Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The emerging role of the gut microbiome in depression: implications for precision medicine

Abstract

Major depressive disorder is a debilitating mental illness that seriously endangers human health. Its pathogenesis is highly complex, and traditional treatments face substantial challenges. A growing body of preclinical and clinical findings highlight the important role of the gut microbiome in the pathogenesis of depression and its potential as a diagnostic and therapeutic target. A deeper understanding of how the gut microbiome regulates depression will greatly enhance its clinical application, improve diagnostic and treatment strategies, and pave the way for microbiota-based precision medicine for depression. In this review, we summarize the depression-associated compositional and functional microbial alterations, delineate their mechanistic contributions to disease pathogenesis, and evaluate their potentiality as novel diagnostic biomarkers and treatment targets. Finally, we consider the future potential of utilizing the gut microbiome to advance precision medicine approaches for depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of the gut microbiome on the pathogenesis of depression.
Fig. 2: The potential microbiota-based interventions for depression.
Fig. 3: The role of the gut microbiome in antidepressants treatment strategies.

Similar content being viewed by others

References

  1. Mayer EA, Craske M, Naliboff BD. Depression, anxiety, and the gastrointestinal system. J Clin Psychiatry. 2001;62:28–36.

    PubMed  Google Scholar 

  2. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.

    PubMed  Google Scholar 

  3. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23:255–64.e119.

    CAS  PubMed  Google Scholar 

  4. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609. 609.e1-3

    CAS  PubMed  Google Scholar 

  5. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.

    CAS  PubMed  Google Scholar 

  6. Gheorghe CE, Cryan JF, Clarke G. Debugging the gut-brain axis in depression. Cell Host Microbe. 2022;30:281–3.

    CAS  PubMed  Google Scholar 

  7. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    PubMed  Google Scholar 

  8. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    CAS  PubMed  Google Scholar 

  9. Kelly JR, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.

    PubMed  Google Scholar 

  10. Bosch JA, Nieuwdorp M, Zwinderman AH, Deschasaux M, Radjabzadeh D, Kraaij R, et al. The gut microbiota and depressive symptoms across ethnic groups. Nat Commun. 2022;13:7129.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 2020;6:eaba8555.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    CAS  PubMed  Google Scholar 

  14. Radjabzadeh D, Bosch JA, Uitterlinden AG, Zwinderman AH, Ikram MA, van Meurs JBJ, et al. Gut microbiome-wide association study of depressive symptoms. Nat Commun. 2022;13:7128.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut. 2024;73:1893–908.

    PubMed  Google Scholar 

  16. Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, et al. Examining the healthy human microbiome concept. Nat Rev Microbiol. 2025;23:192–205.

    CAS  PubMed  Google Scholar 

  17. Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, et al. Toward a deeper understanding of gut microbiome in depression: the promise of clinical applicability. Adv Sci (Weinh). 2022;9:e2203707.

    PubMed  Google Scholar 

  18. Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023;90:104527.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression - A systematic review. Clin Psychol Rev. 2021;83:101943.

    PubMed  Google Scholar 

  20. Nikolova VL, Smith MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry. 2021;78:1343–54.

    PubMed  Google Scholar 

  21. Mirzayi C, Renson A, Zohra F, Elsafoury S, Geistlinger L, Kasselman LJ, et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 2021;27:1885–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Li D, Liu R, Wang M, Peng R, Fu S, Fu A, et al. 3β-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is linked to depression in males. Cell Host Microbe. 2022;30:329–339.e5.

    PubMed  Google Scholar 

  23. Li D, Sun T, Tong Y, Le J, Yao Q, Tao J, et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab. 2023;35:685–694.e5.

    CAS  PubMed  Google Scholar 

  24. Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54:134–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Bang S, Shin YH, Park SM, Deng L, Williamson RT, Graham DB, et al. Unusual phospholipids from morganella morganii linked to depression. J Am Chem Soc. 2025;147:2998–3002.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, et al. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 2022;14:2102878.

    PubMed Central  PubMed  Google Scholar 

  27. Averina OV, Zorkina YA, Yunes RA, Kovtun AS, Ushakova VM, Morozova AY, et al. Bacterial metabolites of human gut microbiota correlating with depression. Int J Mol Sci. 2020;21:9234.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, et al. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatr. 2024;37:e101374.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Skonieczna-Żydecka K, Grochans E, Maciejewska D, Szkup M, Schneider-Matyka D, Jurczak A, et al. Faecal short chain fatty acids profile is changed in polish depressive women. Nutrients. 2018;10:1939.

    PubMed Central  PubMed  Google Scholar 

  30. Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome. 2022;3:e3.

    PubMed Central  PubMed  Google Scholar 

  31. Zhang K, Fujita Y, Chang L, Qu Y, Pu Y, Wang S, et al. Abnormal composition of gut microbiota is associated with resilience versus susceptibility to inescapable electric stress. Transl Psychiatry. 2019;9:231.

    PubMed Central  PubMed  Google Scholar 

  32. Ernst J, Hock A, Henning A, Seifritz E, Boeker H, Grimm S. Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol Psychiatry. 2017;22:113–9.

    CAS  PubMed  Google Scholar 

  33. Bai S, Xie J, Bai H, Tian T, Zou T, Chen JJ. Gut microbiota-derived inflammation-related serum metabolites as potential biomarkers for major depressive disorder. J Inflamm Res. 2021;14:3755–66.

    PubMed Central  PubMed  Google Scholar 

  34. MahmoudianDehkordi S, Bhattacharyya S, Brydges CR, Jia W, Fiehn O, Rush AJ, et al. Gut microbiome-linked metabolites in the pathobiology of major depression with or without Anxiety-A role for bile acids. Front Neurosci. 2022;16:937906.

    PubMed Central  PubMed  Google Scholar 

  35. Lin X, Liang W, Li L, Xiong Q, He S, Zhao J, et al. The accumulation of gut microbiome-derived indoxyl sulfate and P-Cresyl sulfate in patients with end-stage renal disease. J Ren Nutr. 2022;32:578–86.

    CAS  PubMed  Google Scholar 

  36. Wang G, Fan Y, Zhang G, Cai S, Ma Y, Yang L, et al. Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding. Microbiome. 2024;12:59.

    PubMed Central  PubMed  Google Scholar 

  37. Brydges CR, Fiehn O, Mayberg HS, Schreiber H, Dehkordi SM, Bhattacharyya S, et al. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci Rep. 2021;11:21011.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Chevalier G, Siopi E, Guenin-Macé L, Pascal M, Laval T, Rifflet A, et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat Commun. 2020;11:6363.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Minichino A, Jackson MA, Francesconi M, Steves CJ, Menni C, Burnet PWJ, et al. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Mol Psychiatry. 2021;26:6269–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Yang B, Lin L, Bazinet RP, Chien YC, Chang JP, Satyanarayanan SK, et al. Clinical efficacy and biological regulations of ω-3 PUFA-Derived endocannabinoids in major depressive disorder. Psychother Psychosom. 2019;88:215–24.

    PubMed  Google Scholar 

  41. Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell. 2019;6:454–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol. 2024;21:222–47.

    PubMed  Google Scholar 

  43. Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11:135–57.

    PubMed  Google Scholar 

  44. Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol. 2024;24:577–95.

    CAS  PubMed  Google Scholar 

  45. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.

    PubMed Central  PubMed  Google Scholar 

  46. Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, et al. Gut microbiota are associated with psychological stress-induced defections in intestinal and blood-brain barriers. Front Microbiol. 2019;10:3067.

    PubMed  Google Scholar 

  47. Wu H, Wang J, Teng T, Yin B, He Y, Jiang Y, et al. Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. J Affect Disord. 2023;323:659–66.

    CAS  PubMed  Google Scholar 

  48. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018;67:1555–7.

    CAS  PubMed  Google Scholar 

  49. Martín-Hernández D, Caso JR, Bris ÁG, Maus SR, Madrigal JL, García-Bueno B, et al. Bacterial translocation affects intracellular neuroinflammatory pathways in a depression-like model in rats. Neuropharmacology. 2016;103:122–33.

    PubMed  Google Scholar 

  50. Kronsten VT, Tranah TH, Pariante C, Shawcross DL. Gut-derived systemic inflammation as a driver of depression in chronic liver disease. J Hepatol. 2022;76:665–80.

    CAS  PubMed  Google Scholar 

  51. Tian P, Zhu H, Qian X, Chen Y, Wang Z, Zhao J, et al. Consumption of butylated starch alleviates the chronic restraint stress-induced neurobehavioral and gut barrier deficits through reshaping the gut microbiota. Front Immunol. 2021;12:755481.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Liu L, Wang H, Rao X, Yu Y, Li W, Zheng P, et al. Comprehensive analysis of the lysine acetylome and succinylome in the hippocampus of gut microbiota-dysbiosis mice. J Adv Res. 2021;30:27–38.

    CAS  PubMed  Google Scholar 

  53. Wang HY, Liu LX, Chen XY, Zhang YD, Li WX, Li WW, et al. Comprehensive analysis of the gut microbiome and post-translational modifications elucidates the route involved in microbiota-host interactions. Zool Res. 2024;45:95–107.

    PubMed Central  PubMed  Google Scholar 

  54. Zheng P, Wu J, Zhang H, Perry SW, Yin B, Tan X, et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol Psychiatry. 2021;26:2380–92.

    CAS  PubMed  Google Scholar 

  55. Deng Y, Zhou M, Wang J, Yao J, Yu J, Liu W, et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes. 2021;13:1–16.

    PubMed  Google Scholar 

  56. Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, Zapata C, et al. Microbiota alterations in proline metabolism impact depression. Cell Metab. 2022;34:681–701.e10.

    CAS  PubMed  Google Scholar 

  57. Amin N, Liu J, Bonnechere B, MahmoudianDehkordi S, Arnold M, Batra R, et al. Interplay of metabolome and gut microbiome in individuals with major depressive disorder vs control individuals. JAMA Psychiatry. 2023;80:597–609.

    PubMed Central  PubMed  Google Scholar 

  58. Sudo N. Biogenic amines: signals between commensal microbiota and gut physiology. Front Endocrinol (Lausanne). 2019;10:504.

    PubMed  Google Scholar 

  59. González-Arancibia C, Urrutia-Piñones J, Illanes-González J, Martinez-Pinto J, Sotomayor-Zárate R, Julio-Pieper M, et al. Do your gut microbes affect your brain dopamine? Psychopharmacology (Berl). 2019;236:1611–22.

    PubMed  Google Scholar 

  60. Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, et al. Links between gut dysbiosis and neurotransmitter disturbance in chronic restraint stress-induced depressive behaviours: the role of inflammation. Inflammation. 2021;44:2448–62.

    CAS  PubMed  Google Scholar 

  61. Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Moriceau S, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol Psychiatry. 2023;28:3002–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Zhang ZW, Gao CS, Zhang H, Yang J, Wang YP, Pan LB, et al. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm Sin B. 2022;12:3298–312.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhou M, Fan Y, Xu L, Yu Z, Wang S, Xu H, et al. Microbiome and tryptophan metabolomics analysis in adolescent depression: roles of the gut microbiota in the regulation of tryptophan-derived neurotransmitters and behaviors in human and mice. Microbiome. 2023;11:145.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, et al. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab. 2024;36:1000–1012.e6.

    CAS  PubMed  Google Scholar 

  65. Tian P, Zou R, Wang L, Chen Y, Qian X, Zhao J, et al. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res. 2023;45:117–25.

    PubMed  Google Scholar 

  66. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4:396–403.

    CAS  PubMed  Google Scholar 

  67. Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics. 2018;15:36–59.

    CAS  PubMed  Google Scholar 

  68. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018;11:3–20.

    CAS  PubMed  Google Scholar 

  69. Yu L, Li Y. Involvement of intestinal enteroendocrine cells in neurological and psychiatric disorders. Biomedicines. 2022;10:2577.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Joo MK, Lee JW, Woo JH, Kim HJ, Kim DH, Choi JH. Regulation of colonic neuropeptide Y expression by the gut microbiome in patients with ulcerative colitis and its association with anxiety- and depression-like behavior in mice. Gut Microbes. 2024;16:2319844.

    PubMed Central  PubMed  Google Scholar 

  71. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr., et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22:527–36.

    CAS  PubMed  Google Scholar 

  72. Vodička M, Ergang P, Hrnčíř T, Mikulecká A, Kvapilová P, Vagnerová K, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun. 2018;73:615–24.

    PubMed  Google Scholar 

  73. Kuti D, Winkler Z, Horváth K, Juhász B, Paholcsek M, Stágel A, et al. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav Immun. 2020;84:218–28.

    CAS  PubMed  Google Scholar 

  74. Xu C, Lee SK, Zhang D, Frenette PS. The gut microbiome regulates psychological-stress-induced inflammation. Immunity. 2020;53:417–428.e4.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Schneider KM, Blank N, Alvarez Y, Thum K, Lundgren P, Litichevskiy L, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell. 2023;186:2823–2838.e20.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science. 2021;374:1087–92.

    CAS  PubMed  Google Scholar 

  77. Medina-Rodriguez EM, Watson J, Reyes J, Trivedi M, Beurel E. Th17 cells sense microbiome to promote depressive-like behaviors. Microbiome. 2023;11:92.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhu X, Sakamoto S, Ishii C, Smith MD, Ito K, Obayashi M, et al. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol. 2023;24:625–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, et al. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun. 2021;91:350–68.

    CAS  PubMed  Google Scholar 

  80. Yao H, Zhang D, Yu H, Yuan H, Shen H, Lan X, et al. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry. 2023;28:919–30.

    CAS  PubMed  Google Scholar 

  81. Liu P, Liu Z, Wang J, Wang J, Gao M, Zhang Y, et al. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat Commun. 2024;15:3003.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Huang Y, Wu J, Zhang H, Li Y, Wen L, Tan X, et al. The gut microbiome modulates the transformation of microglial subtypes. Mol Psychiatry. 2023;28:1611–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.

    CAS  PubMed  Google Scholar 

  84. Hao W, Ma Q, Wang L, Yuan N, Gan H, He L, et al. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3. Microbiome. 2024;12:34.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. He H, He H, Mo L, You Z, Zhang J. Priming of microglia with dysfunctional gut microbiota impairs hippocampal neurogenesis and fosters stress vulnerability of mice. Brain Behav Immun. 2024;115:280–94.

    CAS  PubMed  Google Scholar 

  86. Wu J, Li Y, Huang Y, Liu L, Zhang H, Nagy C, et al. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat Neurosci. 2023;26:1352–64.

    CAS  PubMed  Google Scholar 

  87. Agirman G, Hsiao EY. SnapShot: the microbiota-gut-brain axis. Cell. 2021;184:2524–2524.e1.

    CAS  PubMed  Google Scholar 

  88. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167:915–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Wang S, Harvey L, Martin R, van der Beek EM, Knol J, Cryan JF, et al. Targeting the gut microbiota to influence brain development and function in early life. Neurosci Biobehav Rev. 2018;95:191–201.

    PubMed  Google Scholar 

  90. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20:509–18.

    PubMed  Google Scholar 

  91. Liu G, Yu Q, Tan B, Ke X, Zhang C, Li H, et al. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes. 2022;14:2104089.

    PubMed Central  PubMed  Google Scholar 

  92. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–94.

    CAS  PubMed  Google Scholar 

  93. Lynch CMK, Cowan CSM, Bastiaanssen TFS, Moloney GM, Theune N, van de Wouw M, et al. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment. Brain Behav Immun. 2023;108:309–27.

    CAS  PubMed  Google Scholar 

  94. Keogh CE, Kim DHJ, Pusceddu MM, Knotts TA, Rabasa G, Sladek JA, et al. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain Behav Immun. 2021;91:437–50.

    CAS  PubMed  Google Scholar 

  95. Hagan CC, Graham JM, Wilkinson PO, Midgley N, Suckling J, Sahakian BJ, et al. Neurodevelopment and ages of onset in depressive disorders. Lancet Psychiatry. 2015;2:1112–6.

    PubMed  Google Scholar 

  96. Liu L, Wang H, Chen X, Zhang Y, Li W, Rao X, et al. Integrative analysis of long Non-coding RNAs, Messenger RNAs, and MicroRNAs indicates the neurodevelopmental dysfunction in the hippocampus of gut microbiota-dysbiosis mice. Front Mol Neurosci. 2021;14:745437.

    CAS  PubMed  Google Scholar 

  97. De Santa F, Strimpakos G, Marchetti N, Gargari G, Torcinaro A, Arioli S, et al. Effect of a multi-strain probiotic mixture consumption on anxiety and depression symptoms induced in adult mice by postnatal maternal separation. Microbiome. 2024;12:29.

    PubMed Central  PubMed  Google Scholar 

  98. Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, et al. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry. 2022;27:3807–20.

    CAS  PubMed  Google Scholar 

  99. Li XY, Zhang SY, Hong YZ, Chen ZG, Long Y, Yuan DH, et al. TGR5-mediated lateral hypothalamus-dCA3-dorsolateral septum circuit regulates depressive-like behavior in male mice. Neuron. 2024;112:1795–1814.e10.

    CAS  PubMed  Google Scholar 

  100. Yuan Z, Qi Z, Wang R, Cui Y, An S, Wu G, et al. A corticoamygdalar pathway controls reward devaluation and depression using dynamic inhibition code. Neuron. 2023;111:3837–3853.e5.

    CAS  PubMed  Google Scholar 

  101. Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron. 2022;110:1400–1415.e6.

    CAS  PubMed  Google Scholar 

  102. Schaub AC, Schneider E, Vazquez-Castellanos JF, Schweinfurth N, Kettelhack C, Doll JPK, et al. Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Transl Psychiatry. 2022;12:227.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Yamanbaeva G, Schaub AC, Schneider E, Schweinfurth N, Kettelhack C, Doll JPK, et al. Effects of a probiotic add-on treatment on fronto-limbic brain structure, function, and perfusion in depression: secondary neuroimaging findings of a randomized controlled trial. J Affect Disord. 2023;324:529–38.

    CAS  PubMed  Google Scholar 

  104. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, et al. Probiotic bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology. 2017;153:448–459.e8.

    PubMed  Google Scholar 

  105. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361:eaat5236.

    PubMed Central  PubMed  Google Scholar 

  106. Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu Rev Neurosci. 2020;43:337–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Sahasrabudhe A, Rupprecht LE, Orguc S, Khudiyev T, Tanaka T, Sands J, et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol. 2024;42:892–904.

    CAS  PubMed  Google Scholar 

  108. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A neural circuit for gut-induced reward. Cell. 2018;175:665–678.e23.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv Sci (Weinh). 2020;7:1902862.

    CAS  PubMed  Google Scholar 

  110. Zhao H, Jin K, Jiang C, Pan F, Wu J, Luan H, et al. A pilot exploration of multi-omics research of gut microbiome in major depressive disorders. Transl Psychiatry. 2022;12:8.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Xie P, Zhou X, Li Y, Wu J, Zhang H, Huang Y, et al. Gut microbial CAZymes markers for depression. Transl Psychiatry. 2024;14:135.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Gihawi A, Ge Y, Lu J, Puiu D, Xu A, Cooper CS, et al. Major data analysis errors invalidate cancer microbiome findings. mBio. 2023;14:e0160723.

    PubMed  Google Scholar 

  113. Hoffmann DE, von Rosenvinge EC, Roghmann MC, Palumbo FB, McDonald D, Ravel J. The DTC microbiome testing industry needs more regulation. Science. 2024;383:1176–9.

    CAS  PubMed  Google Scholar 

  114. Porcari S, Mullish BH, Asnicar F, Ng SC, Zhao L, Hansen R, et al. International consensus statement on microbiome testing in clinical practice. Lancet Gastroenterol Hepatol. 2025;10:154–67.

    CAS  PubMed  Google Scholar 

  115. Wang Y, Zhang S, Borody TJ, Zhang F. Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases. Chin Med J (Engl). 2022;135:1927–39.

    PubMed  Google Scholar 

  116. Lin H, Guo Q, Wen Z, Tan S, Chen J, Lin L, et al. The multiple effects of fecal microbiota transplantation on diarrhea-predominant irritable bowel syndrome (IBS-D) patients with anxiety and depression behaviors. Microb Cell Fact. 2021;20:233.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Guo Q, Lin H, Chen P, Tan S, Wen Z, Lin L, et al. Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules. Bioengineered. 2021;12:11885–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Green JE, Berk M, Mohebbi M, Loughman A, McGuinness AJ, Castle D, et al. Feasibility, acceptability, and safety of faecal microbiota transplantation in the treatment of major depressive disorder: a pilot randomized controlled trial. Can J Psychiatry. 2023;68:315–26.

    PubMed Central  PubMed  Google Scholar 

  119. Yu Y, Wang W, Zhang F. The next generation fecal microbiota transplantation: to transplant bacteria or virome. Adv Sci (Weinh). 2023;10:e2301097.

    PubMed  Google Scholar 

  120. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.

    PubMed  Google Scholar 

  121. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32:315–20.

    CAS  PubMed  Google Scholar 

  122. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr. 2019;38:522–8.

    CAS  PubMed  Google Scholar 

  123. Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murphy R, et al. Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine. 2017;24:159–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Tian P, Chen Y, Zhu H, Wang L, Qian X, Zou R, et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun. 2022;100:233–41.

    CAS  PubMed  Google Scholar 

  125. Zhang X, Chen S, Zhang M, Ren F, Ren Y, Li Y, et al. Effects of fermented milk containing lacticaseibacillus paracasei strain shirota on constipation in patients with depression: a randomized, double-blind, placebo-controlled trial. Nutrients. 2021;13:2238.

    PubMed Central  PubMed  Google Scholar 

  126. Kreuzer K, Reiter A, Birkl-Töglhofer AM, Dalkner N, Mörkl S, Mairinger M, et al. The PROVIT study-effects of multispecies probiotic add-on treatment on metabolomics in major depressive disorder-a randomized, Placebo-controlled trial. Metabolites. 2022;12:770.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Bambling M, Edwards SC, Hall S, Vitetta L. A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: an intestinal anti-inflammatory response is suggested. Inflammopharmacology. 2017;25:271–4.

    CAS  PubMed  Google Scholar 

  128. Nikolova VL, Cleare AJ, Young AH, Stone JM. Acceptability, tolerability, and estimates of putative treatment effects of probiotics as adjunctive treatment in patients with depression: a randomized clinical trial. JAMA Psychiatry. 2023;80:842–7.

    PubMed Central  PubMed  Google Scholar 

  129. Miyaoka T, Kanayama M, Wake R, Hashioka S, Hayashida M, Nagahama M, et al. Clostridium butyricum MIYAIRI 588 as adjunctive therapy for treatment-resistant major depressive disorder: a prospective open-label trial. Clin Neuropharmacol. 2018;41:151–5.

    CAS  PubMed  Google Scholar 

  130. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502.

    PubMed  Google Scholar 

  131. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82:472–87.

    CAS  PubMed  Google Scholar 

  132. Chi L, Khan I, Lin Z, Zhang J, Lee MYS, Leong W, et al. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine. 2020;67:153157.

    CAS  PubMed  Google Scholar 

  133. Liu Z, Li L, Ma S, Ye J, Zhang H, Li Y, et al. High-Dietary fiber intake alleviates antenatal obesity-induced postpartum depression: roles of gut microbiota and microbial metabolite short-chain fatty acid involved. J Agric Food Chem. 2020;68:13697–710.

    CAS  PubMed  Google Scholar 

  134. Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K. Effects of a psychobiotic supplement on serum brain-derived neurotrophic factor levels in depressive patients: a Post Hoc analysis of a randomized clinical trial. J Neurogastroenterol Motil. 2020;26:486–95.

    PubMed Central  PubMed  Google Scholar 

  135. Alli SR, Gorbovskaya I, Liu JCW, Kolla NJ, Brown L, Müller DJ. The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: a systematic review of clinical trials and observational studies. Int J Mol Sci. 2022;23:4494.

    PubMed Central  PubMed  Google Scholar 

  136. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17:687–701.

    PubMed Central  PubMed  Google Scholar 

  137. Dinan TG, Stanton C, Long-Smith C, Kennedy P, Cryan JF, Cowan CSM, et al. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin Nutr. 2019;38:1995–2001.

    PubMed  Google Scholar 

  138. Aslam H, Lotfaliany M, So D, Berding K, Berk M, Rocks T, et al. Fiber intake and fiber intervention in depression and anxiety: a systematic review and meta-analysis of observational studies and randomized controlled trials. Nutr Rev 2023, https://doi.org/10.1093/nutrit/nuad143.

  139. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.

    PubMed Central  PubMed  Google Scholar 

  140. Zhang K, Chen L, Yang J, Liu J, Li J, Liu Y, et al. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm Sin B. 2023;13:4801–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Chen Y, Tian P, Wang Z, Pan R, Shang K, Wang G, et al. Indole Acetic Acid Exerts Anti-Depressive Effects on an Animal Model of Chronic Mild Stress. Nutrients. 2022;14:5019.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Cheng L, Wu H, Cai X, Zhang Y, Yu S, Hou Y, et al. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior. Cell Host Microbe. 2024;32:227–243.e6.

    CAS  PubMed  Google Scholar 

  143. Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food. 2024;8:16.

    PubMed Central  PubMed  Google Scholar 

  144. Yu M, Jia HM, Qin LL, Zou ZM. Gut microbiota and gut tissue metabolites involved in development and prevention of depression. J Affect Disord. 2022;297:8–17.

    CAS  PubMed  Google Scholar 

  145. Meng C, Feng S, Hao Z, Dong C, Liu H. Antibiotics exposure attenuates chronic unpredictable mild stress-induced anxiety-like and depression-like behavior. Psychoneuroendocrinology. 2022;136:105620.

    CAS  PubMed  Google Scholar 

  146. Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Schmidtner AK, Slattery DA, Gläsner J, Hiergeist A, Gryksa K, Malik VA, et al. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry. 2019;9:223.

    PubMed Central  PubMed  Google Scholar 

  148. Lee J, Park SJ, Choi S, Chang J, Park YJ, Jeong S, et al. Antibiotic exposure and depression incidence: a cohort study of the Korean population. Psychiatry Res. 2024;339:115992.

    CAS  PubMed  Google Scholar 

  149. Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol. 2023;21:772–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Gómez-Ochoa SA, Pitton M, Valente LG, Sosa Vesga CD, Largo J, Quiroga-Centeno AC, et al. Efficacy of phage therapy in preclinical models of bacterial infection: a systematic review and meta-analysis. Lancet Microbe. 2022;3:e956–e968.

    PubMed  Google Scholar 

  151. Federici S, Kredo-Russo S, Valdés-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022;185:2879–2898.e24.

    CAS  PubMed  Google Scholar 

  152. Pirnay JP, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol. 2024;9:1434–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Li Y, Zhu F, Li Y, Pan S, Wang H, Yang Z, et al. Bacteriophages allow selective depletion of gut bacteria to produce a targeted-bacterium-depleted mouse model. Cell Rep Methods. 2022;2:100324.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Drevets WC, Wittenberg GM, Bullmore ET, Manji HK. Immune targets for therapeutic development in depression: towards precision medicine. Nat Rev Drug Discov. 2022;21:224–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Zuo Z, Zhao F. Gut microbiota-targeted interventions: from conventional approaches to genetic engineering. Sci Bull (Beijing). 2023;68:1231–4.

    CAS  PubMed  Google Scholar 

  156. Riglar DT, Silver PA. Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol. 2018;16:214–25.

    CAS  PubMed  Google Scholar 

  157. Sanmarco LM, Rone JM, Polonio CM, Fernandez Lahore G, Giovannoni F, Ferrara K, et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature. 2023;620:881–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Wang S, Zhou X, Ma Y, Zhang S, Gong X, Zhang B, et al. Gut-to-brain neuromodulation by synthetic butyrate-producing commensal bacteria. The Innovation Life. 2024;2:100082.

    CAS  Google Scholar 

  159. McCoubrey LE, Elbadawi M, Basit AW. Current clinical translation of microbiome medicines. Trends Pharmacol Sci. 2022;43:281–92.

    CAS  PubMed  Google Scholar 

  160. Luo Y, Kataoka Y, Ostinelli EG, Cipriani A, Furukawa TA. National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: a population representative survey based analysis. Front Psychiatry. 2020;11:35.

    PubMed Central  PubMed  Google Scholar 

  161. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    PubMed  Google Scholar 

  162. Minichino A, Preston T, Fanshawe JB, Fusar-Poli P, McGuire P, Burnet PWJ, et al. Psycho-Pharmacomicrobiomics: a systematic review and meta-analysis. Biol Psychiatry. 2024;95:611–28.

    CAS  PubMed  Google Scholar 

  163. Brown LC, Bobo WV, Gall CA, Müller DJ, Bousman CA. Pharmacomicrobiomics of antidepressants in depression: a systematic review. J Pers Med. 2023;13:1086.

    PubMed Central  PubMed  Google Scholar 

  164. Xu F, Xie Q, Kuang W, Dong Z. Interactions between antidepressants and intestinal microbiota. Neurotherapeutics. 2023;20:359–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Michaelis L, Berg L, Maier L. Confounder or Confederate? the interactions between drugs and the gut microbiome in psychiatric and neurological diseases. Biol Psychiatry. 2024;95:361–9.

    CAS  PubMed  Google Scholar 

  166. Yang Y, Zhao S, Yang X, Li W, Si J, Yang X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci Lett. 2022;774:136474.

    CAS  PubMed  Google Scholar 

  167. Li Q, Li L, Niu X, Tang C, Wang H, Gao J, et al. Probiotics alleviate depressive behavior in chronic unpredictable mild stress rat models by remodeling intestinal flora. Neuroreport. 2021;32:686–93.

    CAS  PubMed  Google Scholar 

  168. Huang M, He Y, Tian L, Yu L, Cheng Q, Li Z, et al. Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats. J Affect Disord. 2023;325:141–50.

    CAS  PubMed  Google Scholar 

  169. Zhou Z, Wang Y, Sun S, Zhang K, Wang L, Zhao H, et al. Paeonia lactiflora Pall. Polysaccharide alleviates depression in CUMS mice by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway and affecting the composition of their intestinal flora. J Ethnopharmacol. 2023;316:116716.

    CAS  PubMed  Google Scholar 

  170. Zhang M, Li A, Yang Q, Li J, Zheng L, Wang G, et al. Matrine alleviates depressive-like behaviors via modulating microbiota-gut-brain axis in CUMS-induced mice. J Transl Med. 2023;21:145.

    PubMed Central  PubMed  Google Scholar 

  171. Ait Chait Y, Mottawea W, Tompkins TA, Hammami R. Unravelling the antimicrobial action of antidepressants on gut commensal microbes. Sci Rep. 2020;10:17878.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Rukavishnikov G, Leonova L, Kasyanov E, Leonov V, Neznanov N, Mazo G. Antimicrobial activity of antidepressants on normal gut microbiota: Results of the in vitro study. Front Behav Neurosci. 2023;17:1132127.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Klünemann M, Andrejev S, Blasche S, Mateus A, Phapale P, Devendran S, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature. 2021;597:533–8.

    PubMed Central  PubMed  Google Scholar 

  174. Wilson TJ, Blackledge MS, Vigueira PA. Resensitization of methicillin-resistant Staphylococcus aureus by amoxapine, an FDA-approved antidepressant. Heliyon. 2018;4:e00501.

    PubMed Central  PubMed  Google Scholar 

  175. Ye X, Wang D, Zhu H, Wang D, Li J, Tang Y, et al. Gut microbiota changes in patients with major depressive disorder treated with vortioxetine. Front Psychiatry. 2021;12:641491.

    PubMed Central  PubMed  Google Scholar 

  176. Lee SM, Dong TS, Krause-Sorio B, Siddarth P, Milillo MM, Lagishetty V, et al. The intestinal microbiota as a predictor for antidepressant treatment outcome in geriatric depression: a prospective pilot study. Int Psychogeriatr. 2022;34:33–45.

    PubMed  Google Scholar 

  177. Zhang L, Liu YX, Wang Z, Wang XQ, Zhang JJ, Jiang RH, et al. Clinical characteristic and fecal microbiota responses to probiotic or antidepressant in patients with diarrhea-predominant irritable bowel syndrome with depression comorbidity: a pilot study. Chin Med J (Engl). 2019;132:346–51.

    CAS  PubMed  Google Scholar 

  178. Wang Y, Zhou J, Ye J, Sun Z, He Y, Zhao Y, et al. Multi-omics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. Microbiome. 2023;11:195.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Shen Y, Yang X, Li G, Gao J, Liang Y. The change of gut microbiota in MDD patients under SSRIs treatment. Sci Rep. 2021;11:14918.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Tomizawa Y, Kurokawa S, Ishii D, Miyaho K, Ishii C, Sanada K, et al. Effects of psychotropics on the microbiome in patients with depression and anxiety: considerations in a naturalistic clinical setting. Int J Neuropsychopharmacol. 2021;24:97–107.

    CAS  PubMed  Google Scholar 

  181. Wang Y, Yu Z, Ding P, Lu J, Mao L, Ngiam L, et al. Antidepressants can induce mutation and enhance persistence toward multiple antibiotics. Proc Natl Acad Sci USA. 2023;120:e2208344120.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Hategan A, Bourgeois JA. Proposed antidepressant-associated antimicrobial resistance: a function of the illness, its treatment, or both? J Clin Psychopharmacol. 2023;43:392–3.

    PubMed  Google Scholar 

  183. Dong Z, Shen X, Hao Y, Li J, Xu H, Yin L, et al. Gut microbiome: a potential indicator for predicting treatment outcomes in major depressive disorder. Front Neurosci. 2022;16:813075.

    PubMed Central  PubMed  Google Scholar 

  184. Clark AM, Clinton RT, Baker JK, Hufford CD. Demethylation of imipramine by enteric bacteria. J Pharm Sci. 1983;72:1288–90.

    CAS  PubMed  Google Scholar 

  185. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Javdan B, Lopez JG, Chankhamjon P, Lee YJ, Hull R, Wu Q, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell. 2020;181:1661–1679.e22.

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Zhu B, Xu Y, Zhao P, Yiu SM, Yu H, Shi JY. NNAN: nearest neighbor attention network to predict drug-microbe associations. Front Microbiol. 2022;13:846915.

    PubMed Central  PubMed  Google Scholar 

  188. Selwyn FP, Cui JY, Klaassen CD. RNA-Seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos. 2015;43:1572–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Chen L, Wang D, Garmaeva S, Kurilshikov A, Vich Vila A, Gacesa R, et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell. 2021;184:2302–2315.e12.

    CAS  PubMed  Google Scholar 

  190. Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol. 2024;22:291–308.

    CAS  PubMed  Google Scholar 

  191. Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther. 2023;8:386.

    PubMed Central  PubMed  Google Scholar 

  192. Poirot MG, Ruhe HG, Mutsaerts HMM, Maximov II, Groote IR, Bjørnerud A, et al. Treatment Response Prediction in Major Depressive Disorder Using Multimodal MRI and Clinical Data: Secondary Analysis of a Randomized Clinical Trial. Am J Psychiatry. 2024;181:223–33.

    PubMed  Google Scholar 

  193. Gaisser KD, Skloss SN, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, et al. High-throughput single-cell transcriptomics of bacteria using combinatorial barcoding. Nat Protoc 2024, https://doi.org/10.1038/s41596-024-01007-w.

  194. Lan F, Saba J, Ross TD, Zhou Z, Krauska K, Anantharaman K, et al. Massively parallel single-cell sequencing of diverse microbial populations. Nat Methods. 2024;21:228–35.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation Project of China (82201683, 82401814 and 82401789), the Natural Science Foundation of Chongqing (CSTB2024NSCQ-MSX0649), and the Joint Project of Chongqing Municipal Science and Technology Bureau and Chongqing Health Commission (2023CCXM003).

Author information

Authors and Affiliations

Authors

Contributions

LXL, HYW, and PX conceived the idea for the review. SFL, LW, XLM, QSC, and RX searched the literature and extracted relevant information. LXL, YMD, and DH designed and prepared the figures and tables. LXL and HYW originally drafted the manuscript. SYG and HPZ reviewed the original draft and provided feedback to further improve the manuscript. LXL, HYW, HPZ, and PX acquired the funding. All authors reviewed the final version of the manuscript and approved the submission in its present form.

Corresponding author

Correspondence to Peng Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, H., Guo, S. et al. The emerging role of the gut microbiome in depression: implications for precision medicine. Mol Psychiatry 30, 5901–5913 (2025). https://doi.org/10.1038/s41380-025-03191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03191-x

Search

Quick links