www.nature.com/mp

EXPERT REVIEW

Molecular Psychiatry

W) Check for updates

The promise of infant MRI in psychiatry: toward a framework for
neural network measures in early emotional and behavioral risk
identification and new intervention targets

1,2

Layla Banihashemi 35 Yicheng Zhang

© The Author(s) 2025

123 Alison E. Hipwell

! and Mary L. Phillips @'

Infancy marks a critical period of developing brain-behavior relationships that might influence the emergence of emotional and
behavioral problems and psychopathology later in childhood and adolescence. In this review, we describe infant MRI studies that
examined the development of neural networks, their associations with emerging emotional reactivity and regulation, and the
relationships of caregiver factors, such as psychopathology, parenting behaviors and socioeconomic status (SES), with these
developmental trajectories. We highlight the potential of utilizing infant MRI methodologies to identify key neural network
structural and functional substrates of current and future emotional reactivity and regulation. Such an approach could identify early
objective neural markers of dysregulation problems that are precursors of emotional and behavioral disorders, help monitor the
effectiveness of existing interventions, and ultimately guide the development of new interventions for at-risk infants.
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INTRODUCTION
The rapid development of the human brain in the first years of life
[1-4] determines critical brain-behavior relationships that set the
stage for future clinical and functional outcomes. In particular, a
parallel, growing literature highlights the critical role of the
development of large-scale neural networks supporting early
emotional reactivity and emerging emotional regulation (ER) in
infancy [5-7]. Given that emotional dysregulation is a transdiag-
nostic risk factor for future child emotional problems and
psychopathology [8-12], elucidating neural substrates/mapping
brain markers early in development could aid identification of
infants at risk before onset of disorder or manifestation of
symptoms. However, these brain-behavior relationships also need
to be considered in the context of caregiver characteristics such as
the presence of postpartum psychopathology, the availability of
responsive parenting, social and economic resources (SES)
[13-16], each of which is known to play a significant role in
shaping the infant's developing capacity for ER. Given the
enormous neuroplasticity of the infant brain during the first year
of life [17-21], intervening during this developmental window
might have the potential to adaptively alter ER systems and
decrease the likelihood of later psychiatric disorders [22]. Along
these lines, understanding the contribution of modifiable caregiv-
ing factors to the development of infant neural networks
supporting ER could also inform family-based intervention targets
to improve the health and well-being of at-risk infants.

The goal of this review is to describe the current literature
regarding associations among the development in infancy of
large-scale neural networks and infant emotional reactivity and

emerging ER, and the relationships of caregiver factors with these
developing trajectories. We first summarize evidence showing that
emotional dysregulation is a transdiagnostic risk for future
psychopathology. We then describe the roles of large-scale neural
networks in emotional reactivity and ER, and how these neural
networks develop in the first years of life. We next present findings
from studies that examined relationships among the development
of these large-scale neural networks and emerging ER in infancy,
and relationships among the development of these large-scale
neural networks in infancy and future psychopathology later in
childhood. Following this, we highlight how caregiver factors are
associated with these developing brain-behavior relationships in
infancy, and the roles of social contextual factors and the sex of
the child in moderating these relationships. We conclude with a
summary of these findings and limitations, future research
directions and clinical implications.

DISRUPTED ER IN INFANCY IS A TRANSDIAGNOSTIC RISK FOR
FUTURE PSYCHOPATHOLOGY

ER involves the integration of emotion and reward evaluative,
attentional, self-referential monitoring, self-regulation/inhibition,
and executive function processes that modulate or maintain the
intensity and valence of emotional experiences [23, 24]. The
Emotion Dynamics Model [25] provides a framework for
operationalizing ER along key dimensions (e.g. intensity of
emotional reactivity; latency from initial arousal to peak arousal
intensity; duration of response; time to recovery). Thus, when the
intensity, duration and/or rapidity of the emotional experience
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(e.g., frustration, joy) is ‘too much’ or ‘too little’ to function
appropriately within a social environment, then ER is needed
[24-27]. Positive and negative forms of emotional reactivity, i.e.,
positive and negative emotionality, can be measured reliably in
human infants within the first months of life [28-31]. Infants
displaying high levels of negative emotionality (NE) cry frequently
and intensely in response to novelty and limitations and are
difficult to soothe [32, 33]. These constitutionally-based behaviors
are consistent across settings [34], and tend to be more common
in males than females [35, 36]. Although there is modest rank-
order stability in NE across the first years of life [37-39], this is
superimposed on mean-level increases in NE during this period of
development [28, 40-42]. High NE in infancy is also a robust
predictor of behavioral and emotional problems later in childhood
[33, 43-46] and even into adolescence and adulthood [47]. When
assessed in the childhood years, NE predicts the development of
depression and anxiety, suicidal behavior, behavior problems and
substance abuse [48-55]. Thus, high infant NE represents an
important early vulnerability factor for a broad range of later
emerging functional impairments [56].

Displays of positive emotionality (PE) such as smiling, laughter
and high intensity pleasure, may be orthogonal to NE [57, 58], and
can also be assessed reliably in the first months of life [59, 60]. PE
shows significant change across the first year [61]. Although less
research has focused on the predictive utility of PE, low PE in
infancy may predict behavioral inhibition in early childhood [8],
whereas by middle childhood, low PE is associated with later
depression [9-11, 62-64]. Alternatively, some research suggests
that it is the ratio of low PE relative to high NE that represents the
greatest risk for later depressive symptoms [9].

Infant efforts to self-requlate (e.g. self-soothing when dis-
tressed) are evident as early as the first few months of life [65].
Although developmental advances in the ability to regulate
emotional responding may continue into adulthood [66], the most
dramatic gains in ER capacities occur in the first few years of life
[67]. Normative increases in ER capacities contribute to other
development progressions, e.g., decreases in aggression and
increases in compliance, and effective cognitive and social
engagement [68, 69]. Conversely, deficits in ER in infancy are
implicated in the etiology of childhood psychopathology [70-72],
including aggression [12, 73, 74] and other disruptive behavior
disorders [69, 72, 75, 76].

IN ADULTHOOD, LARGE-SCALE NEURAL NETWORKS PLAY
IMPORTANT ROLES IN EMOTIONAL REACTIVITY AND ER
Neural networks contributing importantly to ER include: the
medial prefrontal cortical (mPFC)-posterior cingulate/posterior
parietal cortical (precuneus)-centered default mode network
(DMN) [77, 78]; the dorsal and rostral anterior cingulate cortical
(d/rACQ)-anterior insula-centered salience network (SN) [79]; and
the dorsolateral prefrontal cortex (dIPFC) and lateral posterior
parietal cortex (IPPC)-centered central executive network (CEN)/
frontoparietal network (FPN) [79, 80].

The DMN has long been thought to support self-referential
processing [81, 82]. More recently, however, the DMN has
emerged as a key neural network in which different DMN nodes,
including mPFC and posterior cingulate cortex (PCC), integrate self
reference, social cognition, episodic memory, language and
semantic memory to develop “frames of thought” within an
internal narrative that are suppressed during cognitive task
performance, but which can lead to mind wandering during rest
or cognitively-undemanding contexts [83]. The internal narrative
shaped by these cognitive processes is key to the development of
a "sense of self” that in turn is a prerequisite for the capacity for ER
and other adaptive regulatory processes [84].

Critically, the DMN is very closely connected with other neural
networks, which facilitates the switching between the internally-
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driven processes subserved by the DMN nodes described above
and externally-driven cognitive processes that are subserved by
these other neural networks. A key neural network thought to
control such switching is the SN, which detects the most
contextually important information to guide behavior and social
cognition [82, 85]. To facilitate this, the SN, and the anterior insula
node in the SN in particular [86, 87], is thought to suppress the
DMN and engage neural networks such as the CEN [88]. Here, the
CEN dIPFC integrates information from multiple sources to support
rule-based decision-making, the IPPC, attentional processes
[89, 90], and the CEN as a whole, planning and top-down inhibitory
control processes [91]. This Triple Network Model is supported by
an increasing literature indicating inverse connectivity between the
DMN and CEN during cognitive task performance [92-94], with the
nodes within the DMN that subserve different internally-driven
cognitive processes having specific patterns of connectivity with
neural networks important for externally-driven cognitive task
performance [95]. Furthermore, difficulty in disengaging the DMN,
reflected in aberrant connectivity between the DMN and the CEN
during cognitive task performance and rest, is evident in
individuals with various psychiatric disorders, including mood
and anxiety disorders [92, 93, 96-99]. These findings highlight the
importance of the DMN and its context-dependent interactions
with other neural networks in ER capacity [100-102]. It should be
noted, however, that DMN nodes can show increased connectivity
during task performance with cortical regions that are important
for the organization of goal-directed behavior (multiple demand
cortical regions centered on CEN dIPFC and dACC and SN anterior
insula) [103] when it is important to combine cognitive processes
subserved by the DMN (e.g., prior knowledge about the self) with
the goals of the current task [104]. This aligns with the idea that the
DMN is a central neural network for integrating external and
internally-focused (i.e., self-related) information [105], which further
underscores the importance of the DMN and its connectivity with
other neural networks in ER and self-requlation processes in
general.

The SN and CEN also have specific roles in ER. The SN is critical
for attention to emotionally salient information, as well as
switching between DMN-centered internally-focused and CEN-
centered externally-focused processing, as described above. Other
large-scale neural networks that are closely aligned and often
equated with the SN include the cinguloopercular network (CO),
centered on more dorsal regions of the ACC than the SN and the
opercular region of the ventrolateral prefrontal cortex, and the
ventral attention network (VAN), centered on the right ventro-
lateral prefrontal cortex and temporoparietal junction [106, 107].
Together, these three closely aligned neural networks are
important for attending to and integrating sensory, self-
referential and emotionally-salient information with cognitive
processes in order to guide complex behaviors such as social
behavior that include ER [108]. Contributing to the specific role of
the SN in ER is the amygdala, a key region supporting emotion
processing [109] and a component of the SN [79, 82], which allows
the SN to integrate emotional perceptual and motivational
processes. Within the SN, the medial PFC, in particular the rostral
ACC (rACQ), is thought to modulate amygdala activity in response
to emotionally salient stimuli [110], and has strong connectivity
with CEN and SN prefrontal regions [111]. For example, more
resilient individuals show greater mPFC-amygdala connectivity
[112, 113], which is supported by a large rodent literature
indicating greater mPFC (rACC and dACC homologs) projections
to the amygdala in more resilient/ dominant animals [114-116].
The CEN has a critical role in ER via the roles of the dIPFC in
integrating information from multiple sources and supporting
rule-based decision-making and planning, the IPPC in attentional
processes [89, 90], and the CEN as a whole, in planning and top-
down inhibitory control processes [91], and reappraisal of negative
emotional contexts [102, 117].

SPRINGER NATURE

445



L. Banihashemi et al.

446

dIPFC - o

ateral g; ce
C .

BN Uncifiate

OFC & Fasg@i€tlus

" Amygdala
o Tempor:
- Polek .

Fig. 1 Key regions and white matter (WM) tracts in large-scale
neural networks important for emotion regulation (ER). [mPFC
(Medial Prefrontal Cortex), dIPFC (Dorsolateral Prefrontal Cortex),
dACC (Dorsal Anterior Cingulate Cortex)/MCC (Midcingulate Cortex),
PCC (Posterior Cingulate Cortex), OFC (Orbitofrontal Cortex), DMN

(Default Mode Network), CEN (Central Executive Network), SN
(Salience Network)].

Major white matter (WM) tracts within and among these
networks are the cingulum bundle (CB), connecting CEN parietal
and prefrontal cortical regions [118]; the anterior corpus callosum
(including the forceps minor; FM), providing lateral and medial
prefrontal cortical interhemispheric connectivity [119] across the
CEN and DMN; and the uncinate fasciculus (UF), which connects
the temporal pole with the inferior frontal lobe and posterior
orbitofrontal cortices (OFC) [120, 121], regions important for
monitoring and learning the emotional (especially reward) value
of stimuli [122] (Fig. 1).

The following sections focus on MRI studies that have advanced
understanding of the development of these neural networks, and
the relationships with developing ER capacity, in infancy.

FEASIBILITY OF MRI IN INFANTS

Recent and safe pediatric MRI developments have made it
possible to conduct MRI studies in infants. For example, the
majority of infant MRI studies that are included in this review
(except for Ball et al. [123] who used sedation) [124] used the feed-
and-bundle approach in order to ensure imaging quality by
minimizing excessive movement without sedation. Additionally,
pediatric imaging-optimized head coils [125] and acquisition
sequences [126] have been implemented to enhance scanning
quality while ensuring safety through low specific absorption rate
(SAR) and fast acquisition time. Furthermore, manual inspection
remains a standard quality control approach to ensure data
integrity for subsequent processing and analysis. These infant MRI
methodological developments have advanced understanding of
the following early neurodevelopmental processes.

EARLY DEVELOPMENT OF LARGE-SCALE NEURAL NETWORKS
It is well-established that large-scale neural networks associated
with emotional reactivity and ER are developing during the first
years of life [6, 127-129] and continue throughout childhood and
adulthood [130-134]. While sensorimotor, auditory and visual
networks develop early [135-137], the DMN, SN and CEN, and
amygdala connectivity with these large-scale networks, continue
to develop during early childhood [138-140], including large
increases in gray matter (GM) volume in cortical and subcortical
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regions in these networks in the first year [19, 129, 141] and into
childhood [142-145]. In parallel, resting-state functional connec-
tivity (rsFC) among these networks undergoes substantial devel-
opmental changes during infancy, initially strengthening within
individual networks before increasing inter-network integration
[146, 147]. Both intra- and inter-network changes predominantly
reflect logarithmic patterns of growth in connectivity [148].

The DMN is initially weaker in neonates, but in infancy becomes
more synchronized, particularly between mPFC and PCC regions
[147, 149]. Overall adult-like DMN topology is reached around one
year old, with continued maturity in the second year of life,
mirroring the emergence of early self-referential and social
cognitive processing [147, 149]. However, the DMN s still
immature and/or sparsely connected until ages 7-9 and continues
strengthening into early adolescence [150, 151]. The DMN is the
fastest developing among the higher order networks, followed by
the right CEN (frontoparietal), SN and the left CEN (frontoparietal)
[6] with the CEN still being immature at the end of the first year
[152]. The amygdala’s connections with these networks also
continue to develop throughout infancy and childhood, reflecting
increasing functional specialization in affective and cognitive
processing [104, 121].

The functional integration and roles of these networks evolve
across development. Specifically, over the first two years of life,
decreasing network-level connectivity occurs between DMN-SN
and CEN-SN, reflecting the emergence of distinct specializations,
while increasing connectivity occurs between right CEN-DMN and
left and right CEN [6]. In childhood through emerging adulthood
(ages 7-20), inter-network connectivity between higher-order
large-scale networks undergoes much development [153], with
children displaying weaker DMN-SN and CEN-SN connectivity
compared with adults [82]. In particular, the flexibility of switching
between distinct inter-network dynamics is weaker in childhood,
with adults having rapid-switching of more transient connections
between DMN, CEN and SN [154].

WM tracts in these networks develop throughout infancy
[155-157]. Several tracts, including those described above, show
significant increases in fractional anisotropy (FA, the ratio of
longitudinal versus transverse water diffusivity, reflecting the
degree of longitudinal fiber alignment/collinearity of fibers), and
decreases in radial diffusivity (RD, the extent of transverse water
diffusivity in WM tracts, thought to reflect non-collinearity of fibers
and/or damage to myelin) during the first two years of life
[158, 159]. Increases in FA in the majority of WM tracts, especially
those connecting visual and subcortical regions implicated in
emotional reactivity and ER, continue across the early school years
[160-163]. These microstructural changes reflect the progressive
assembly of pathways critical for integrating ER and executive
function [18, 164].

The UF demonstrates rapid early development in infancy
[18, 165]; maturation of this tract is particularly relevant for
emotion-processing circuits, with aberrant UF microstructure
linked to less ER capacity [166]. Similarly, the CB develops rapidly
over the first year of life [18], and has a long developmental
trajectory into adulthood [161] facilitating cognitive control and
attentional flexibility [167]. The FM also undergoes significant
maturation during infancy [18, 168], contributing to large-scale
network integration. This tract plays an important role in the
development of higher-order cognitive functions, including ER
with patients with emotional dysregulation disorders displaying
lower FM structural integrity [169]. These changes in WM
microstructure correspond with increasing rsFC within and among
the DMN, SN, and CEN [5, 170], with evidence suggesting that
infants exhibiting stronger intra- and inter-network connectivity
patterns demonstrate more stable regulatory behaviors later in
infancy [170, 171].
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RELATIONSHIPS AMONG THE DEVELOPMENT OF THESE
LARGE-SCALE NEURAL NETWORKS AND ER IN INFANCY

A small but increasing number of studies have examined
relationships among the development of these large-scale neural
networks and ER in infancy [123, 170, 172-174]. We reported
associations among greater amygdala-DMN and -SN, and lower
amygdala-CEN, FC and lower infant positive emotionality (PE),
which we replicated in an independent infant sample [94]. These
findings parallel those from other infant studies that reported
significant relationships between greater amygdala-SN and -DMN
FC and greater NE [171, 175, 176]. One study, however, reported
an association between greater DMN internetwork FC in early
infancy and lower NE later in infancy [177]; and another study
reported inverse associations among DMN, SN and CEN and
novelty-evoked distress in 4-month infants [178]. Our group also
showed associations between greater CB volume, potentially
reflecting reduced synaptic pruning [179], and dampened
concurrent PE [93]; and reported in 3-month infants that lower
UF fiber collinearity predicted greater NE at 9-months [180].
Similarly, another study reported an association between lower
early infant fiber collinearity in the inferior stria terminalis, a white
matter (WM) tract connecting the amygdala and anterior
hypothalamus, and greater infant fear later in infancy [181]. Using
multimodal mediation, we further showed that lower rsFC
between CEN and DMN structures suppressed the otherwise
negative relationship between greater CB volume and dampened
concurrent PE [93]. These findings highlight the complex interplay
between infant emotionality, brain structure, and functional
connectivity in large-scale networks during early development.
Further, infant emotionality and rsFC share a bidirectional
relationship, where early emotional behaviors can shape neural
connectivity patterns in ER networks, and this dynamic interaction
underscores the importance of neural plasticity in early emotional
development [182].

In a recent study, we used Neurite Orientation Dispersion and
Density Imaging (NODDI) to estimate the WM microstructural
integrity and myelination of prefrontal cortical regions, using the
neurite density index (NDI), and dispersion, using the orientation
dispersion index (ODI). These indices of WM microstructure have
potential to more accurately evaluate microstructural alterations in
the developing brain [183, 184]. We examined relationships in
infants among these measures and NE and PE, and reported
positive associations among 3-month rACC ODI and cACC NDI and
concurrent NE, and 3-month lateral orbitofrontal cortex (IOFC), a
region important for decision-making about potential reward value
[185, 186], ODI and prospective NE [187]. We also reported a
negative association between 3-month dIPFC ODI and concurrent
PE. These findings parallel those from our earlier studies of WM
microstructure-NE and PE relationships in infants, as they suggest
that greater NDI and ODI, reflecting greater microstructural
complexity and, likely, more diffuse patterns of connectivity, among
prefrontal cortical regions supporting salience perception (rACC),
decision-making (IOFC), action selection (cACC), and attentional
processes (dIPFC) might result in greater integration of these
prefrontal cortical regions with other neural networks, greater
attention to salient negative external cues, and thus higher NE and/
or lower PE. Furthermore, we have recently shown that in infancy
larger increases in ODI in major WM tracts interconnecting neural
networks supporting ER, in particular the UF, FM and CB, are
associated with disrupted developmental changes, i.e., smaller
increases or larger decreases, in PE and ER [188].

We also reported that greater 3-month DMN medial superior
frontal cortical volume was associated with higher infant 3-month
NE, and that greater 3-month SN and/or ventral attention network
(VAN) ventrolateral prefrontal cortical volume predicted lower
infant 9-month PE, even after controlling for 3-month PE,
highlighting the importance of these latter neural measures in

Molecular Psychiatry (2026) 31:444 - 455

L. Banihashemi et al.

explaining PE change. These findings were replicated in an
independent sample [189]. These results add to our previous
findings by indicating that greater GM volume in prefrontal
cortical regions important for salience perception and attention
also predispose to higher levels of infant NE and lower levels of
infant PE with increasing age. Other findings indicate positive and
inverse associations among subcortical GM volumes and indices of
NE in infants [190].

Overall, findings from the above studies suggest that higher
levels of NE and lower levels of PE in infancy are associated with: 1.
greater levels of endogenous functional connectivity, measured
by rsFC, among the amygdala and regions within the DMN and
SN, and among regions within the CEN and DMN; 2. lower
collinearity (i.e, more diffuse structural connectivity) of fibers in
WM tracts among the CEN and DMN (e.g., the CB) and WM tracts
connecting the amygdala with the hypothalamus, with worsening
ER associated with increasing magnitude of these alterations in
WM microstructure during infancy; and 3. greater GM volume in
prefrontal cortical regions important for salience perception and
attention. One interpretation of these findings is that these
patterns of connectivity, WM and GM might result in greater
interference by interoceptive and salience processing on execu-
tive processing, resulting in greater attention to potentially
threatening/worrying emotional stimuli and expression of higher
levels of NE and lower levels of PE. Interestingly, greater UF
volume was significantly associated with lower concurrent infant
NE; but lower orbitofrontal cortex (OFC)-amygdala rsFC, sup-
pressed this otherwise negative relationship, while greater OFC-
CEN rsFC mediated this relationship [93]. This finding likely reflects
the more specific role of the UF in ER, as it connects prefrontal
cortical regions implicated in the evaluation of emotional value of
stimuli with the amygdala [191, 192].

RELATIONSHIPS AMONG DEVELOPMENT OF THESE LARGE-
SCALE NEURAL NETWORKS AND PSYCHOPATHOLOGY RISK

A small number of studies report prospective relationships among
infant development of large-scale neural networks, and amygdala
rsFC with these networks, and psychopathology risk in early
childhood [193-195]. Other findings indicate inverse relationships
among rsFC among regions in the DMN and SN in infancy and
behavioral inhibition at 2 years [170]. Furthermore, there are
positive associations among infant amygdala-SN FC and inter-
nalizing behaviors in the first 2 years, while inverse associations
were found with infant striatal-DMN FC [176, 196, 197]. Addition-
ally, greater levels of atypical development of infant amygdala-
DMN FC were associated with greater anxiety at 4 years [198].
Other work has reported prospective associations with other
aspects of neurodevelopment. For example, greater amygdala
volume in early infancy predicted poorer working memory, a key
executive function process, in girls at three years of age [199].
Regarding WM, smaller corpus callosum length measured by
cranial ultrasound in 7-week-old infants was associated with
greater executive functioning deficits at 4 years of age [200]. Yet,
few studies examined associations among large-scale neural
networks in infancy and indices of future psychopathology later
in childhood. Determining these relationships is a critically
important, yet understudied, step toward identifying neural
markers of pathophysiological processes in infancy that predis-
pose to future mental health problems in childhood.

ASSOCIATIONS BETWEEN CAREGIVER DEPRESSION AND

ANXIETY AND INFANT NEURAL NETWORK-ER RELATIONSHIPS
To a large extent, adaptive development of ER systems in infancy
is shaped by the quality of interactions with primary caregivers
[201, 202]. Developmental studies are consistent in documenting
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Fig. 2 Schematic depiction of demonstrated relationships between various caregiver factors and major infant neural features
contributing to emotional reactivity outcomes and future psychopathology risk. While this review focuses on the influence of caregiver
factors on infant neural network emotional behavior relationships, it is also acknowledged that bidirectional relationships exist among these
factors. [DMN - default mode network, CEN - central executive network, NE - negative emotional reactivity, PE - positive emotional reactivity].

the adverse effects of caregiver (typically maternal) depression
and anxiety in the first postpartum year on infant ER [203, 204],
and associations with offspring social, emotional and behavioral
problems later in childhood [205, 206].

In the field of infant MRI, several studies have reported
associations between caregiver depression and anxiety, and other
indices of caregiver distress, and the development of GM and WM
in neural networks supporting ER in infancy [16, 190, 207-212]. In
parallel, prenatal maternal depression is associated with greater
infant amygdala connectivity with various SN and DMN nodes
above and beyond any influence of postnatal depression [213].
These amygdala connectivity patterns are recapitulated later in life
among those with major depressive disorder [214, 215]. Further-
more, sensitive parenting has been shown to affect infant ER-
related neurodevelopment. For example, maternal sensitivity
(timely and appropriate responsiveness to infant signals) was
associated with 5-month-old infant DMN rsFC, indicating that
infants of more sensitive mothers displayed greater intra-DMN
connectivity [14]. Interestingly, greater maternal sensitivity was
also associated with greater 6-month hippocampus (a less-well
characterized zone of the DMN [216]) connectivity with CEN
regions, as well as with lower amygdala connectivity with DMN-
related regions [13].

Critically, an emerging literature is exploring how these
caregiver factors may help shape developing neural network-ER
relationships in infancy. Here, studies reported significant relation-
ships among exposure to postpartum depression, infant WM
microstructure and infant NE [217]. Our own work, supported by
others [218], shows that more severe postpartum depression and
anxiety are associated with greater amygdala-DMN and amygdala-
SN, and lower amygdala-CEN, rsFC in 3-month-olds, which in turn
are associated with lower levels of infant PE (even after accounting
for parenting behaviors) [94], suggesting that caregiver depression
and anxiety associate with large-scale neural networks supporting
emotional reactivity in early infancy.

Indirect evidence for the effects of caregiver stress, distress or
challenges to parenting on infant neural network-ER relationships
are suggested by studies that have reported associations between
early adversity and infant neural network-ER relationships. Here,
maternal childhood and adolescence adverse experiences are
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associated with smaller neonatal amygdala volume and greater
negative emotionality in 6-month old infants. Furthermore,
childhood emotional neglect in the mother relates to stronger
neonatal rsFC among the amygdala and prefrontal cortical regions
in large-scale neural networks including the CEN and SN [219].
Financial strain in the family and/or low SES is also known to affect
infant neurodevelopment in regions with broad implications for
attention, emotional reactivity, ER and psychopathology, including
temporal pole, inferior frontal and anterior cingulate regions
[15, 220]. Additionally, prenatal exposure to neighborhood crime
was associated with weaker neonatal thalamic-DMN and
amygdala-hippocampus rsFC [221].

In addition to the potential modifying effects of environmental
factors such as caregiver psychopathology, parenting quality and
the broader social context (e.g. financial strain, neighborhood
stressors), genetic factors are also likely to play a role. For example,
there is a strong genetic component to brain structure and
function as evidenced by twin and family studies, with heritability
estimates for brain volumes and cortical measures typically
ranging from 60-80% [222, 223]. Structural and functional
connectivity also show substantial heritability varying by brain
white matter tract and network; heritable patterns of functional
connectivity were found within the DMN and CEN, with network
subregions also showing heritable intra-network connectivity
[223, 224]. About half of the inter- and intra-network connectivity
of canonical resting-state networks show up to 53% heritability,
with stable genetic influences during adolescence [225]. A multi-
generational longitudinal study found that individuals at high
familial risk for depression show increased DMN connectivity and
decreased DMN-CEN negative connectivity, indicating potential
biomarkers for depression risk [226]. Despite increasing interest in
elucidating environmental and genetic risk factors that influence
the development of large-scale neural networks subserving ER in
infancy through childhood, many gaps remain. In particular, work
is urgently needed to understand the ways in which caregiver
resilience, positive well-being and social support could serve as
buffers in contexts of stress to support adaptive infant ER
development.

While these findings highlight the importance of caregiver
emotional reactivity and the caregiving environment on
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developing infant neural network-ER relationships, it is note-
worthy that relationships exist between infant emotional reactivity
and ER and caregiver neural activity, where infant emotional
behavior can activate caregiver neural networks that support
parenting behaviors [227-229]. Furthermore, there are well-
documented effects of infant emotional reactivity on caregiving
affective responses and parenting behaviors [230, 231]. Together,
these findings therefore highlight the presence of bidirectional
relationships among caregiver affective responses and associated
caregiver neural activity, and infant neural network activity and ER.
These bidirectional relationships should be the focus of future
studies.

SEX OF THE INFANT EFFECTS ON THE DEVELOPMENT OF
NEURAL NETWORK-ER RELATIONSHIPS

There are effects of offspring sex on neurodevelopment that vary
across studies [16, 199, 212, 232-235]. For example, we reported
stronger positive relationships between postpartum depression and
anxiety and infant amygdala-SN, and amygdala-CEN rsFC, and
between the latter infant rsFC measures and lower infant PE, in male
relative to female infants [94]. Other research showed stronger
relationships between lower amygdala-CEN WM FA and externaliz-
ing behaviors in boys than girls [233], while other studies showed
stronger effects of early financial strain and maternal depression on
neurodevelopment in girls than in boys [212, 235]. Further
examination of contextual factors and offspring sex on neural
indices of ER in infancy through early childhood is clearly warranted.

A FRAMEWORK FOR UNDERSTANDING
NEURODEVELOPMENTAL TRAJECTORIES UNDERLYING
EMERGING NE, PE AND ER IN INFANCY, AND FOR IDENTIFYING
NEURAL INDICES OF FUTURE PSYCHOPATHOLOGY RISK
Emotional dysregulation, evidenced by high NE and low PE in
infancy, is a robust predictor of behavioral and emotional
problems later in childhood [8, 33, 45, 46] and even into
adolescence and adulthood [47], and thus represents an early
transdiagnostic marker of psychopathology [70-72]. Findings from
MRI studies of infants indicate that large-scale networks, including
the DMN, SN and CEN, are critical substrates of emotional
expressivity and ER [100-102], along with the major WM tracts
forming the connections within and between each network,
including the CB, FM and UF. These large-scale neural networks
develop and increase in synchrony by 1 year, with increasing
network-level integration [6, 149] and continued maturation
beyond the first postnatal year. Findings suggest that higher
levels of NE and lower levels of PE in infancy are associated with
greater functional connectivity among the amygdala and regions
within the DMN and SN, and among regions within the CEN and
DMN. This is accompanied by lower collinearity of fibers in WM
tracts among the CEN and DMN and greater GM volume in
prefrontal cortical regions important for salience perception and
attention. Such integration of structure and function facilitates
greater maladaptive CEN-DMN connectivity and integration of
prefrontal cortical regions with other neural networks, yielding
greater attention to salient negative external cues, and thus
higher NE and/or lower PE (Fig. 2; Table 1).

Critically, these indices of neural network structure and function
have been shown to be linked with future affective outcomes and
psychopathology risk. For example, aberrant infant DMN-SN and
amygdala-DMN rsFC were associated with greater childhood
behavioral inhibition [170] and anxiety [198], respectively.
Furthermore, caregiver factors (e.g., symptoms of psychopathol-
ogy, parenting behaviors) and limited resources (e.g., low SES) also
influence ER-related infant neurodevelopment in ways that
recapitulate the infant neural patterns described above, including
greater amygdala-large-scale network rsFC [13, 94, 219], and in

SPRINGER NATURE

some studies, indicating that these patterns contribute to high NE
and/or low PE [94].

LIMITATIONS AND FUTURE DIRECTIONS

Limitations of the research to date include, in some cases, small
sample sizes and/or samples with unbalanced male/female
offspring ratios, as well as inherent sampling bias in infant and
caregiver participant recruitment and the exclusion of infants who
were unable to remain still during scans. Furthermore, some
studies examining relationships among social contextual factors
and indices of large-scale network structure and function in infancy
do not then extend neural findings to examining relationships with
measures of infant emotional reactivity or ER. Moreover, future
work in larger samples, and studies utilizing advances of integrated
multimodal imaging to examine global structure-function relation-
ships will have a beneficial effect on the field, increasing our
understanding of neural targets for intervention or prevention of
deficient ER in infancy. Additionally, as dysregulated emotional and
physiological response to stress in infancy is linked to later
negative affective and behavioral outcomes [236-239], more
research is necessary to understand contributions of proximal
stress-control neural structures [240, 241] in infancy to other stress
response systems and the interactions between infant stress
reactivity and ER-related processes.

CONCLUSION AND FUTURE CLINICAL IMPLICATIONS
Together, findings to date highlight the promise of infant MRl as a
valuable approach that can identify key neural network structural
and functional correlates of current, and predictors of future, NE,
PE and ER (Fig. 2; Table 1). This approach has great potential to
provide neural markers to guide early emotional and behavioral
disorder risk identification, help monitor the effectiveness of
interventions to ameliorate aberrant NE, PE and ER in infancy, and
ultimately help to develop new, targeted interventions that are
based on an understanding of underlying neural network
abnormalities in infancy.
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