Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Necdin causes social deficit and aberrant synaptic function through destabilization of SynGAP

Abstract

The Ras GTPase-activating protein SynGAP interacts with PSD95 to regulate synaptic morphology and function at the postsynaptic density in neurons. Haploinsufficiency of SYNGAP1 has been linked to autism spectrum disorders (ASD) and intellectual disability (ID). While transcriptional and translational regulation of SYNGAP1 has been extensively explored, the mechanisms governing its protein homeostasis remain largely elusive. In this study, we discovered that Necdin, a protein linked to Prader-Willi syndrome (PWS), interacts with SynGAP and regulates its stability through the SGT1-HSP90 chaperone machinery; notably, depletion of Necdin results in decreased SynGAP protein levels in mice. Loss of Necdin lead to impaired sociability, accompanied by an increased number of dendritic spines and a higher proportion of mature spines in pyramidal neurons of the medial prefrontal cortex (mPFC) in mice. Electrophysiological recordings revealed elevated frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) and reduced amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in these neurons. Targeted viral overexpression of Syngap1 in the mPFC of Necdin-deficient mice rescued the deficits in sociability, synaptic function, and dendritic spine morphology. Collectively, our findings reveal Necdin as a key regulator of SynGAP protein homeostasis and highlight the contribution of post-translational regulation in the pathogenesis of ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social deficit in mice lacking Necdin.
Fig. 2: Loss of Necdin led to increased excitatory synaptic transmission.
Fig. 3: Increased expression of immediate early response genes (IEGs) and c-Fos in the mPFC of Ndn−p/+m mice.
Fig. 4: Necdin interacted with stabilized SynGAP protein.
Fig. 5: Necdin stabilized SynGAP through SGT1-HSP90 chaperone machinery.
Fig. 6: Overexpression of Syngap1 in the mPFC rescued the aberrant synaptic function and social deficit in Ndn−p/+m mice.
Fig. 7: Schematic diagram of the working model.

Similar content being viewed by others

Data availability

The IP-MS datasets generated in this study have been deposited in two public repositories: the ProteomeXchange Consortium (PXD064040) and the iProX database (IPX0011995000). All other raw data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry. 2010;49:794–809.

    Article  PubMed  Google Scholar 

  2. Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry. 2015;2:909–16.

    Article  PubMed  Google Scholar 

  3. Shen MD, Swanson MR, Wolff JJ, Elison JT, Girault JB, Kim SH, et al. Subcortical brain development in autism and fragile x syndrome: evidence for dynamic, age- and disorder-specific trajectories in infancy. Am J Psychiatry. 2022;179:562–72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14:10–26.

    Article  PubMed  CAS  Google Scholar 

  5. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38:1249–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dykens EM, Lee E, Roof E. Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord. 2011;3:225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Genovese AC, Butler MG. Behavioral and psychiatric disorders in syndromic autism. Brain Sciences. 2024;14:343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang J, Cai F, Lu R, Xing X, Xu L, Wu K, et al. CNTNAP2 intracellular domain (CICD) generated by gamma-secretase cleavage improves autism-related behaviors. Signal Transduct Target Ther. 2023;8:219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tamada K, Fukumoto K, Toya T, Nakai N, Awasthi JR, Tanaka S, et al. Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nat Commun. 2021;12:4056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells. 2021;26:641–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun. 1991;178:291–6.

    Article  PubMed  CAS  Google Scholar 

  12. Aizawa T, Maruyama K, Kondo H, Yoshikawa K. Expression of necdin, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. Brain Res Dev Brain Res. 1992;68:265–74.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi Y, Matsuyama K, Takagi K, Sugiura H, Yoshikawa K. Arrest of cell growth by necdin, a nuclear protein expressed in postmitotic neurons. Biochem Biophys Res Commun. 1995;213:317–24.

    Article  PubMed  CAS  Google Scholar 

  14. Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, et al. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. Elife. 2017;6:e32640.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuwako K, Taniura H, Yoshikawa K. Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem. 2004;279:1703–12.

    Article  PubMed  CAS  Google Scholar 

  16. Minamide R, Fujiwara K, Hasegawa K, Yoshikawa K. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex. PLoS One. 2014;9:e84460.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7:10943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hasegawa K, Yoshikawa K. Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci. 2008;28:8772–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lu R, Dong Y, Li J-D. Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Res. 2020;48:7944–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu D, Xie Z, Gu P, Li X, Zhang Y, Wang X, et al. Cry1Delta11 mutation induces ADHD-like symptoms through hyperactive dopamine D1 receptor signaling. JCI Insight. 2023;8:e170434.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gao Q, Tian R, Han H, Slone J, Wang C, Ke X, et al. PINK1-mediated Drp1(S616) phosphorylation modulates synaptic development and plasticity via promoting mitochondrial fission. Signal Transduct Target Ther. 2022;7:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Viesselmann C, Ballweg J, Lumbard D, Dent EW Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons. J Vis Exp 2011, 2373.

  23. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet. 2000;9:3101–10.

    Article  PubMed  CAS  Google Scholar 

  24. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94.

    Article  PubMed  CAS  Google Scholar 

  25. Bian WJ, Miao WY, He SJ, Qiu Z, Yu X. Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell. 2015;162:808–22.

    Article  PubMed  CAS  Google Scholar 

  26. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995;269:1737–40.

    Article  PubMed  CAS  Google Scholar 

  27. Stephens DJ, Banting G. In vivo dynamics of the F-actin-binding protein neurabin-II. Biochem J. 2000;345:185–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999;23:569–82.

    Article  PubMed  CAS  Google Scholar 

  29. Muller D, Joly M, Lynch G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science. 1988;242:1694–7.

    Article  PubMed  CAS  Google Scholar 

  30. Passafaro M, Nakagawa T, Sala C, Sheng M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature. 2003;424:677–81.

    Article  PubMed  CAS  Google Scholar 

  31. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22:9721–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R, Momenan R, et al. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am J Psychiatry. 2010;167:1508–17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choi L, An JY. Genetic architecture of autism spectrum disorder: Lessons from large-scale genomic studies. Neurosci Biobehav Rev. 2021;128:244–57.

    Article  PubMed  CAS  Google Scholar 

  34. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013;35:106–10.

    Article  PubMed  Google Scholar 

  35. Berryer MH, Hamdan FF, Klitten LL, Moller RS, Carmant L, Schwartzentruber J, et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat. 2013;34:385–94.

    Article  PubMed  CAS  Google Scholar 

  36. Vazquez LE, Chen HJ, Sokolova I, Knuesel I, Kennedy MB. SynGAP regulates spine formation. J Neurosci. 2004;24:8862–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, et al. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep. 2019;39:223–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ramocki MB, Peters SU, Tavyev YJ, Zhang F, Carvalho CM, Schaaf CP, et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol. 2009;66:771–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Na ES, Nelson ED, Kavalali ET, Monteggia LM. The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology. 2013;38:212–9.

    Article  PubMed  CAS  Google Scholar 

  40. Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, et al. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci. 2012;32:3109–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zoghbi HY. MeCP2 dysfunction in humans and mice. J Child Neurol. 2005;20:736–40.

    Article  PubMed  Google Scholar 

  42. Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GC, Kitamura K, Kano M, et al. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol. 2011;589:2447–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313–53.

    Article  PubMed  CAS  Google Scholar 

  44. Kwon HB, Sabatini BL. Glutamate induces de novo growth of functional spines in developing cortex. Nature. 2011;474:100–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Segal I, Korkotian I, Murphy DD. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci. 2000;23:53–57.

    Article  PubMed  CAS  Google Scholar 

  46. Chen M, Qi J, Poo M, Yang Y. Stability and dynamics of dendritic spines in macaque prefrontal cortex. Natl Sci Rev. 2022;9:nwac125.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Wang Y, Erturk A, Kallop D, Jiang Z, Weimer RM, et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron. 2014;83:431–43.

    Article  PubMed  CAS  Google Scholar 

  48. Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett. 2015;601:30–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang M, Li H, Takumi T, Qiu Z, Xu X, Yu X, et al. Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism. Neurosci Bull. 2017;33:143–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rumbaugh G, Adams JP, Kim JH, Huganir RL. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc Natl Acad Sci USA. 2006;103:4344–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron. 1998;20:895–904.

    Article  PubMed  CAS  Google Scholar 

  52. Kim JH, Liao D, Lau LF, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron. 1998;20:683–91.

    Article  PubMed  CAS  Google Scholar 

  53. Su P, Lai TKY, Lee FHF, Abela AR, Fletcher PJ, Liu F. Disruption of SynGAP-dopamine D1 receptor complexes alters actin and microtubule dynamics and impairs GABAergic interneuron migration. Sci Signal. 2019;12:eaau9122.

    Article  PubMed  Google Scholar 

  54. Carlisle HJ, Manzerra P, Marcora E, Kennedy MB. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J Neurosci. 2008;28:13673–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151:709–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Barnes SA, Wijetunge LS, Jackson AD, Katsanevaki D, Osterweil EK, Komiyama NH, et al. Convergence of Hippocampal Pathophysiology in Syngap+/- and Fmr1-/y Mice. J Neurosci. 2015;35:15073–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nonaka M, Doi T, Fujiyoshi Y, Takemoto-Kimura S, Bito H. Essential contribution of the ligand-binding beta B/beta C loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding, and localization of postsynaptic density-95. J Neurosci. 2006;26:763–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McMahon AC, Barnett MW, O’Leary TS, Stoney PN, Collins MO, Papadia S, et al. SynGAP isoforms exert opposing effects on synaptic strength. Nat Commun. 2012;3:900.

    Article  PubMed  CAS  Google Scholar 

  59. Yang R, Feng X, Arias-Cavieres A, Mitchell RM, Polo A, Hu K, et al. Upregulation of SYNGAP1 expression in mice and human neurons by redirecting alternative splicing. Neuron. 2023;111:1637–1650.e1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Araki Y, Hong I, Gamache TR, Ju S, Collado-Torres L, Shin JH, et al. SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. Elife. 2020;9:e56273.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yokoi S, Udagawa T, Fujioka Y, Honda D, Okado H, Watanabe H, et al. 3’UTR Length-Dependent control of SynGAP isoform alpha2 mRNA by FUS and ELAV-like proteins promotes dendritic spine maturation and cognitive function. Cell Rep. 2017;20:3071–84.

    Article  PubMed  CAS  Google Scholar 

  62. Lai KO, Jordan BA, Ma XM, Srivastava DP, Tolias KF. Molecular mechanisms of dendritic spine development and plasticity. Neural Plast. 2016;2016:2078121.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ebrahimi-Fakhari D, Sahin M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr Opin Neurol. 2015;28:91–102.

    Article  PubMed  CAS  Google Scholar 

  64. Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sidorov MS, Auerbach BD, Bear MF. Fragile X mental retardation protein and synaptic plasticity. Mol Brain. 2013;6:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Carver JA, Ecroyd H, Truscott RJW, Thorn DC, Holt C. Proteostasis and the regulation of intra- and extracellular protein aggregation by ATP-independent molecular chaperones: lens alpha-crystallins and milk caseins. Acc Chem Res. 2018;51:745–52.

    Article  PubMed  CAS  Google Scholar 

  67. Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR. Extracellular chaperones and proteostasis. Annu Rev Biochem. 2013;82:295–322.

    Article  PubMed  CAS  Google Scholar 

  68. Chamberlain LH, Burgoyne RD. Cysteine-string protein: the chaperone at the synapse. J Neurochem. 2000;74:1781–9.

    Article  PubMed  CAS  Google Scholar 

  69. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, et al. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron. 2023;111:1423–1439.e1424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gerges NZ, Tran IC, Backos DS, Harrell JM, Chinkers M, Pratt WB, et al. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J Neurosci. 2004;24:4758–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K, et al. Hsp90 chaperone inhibitor 17-AAG attenuates Abeta-induced synaptic toxicity and memory impairment. J Neurosci. 2014;34:2464–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project is funded by the National Natural Science Foundation of China (32371218, 31972913, 82070815, 32400690); Hunan Provincial grants (2021DK2001, 2023SK2084, 2023RC4001, 2024JJ5540, 2025DK2004, 2025JJ30041, 2025JJ60134); Guangdong Key Project in “Development of new tools for diagnosis and treatment of Autism” (2018B030335001).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., H.L. and J-D.L. conceived the experiments. X.L. performed the behavioral experiments, spine morphology and SynGAP rescuing experiments. X.L. and I.B. performed the electrophysiology analysis under the supervision of Y.S. and S.D.. X.L., R.L. and D.L. performed the RNA-seq and IP-MS analysis under the supervision of Z.C.. J.Z. performed the Necdin-SynGAP interaction and influence of Necdin-SGT1-HSP90 on the stability of SynGAP. J-D.L., J.Z. and H.L. supervised the project. X.L. J.Z. and J-D.L. wrote and revised the manuscript with contributions from all authors. H.L. contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Huadie Liu, Jing Zhang or Jia-Da Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods in this study were performed in accordance with the relevant guidelines and regulations. All animal experiments were approved by the Ethics Committee of the School of Life Sciences, Central South University, China (Approval No. 2019-2-7). Consent to participate is not applicable as this study did not involve human participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Bader, I., Li, X. et al. Loss of Necdin causes social deficit and aberrant synaptic function through destabilization of SynGAP. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03187-7

Search

Quick links