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology. 2020;94:e1525–38.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Schindler SE, Chen G, McKay NS, McCullough A, Flores S, et al. Investigating white matter neuroinflammation in Alzheimer disease using diffusion-based neuroinflammation imaging. Neurology. 2024;102:e208013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan LY, Lai YM, Chen TF, Hsu YC, Chen PY, Huang KZ, et al. Diminution of context association memory structure in subjects with subjective cognitive decline. Hum Brain Mapp. 2018;39:2549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci. 2008;11:426–8.

    Article  CAS  PubMed  Google Scholar 

  40. Nowrangi MA, Lyketsos CG, Leoutsakos JM, Oishi K, Albert M, Mori S, et al. Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2013;9:519–28.

    Article  PubMed  Google Scholar 

  41. De Guio F, Mangin JF, Duering M, Ropele S, Chabriat H, Jouvent E. White matter edema at the early stage of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2015;46:258–61.

    Article  PubMed  Google Scholar 

  42. Metzler-Baddeley C, Hunt S, Jones DK, Leemans A, Aggleton JP, O’Sullivan MJ. Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment. Neurology. 2012;79:2233–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mito R, Vaughan DN, Semmelroch M, Connelly A, Jackson GD. Bilateral structural network abnormalities in epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2022;98:e152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shu N, Wang X, Bi Q, Zhao T, Han Y. Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline. Radiology. 2018;286:229–38.

    Article  PubMed  Google Scholar 

  45. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA. 2009;106:2035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Croll PH, Vernooij MW, Reid RI, Goedegebure A, Power MC, Rigters SC, et al. Hearing loss and microstructural integrity of the brain in a dementia-free older population. Alzheimers Dement. 2020;16:1515–23.

    Article  PubMed  Google Scholar 

  47. Chang EF, Raygor KP, Berger MS. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg. 2015;122:250–61.

    Article  PubMed  Google Scholar 

  48. Vaquero L, Rousseau PN, Vozian D, Klein D, Penhune V. What you learn & when you learn it: Impact of early bilingual & music experience on the structural characteristics of auditory-motor pathways. Neuroimage. 2020;213:116689.

    Article  PubMed  Google Scholar 

  49. Ghulam-Jelani Z, Barrios-Martinez J, Eguiluz-Melendez A, Gomez R, Anania Y, Yeh FC. Redundancy circuits of the commissural pathways in human and rhesus macaque brains. Hum Brain Mapp. 2021;42:2250–61.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry. 2023;29:639–52.

    Article  PubMed  Google Scholar 

  51. Luo N, Sui J, Abrol A, Lin D, Chen J, Vergara VM, et al. Age-related structural and functional variations in 5,967 individuals across the adult lifespan. Hum Brain Mapp. 2020;41:1725–37.

    Article  PubMed  Google Scholar 

  52. Guptarak J, Scaduto P, Tumurbaatar B, Zhang WR, Jupiter D, Taglialatela G, et al. Cognitive integrity in non-demented individuals with Alzheimer’s neuropathology is associated with preservation and remodeling of dendritic spines. Alzheimers Dement. 2024;20:4677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fingerhut H, Gozdas E, Hosseini SMH. Quantitative MRI evidence for cognitive reserve in healthy elders and prodromal Alzheimer’s disease. J Alzheimers Dis. 2022;89:849–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, et al. A neuroimaging signature of cognitive aging from whole-brain functional connectivity. Adv Sci. 2022;9:e2201621.

    Article  Google Scholar 

  55. Cho S, Olm CA, Ash S, Shellikeri S, Agmon G, Cousins KAQ, et al. Automatic classification of AD pathology in FTD phenotypes using natural speech. Alzheimers Dement. 2024;20:3416–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Albouy P, Martinez-Moreno ZE, Hoyer RS, Zatorre RJ, Baillet S. Supramodality of neural entrainment: rhythmic visual stimulation causally enhances auditory working memory performance. Sci Adv. 2022;8:eabj9782.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu T, Wang M, Zhang J, Ye C, Funahashi S, Liu J, et al. Brain network dynamics in patients with single- and multiple-domain amnestic mild cognitive impairment. Alzheimers Dement. 2024;20:7657–74.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yao D, Calhoun VD, Fu Z, Du Y, Sui J. An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment. J Neurosci Methods. 2018;302:75–81.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dong Y, Wang S, Huang Q, Berg RW, Li G, He J. Neural decoding for intracortical brain-computer interfaces. Cyborg Bionic Syst. 2023;4:0044.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-frequency coupling and intelligent neuromodulation. Cyborg Bionic Syst. 2023;4:0034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank Konstantinos Ioannou and Konstantinos Chiotis from Karolinska Institutet for their assistance in formatting. Data collection and sharing for the Alzheimer’s Disease Neuroimaging Initiative (ADNI) is funded by the National Institute on Aging (National Institutes of Health Grant U19AG024904). The grantee organization is the Northern California Institute for Research and Education. In the past, ADNI has also received funding from the National Institute of Biomedical Imaging and Bioengineering, the Canadian Institutes of Health Research, and private sector contributions through the Foundation for the National Institutes of Health (FNIH) including generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics.

Funding

This work was supported by STI2030-Major Projects (2022ZD0208500), Key-Area Research and Development Program of Guangdong Province (2023B0303030002), the National Natural Science Foundation of China (grant numbers U20A20191, 62336002, 62306035, 62373056, 62406025), the Beijing Natural Science Foundation (IS23115).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

TY, YC, JZ and TL contributed to the conception and design of the work; TY, YC, TL, LC and JZ analyzed data, interpreted results of experiments and prepared figures; TY, YC, JZ, TL and LW drafted and revised the manuscript; SF, XT, JW and WM provided study supervision. Although the investigators for ADNI contributed to providing data, they did not participate in the analysis or writing of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tiantian Liu, Jian Zhang or Tianyi Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Data acquisition of ADNI was conducted in compliance with the protocol (NCT02854033), in accordance with GCP guidelines, all relevant regulations and laws. All subjects were informed about the aims of the study and signed a consent form under the approval of the Institutional Review Boards (IRB) and Research Ethics Boards (REB). More details on ethics approval and consent to participate in ADNI can be found at https://adni.loni.usc.edu/.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A list of authors and their affiliations appears at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, T., Cao, LZ. et al. Multilevel white matter degeneration associated cognitive dysfunction in mild cognitive impairment. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03179-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03179-7

Search

Quick links