Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered striosome-matrix distribution and activity of striatal cholinergic interneurons in a model of autism-linked repetitive behaviors

Abstract

Repetitive behaviors are cardinal features of many brain disorders, including autism spectrum disorder (ASD). We previously associated dysfunction of striatal cholinergic interneurons (SCINs) with repetitive behaviors in a mouse model based on conditional deletion of the ASD-related gene Tshz3 in cholinergic neurons (Chat-cKO). Here, we provide evidence linking SCIN abnormalities to the unique organization of the striatum into striosome and matrix compartments, whose imbalances are implicated in several pathological conditions. Chat-cKO mice exhibit an altered relationship between the embryonic birthdate of SCINs and their adult striosome-matrix distribution, leading to an increased proportion of striosomal SCINs. In addition, the ratio of striosomal SCINs with slow-irregular vs. sustained-regular firing is increased, which translates into decreased activity, further stressing the striosome-matrix imbalance. These findings provide novel insights into the pathogenesis of ASD-related stereotyped behaviors by pointing to abnormal developmental compartmentalization and activity of SCINs as a substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of cholinergic markers and Tshz3 in the embryonic mouse brain and Tshz3 deletion in Chat-cKO mice.
Fig. 2: Altered relationship between the birthdates of SCINs and their compartmental distribution in Chat-cKO mice.
Fig. 3: Unchanged numbers of SCINs in the dorsal striatum and its mediolateral subdivisions in Chat-cKO mice.
Fig. 4: No change in the area of the striatum and of the striosomal compartment in Chat-cKO mice.
Fig. 5: Enrichment of SCINs, but not of SSPNs, in the striosome compartment of Chat-cKO mice.
Fig. 6: Changes in the firing features of SCINs in Chat-cKO mice.
Fig. 7: Enrichment of SCINs with low frequency/irregular firing in the striosomes of Chat-cKO mice.
Fig. 8: Reduced VAChT expression in Chat-cKO mice.

Similar content being viewed by others

Data availability

Raw data sets will be made available upon reasonable request to the corresponding authors.

References

  1. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed., Arlington (VA): American Psychiatric Association; 2013.

  2. Fuccillo MV. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 2016;10:27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res. 2019;98:2130–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rapanelli M, Frick LR, Pittenger C. The role of interneurons in autism and tourette syndrome. Trends Neurosci. 2017;40:397–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci. 2021;24:1648–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ridley RM. The psychology of perserverative and stereotyped behaviour. Prog Neurobiol. 1994;44:221–31.

    Article  PubMed  CAS  Google Scholar 

  7. Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: an updated conceptual review. Autism Res. 2022;15:384–412.

    Article  PubMed  Google Scholar 

  8. Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26:856–68.

    Article  PubMed  CAS  Google Scholar 

  9. Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 2003;26:184–92.

    Article  PubMed  CAS  Google Scholar 

  10. Burton CL, Longaretti A, Zlatanovic A, Gomes GM, Tonini R. Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology. Front Cell Neurosci. 2024;18:1386715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in tourette syndrome. Biol Psychiatry. 2016;79:372–82.

    Article  PubMed  CAS  Google Scholar 

  13. Xu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, et al. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci USA. 2015;112:893–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Martos YV, Braz BY, Beccaria JP, Murer MG, Belforte JE. Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons. J Neurosci. 2017;37:2849–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, et al. Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity. Am J Psychiatry. 2021;178:48–64.

    Article  PubMed  Google Scholar 

  16. Aliane V, Perez S, Bohren Y, Deniau JM, Kemel ML. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain. 2011;134:110–8.

    Article  PubMed  Google Scholar 

  17. Crittenden JR, Lacey CJ, Weng FJ, Garrison CE, Gibson DJ, Lin Y, et al. Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism. Front Neuroanat. 2017;11:20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prado VF, Janickova H, Al-Onaizi MA, Prado MA. Cholinergic circuits in cognitive flexibility. Neuroscience. 2017;345:130–41.

    Article  PubMed  CAS  Google Scholar 

  19. Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci. 2019;49:604–22.

    Article  PubMed  Google Scholar 

  20. Apicella P. The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? Neuroscience. 2017;360:81–94.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg JA, Wilson CJ. The cholinergic interneurons of the striatum: intrinsic properties underlie multiple discharge patterns. In: Steiner H, Tseng KY, editors. Handbook of basal ganglia structure and function. London (UK): Academic Press; 2010, pp 133–49.

  22. Ahmed NY, Knowles R, Dehorter N. New insights into cholinergic neuron diversity. Front Mol Neurosci. 2019;12:204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 2000;23:120–6.

    Article  PubMed  CAS  Google Scholar 

  24. Brimblecombe KR, Cragg SJ. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem Neurosci. 2017;8:235–42.

    Article  PubMed  CAS  Google Scholar 

  25. Kawaguchi Y. Neostriatal cell subtypes and their functional roles. Neurosci Res. 1997;27:1–8.

    Article  PubMed  CAS  Google Scholar 

  26. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992;15:133–9.

    Article  PubMed  CAS  Google Scholar 

  27. Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat. 2011;5:59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Graybiel AM, Matsushima A. Striosomes and matrisomes: scaffolds for dynamic coupling of volition and action. Annu Rev Neurosci. 2023;46:359–80.

    Article  PubMed  CAS  Google Scholar 

  29. Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Wickersham IR, Yoshida T, et al. Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits. Curr Biol. 2024;34:5263–83.e8.

    Article  PubMed  CAS  Google Scholar 

  30. Kuo HY, Liu FC. Pathological alterations in striatal compartments in the human brain of autism spectrum disorder. Mol Brain. 2020;13:83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuo HY, Liu FC. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J. 2017;31:4458–71.

    Article  PubMed  CAS  Google Scholar 

  32. Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res. 2015;1618:286–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Caubit X, Gubellini P, Andrieux J, Roubertoux PL, Metwaly M, Jacq B, et al. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat Genet. 2016;48:1359–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, et al. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry. 2022;12:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Caubit X, Arbeille E, Chabbert D, Desprez F, Messak I, Fatmi A, et al. Camk2a-Cre and Tshz3 expression in mouse striatal cholinergic interneurons: implications for autism spectrum disorder. Front Genet. 2021;12:683959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, et al. Postnatal Tshz3 deletion drives altered corticostriatal function and autism spectrum disorder-like behavior. Biol Psychiatry. 2019;86:274–85.

    Article  PubMed  CAS  Google Scholar 

  37. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Roubertoux PL, Tordjman S, Caubit X, di Cristopharo J, Ghata A, Fasano L, et al. Construct validity and cross validity of a test battery modeling Autism Spectrum Disorder (ASD) in mice. Behav Genet. 2020;50:26–40.

    Article  PubMed  Google Scholar 

  39. Knowles R, Dehorter N, Ellender T. From progenitors to progeny: shaping striatal circuit development and function. J Neurosci. 2021;41:9483–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci. 2000;20:6063–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pappas SS, Li J, LeWitt TM, Kim JK, Monani UR, Dauer WT. A cell autonomous torsinA requirement for cholinergic neuron survival and motor control. Elife. 2018;7:e36691.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lopes R, Verhey van Wijk N, Neves G, Pachnis V. Transcription factor LIM homeobox 7 (Lhx7) maintains subtype identity of cholinergic interneurons in the mammalian striatum. Proc Natl Acad Sci USA. 2012;109:3119–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Furusho M, Ono K, Takebayashi H, Masahira N, Kagawa T, Ikeda K, et al. Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol. 2006;293:348–57.

    Article  PubMed  CAS  Google Scholar 

  44. Caubit X, Tiveron MC, Cremer H, Fasano L. Expression patterns of the three Teashirt-related genes define specific boundaries in the developing and postnatal mouse forebrain. J Comp Neurol. 2005;486:76–88.

    Article  PubMed  CAS  Google Scholar 

  45. van Vulpen EH, van der Kooy D. Striatal cholinergic interneurons: birthdates predict compartmental localization. Brain Res Dev Brain Res. 1998;109:51–8.

    Article  PubMed  Google Scholar 

  46. Balleine BW, Liljeholm M, Ostlund SB. The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res. 2009;199:43–52.

    Article  PubMed  Google Scholar 

  47. Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus. 2020;30:73–98.

    Article  PubMed  Google Scholar 

  48. Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci. 2024;60:3447–65.

    Article  PubMed  CAS  Google Scholar 

  49. Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci. 2008;28:622–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wilson CJ. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron. 2005;45:575–85.

    Article  PubMed  CAS  Google Scholar 

  51. Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, et al. Involvement of HCN channel in muscarinic inhibitory action on tonic firing of dorsolateral striatal cholinergic interneurons. Front Cell Neurosci. 2016;10:71.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci. 1999;19:5586–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wilson CJ, Chang HT, Kitai ST. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci. 1990;10:508–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–74.

    Article  PubMed  CAS  Google Scholar 

  55. Chen E, Lallai V, Sherafat Y, Grimes NP, Pushkin AN, Fowler JP, et al. Altered baseline and nicotine-mediated behavioral and cholinergic profiles in ChAT-Cre mouse lines. J Neurosci. 2018;38:2177–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hirsch EC, Graybiel AM, Hersh LB, Duyckaerts C, Agid Y. Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum. Neurosci Lett. 1989;96:145–50.

    Article  PubMed  CAS  Google Scholar 

  57. Graybiel AM, Baughman RW, Eckenstein F. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature. 1986;323:625–7.

    Article  PubMed  CAS  Google Scholar 

  58. Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. Front Cell Neurosci. 2024;18:1415015.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Unal B, Ibanez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci. 2011;5:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Almey A, Filardo EJ, Milner TA, Brake WG. Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. Endocrinology. 2012;153:5373–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kovesdi E, Udvaracz I, Kecskes A, Szocs S, Farkas S, Faludi P, et al. 17beta-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne). 2022;13:993552.

    Article  PubMed  Google Scholar 

  62. van der Kooy D, Fishell G. Neuronal birthdate underlies the development of striatal compartments. Brain Res. 1987;401:155–61.

    Article  PubMed  Google Scholar 

  63. Song DD, Harlan RE. Genesis and migration patterns of neurons forming the patch and matrix compartments of the rat striatum. Brain Res Dev Brain Res. 1994;83:233–45.

    Article  PubMed  CAS  Google Scholar 

  64. Graybiel AM, Hickey TL. Chemospecificity of ontogenetic units in the striatum: demonstration by combining [3H]thymidine neuronography and histochemical staining. Proc Natl Acad Sci USA. 1982;79:198–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington’s disease. Neurobiol Dis. 2020;145:105076.

    Article  PubMed  CAS  Google Scholar 

  66. Chen L, Chatterjee M, Li JY. The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J Neurosci. 2010;30:14824–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent implication of striatal cholinergic interneurons in a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Cells. 2021;10:907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Crittenden JR, Lacey CJ, Lee T, Bowden HA, Graybiel AM. Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Front Neural Circuits. 2014;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kubota Y, Kawaguchi Y. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol. 1993;332:499–513.

    Article  PubMed  CAS  Google Scholar 

  70. Johnston JG, Gerfen CR, Haber SN, van der Kooy D. Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res Dev Brain Res. 1990;57:93–102.

    Article  PubMed  CAS  Google Scholar 

  71. Lee H, Leamey CA, Sawatari A. Rapid reversal of chondroitin sulfate proteoglycan associated staining in subcompartments of mouse neostriatum during the emergence of behaviour. PLoS One. 2008;3:e3020.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Martone ME, Young SJ, Armstrong DM, Groves PM. The distribution of cholinergic perikarya with respect to enkephalin-rich patches in the caudate nucleus of the adult cat. J Chem Neuroanat. 1994;8:47–59.

    Article  PubMed  CAS  Google Scholar 

  73. Bennett BD, Callaway JC, Wilson CJ. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci. 2000;20:8493–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lozovaya N, Eftekhari S, Cloarec R, Gouty-Colomer LA, Dufour A, Riffault B, et al. GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat Commun. 2018;9:1422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kawaguchi Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci. 1993;13:4908–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, et al. The neurochemistry of autism. Brain Sci. 2020;10:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Karvat G, Kimchi T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology. 2014;39:831–40.

    Article  PubMed  CAS  Google Scholar 

  78. Rapanelli M, Frick LR, Xu M, Groman SM, Jindachomthong K, Tamamaki N, et al. Targeted interneuron depletion in the dorsal striatum produces autism-like behavioral abnormalities in male but not female mice. Biol Psychiatry. 2017;82:194–203.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Athnaiel O, Job GA, Ocampo R, Teneqexhi P, Messer WS, Ragozzino ME. Effects of the partial M1 muscarinic cholinergic receptor agonist CDD-0102A on stereotyped motor behaviors and reversal learning in the BTBR mouse model of autism. Int J Neuropsychopharmacol. 2022;25:64–74.

    Article  PubMed  CAS  Google Scholar 

  80. Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, et al. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci. 2023;16:1139118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat Neurosci. 2000;3:377–83.

    Article  PubMed  CAS  Google Scholar 

  82. Sako W, Morigaki R, Nagahiro S, Kaji R, Goto S. Olfactory type G-protein alpha subunit in striosome-matrix dopamine systems in adult mice. Neuroscience. 2010;170:497–502.

    Article  PubMed  CAS  Google Scholar 

  83. Saka E, Goodrich C, Harlan P, Madras BK, Graybiel AM. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J Neurosci. 2004;24:7557–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Peter Z, Oliphant ME, Fernandez TV. Motor stereotypies: a pathophysiological review. Front Neurosci. 2017;11:171.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Magno L, Barry C, Schmidt-Hieber C, Theodotou P, Hausser M, Kessaris N. NKX2-1 is required in the embryonic septum for cholinergic system development, learning, and memory. Cell Rep. 2017;20:1572–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fragkouli A, van Wijk NV, Lopes R, Kessaris N, Pachnis V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development. 2009;136:3841–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sreenivasan V, Serafeimidou-Pouliou E, Exposito-Alonso D, Bercsenyi K, Bernard C, Bae SE, et al. Input-specific control of interneuron numbers in nascent striatal networks. Proc Natl Acad Sci USA. 2022;119:e2118430119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Fino E, Vandecasteele M, Perez S, Saudou F, Venance L. Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun. 2018;9:3339.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Choi SJ, Ma TC, Ding Y, Cheung T, Joshi N, Sulzer D, et al. Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. Elife. 2020;9:e56920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cheng J, Umschweif G, Leung J, Sagi Y, Greengard P. HCN2 Channels in Cholinergic Interneurons of Nucleus Accumbens Shell Regulate Depressive Behaviors. Neuron. 2019;101:662–72.e5.

    Article  PubMed  CAS  Google Scholar 

  91. Ahmed NY, Knowles R, Liu L, Yan Y, Li X, Schumann U, et al. Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder. Front Cell Dev Biol. 2023;11:1112062.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, et al. Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat. 2011;5:6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci. 2008;28:10814–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Inoue R, Suzuki T, Nishimura K, Miura M. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum. Neuropharmacology. 2016;105:318–28.

    Article  PubMed  CAS  Google Scholar 

  95. Friedman A, Hueske E, Drammis SM, Toro Arana SE, Nelson ED, Carter CW, et al. Striosomes mediate value-based learning vulnerable in age and a Huntington’s disease model. Cell. 2020;183:918–34.e49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development. 2008;135:3301–10.

    Article  PubMed  CAS  Google Scholar 

  97. Mao X, Fujiwara Y, Orkin SH. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA. 1999;96:5037–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  PubMed  CAS  Google Scholar 

  99. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13:195–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18:527–35.

    Article  PubMed  CAS  Google Scholar 

  101. Haghdoust H, Janahmadi M, Behzadi G. Physiological role of dendrotoxin-sensitive K+ channels in the rat cerebellar Purkinje neurons. Physiol Res. 2007;56:807–13.

    Article  PubMed  CAS  Google Scholar 

  102. Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR. Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci. 2012;32:46–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates, 2nd Edition. ed., San Diego (CA): Academic Press; 2001.

  104. Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18:91–3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the imaging facility at the IBDM, member of the National Infrastructure France-BioImaging (https://ror.org/01y7vt929) supported by the French National Research Agency (ANR-24-INBS-0005 FBI BIOGEN), and the IBDM mouse facility.

Funding

This work received support from the French government under the Programme “Investissements d’Avenir”, Initiative d’Excellence d’Aix-Marseille Université via A*Midex funding (NeuroMarseille Institute, AMX-19-IET-004; MarMaRa Institute, AMX-19-IET-007), the French National Research Agency (ANR) “TSHZ3inASD” project grant n°ANR-17-CE16-0030-01 (to LF and LK-LG), the Fédération pour la Recherche sur le Cerveau (to LF), the Centre National de la Recherche Scientifique (CNRS), and Aix-Marseille University. JM and JG were supported by PhD grants from the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation.

Author information

Authors and Affiliations

Authors

Contributions

JM, JG, PS and XC performed the histological experiments and the quantitative analyses. JM and PG performed the patch-clamp experiments and analyzed the electrophysiological data. JM, JG and XC generated and maintained the transgenic mouse lines. FC performed western blot experiments. AF performed the qRT-PCR experiments and analyzed the data. JM, JG, XC and AF performed mouse genotyping. LK-LG, LF, XC and PG conceived the project, supervised the work and wrote the paper. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Laurent Fasano, Xavier Caubit or Paolo Gubellini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molitor, J., Graniou, J., Salin, P. et al. Altered striosome-matrix distribution and activity of striatal cholinergic interneurons in a model of autism-linked repetitive behaviors. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03208-5

Search

Quick links