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Investigating similarities and differences between alcohol use disorder (AUD) and obesity is important because both AUD and
obesity are public health concerns and share neurobiological and periphery-brain mechanisms. Furthermore, AUD and obesity
often present with similar medical consequences related to organ damage, including liver and cardiovascular diseases. There is also
growing evidence of changes in alcohol drinking in people who undergo bariatric surgery for obesity. In this non-systematic critical
review, we identified relevant articles through PubMed searches, previous knowledge, and recursive reference searching. A librarian
also used PubMed and Google Scholar for additional relevant articles, using terms such as alcohol, metabolic disorders, obesity,
glucagon-like peptide-1 (GLP-1), bariatric surgery, and gut-brain axis. We provide an overview of the neurobiological,
pathophysiological, neuroimaging, and clinical features related to the overlap and crosstalk between AUD and obesity. We also
provide a summary of the currently approved medications for obesity and those for AUD and note the potential for some of these
medications to work for both disorders. Specific to the latter point, we place emphasis on GLP-1 therapies, given their recent
approval for weight loss and the growing evidence suggesting their potential efficacy for AUD and other addictions. We further
review studies of the relationship between bariatric surgery and AUD and discuss potential mechanisms and future directions. In
summary, studying the overlap between obesity and AUD may shed light on the mechanisms underlying the development and
maintenance of both diseases. This knowledge, in turn, may help identify new therapeutic targets for AUD, and possibly comorbid
obesity and/or other metabolic disorders.
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INTRODUCTION
Approximately 42% of adults in the United States have obesity [1],
and 10% meet criteria for alcohol use disorder (AUD) [2]. An
estimated 8 million adults (approximately 3% of the United
States adult population) have obesity and drink alcohol heavily [3].
This comorbidity is particularly alarming given that AUD and
obesity independently contribute to a host of comorbidities,
including cardiovascular disease, diabetes, liver disease, and
cancer [4, 5]. Although on the surface, both diseases seem to
arise from ‘over-consumption’ – either of food or alcohol – their
etiologies are far more complex than simply eating or drinking too
much. Obesity, defined as a body mass index (BMI) greater than
30 kg/m2, results from the storage of excess energy in the form of
adipose tissue [6]. How this excess energy comes to be stored by
an individual, however, is not a simple matter, reflecting a
multitude of biological, psychological, and environmental factors
that predispose to or protect from obesity. AUD, in contrast,
results from “a problematic pattern of alcohol use leading to
clinically significant impairment or distress”, as defined by the
DSM-5 [7]. As with obesity, how a pattern of alcohol use becomes
problematic also reflects a complex interaction of biological,

psychological, and environmental factors, which predispose to or
protect from AUD.
Critically, research has shown remarkable overlap in the

biological, psychological, and environmental determinants of
AUD and obesity. AUD and obesity not only share overlapping
neurocircuitry within the brain’s reward and appetitive pathways,
but are also influenced by similar neuroendocrine and neuroim-
mune signaling pathways. As a result, AUD and obesity often
respond similarly to treatments that target their common
pathophysiologies, and interventions for one disease can often
have consequences for the other. The goal of this narrative critical
review is thus to investigate the similarities and differences in AUD
and obesity’s causes and sequelae, with an eye toward identifying
novel interventions that reduce the consequences of these two
diseases for personal and public health.
We identified relevant articles through PubMed searches,

previous knowledge, and recursive reference searching. A librarian
also used PubMed and Google Scholar for additional relevant
articles, using terms such as alcohol, metabolic disorders, obesity,
glucagon-like peptide-1 (GLP-1), bariatric surgery, and gut-brain
axis. Our search did not include specific inclusion/exclusion
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criteria, nor did we apply timeframe constraints. While this
approach might not be free from potential bias, we envisioned
this narrative overview of the literature as a Critical Review, that
identifies dominant, overlapping themes of AUD and obesity.

ENVIRONMENTAL AND GENETIC CONTRIBUTORS TO AUD AND
OBESITY
Owing largely to advancements in neuroscience and the
development of effective biologically-based treatments (particu-
larly pharmacotherapies), recent decades have seen remarkable
changes in public opinion regarding the etiology of AUD and
obesity [8–10]. Although significant stigma remains around both
diseases [11–13], there has been a steady shift away from
attributing AUD and obesity exclusively to individual failings of
willpower or gluttony toward an understanding that both diseases
arise from the multifactorial influence of genetics, environment,
neurobiology, and culture.
The past two decades have witnessed an explosion of research

on the genetics of obesity and AUD, with both shown to have
substantial genetic heritability. The heritability of obesity is
approximately 40–70%, with numerous genetic loci identified by
genome-wide association studies [14]. Likewise, AUD is heritable
(approximately 50%), although with a smaller number of loci as-
yet identified [15, 16]. Although some epidemiological studies
have provided support for a link between family history of alcohol
problems and obesity, especially in women [17], the genetic
correlation of AUD and obesity has been reported to be near zero
[18, 19]. This is surprising given their overlapping pathophysiol-
ogies. More recently, evidence has emerged that the two diseases
may have substantial genetic overlap, but with many of their
shared gene variants having discordant (opposite) effects. For
example, while the polygenic overlap of AUD and BMI is
approximately 81%, only 48% of their shared loci have concordant
effect directions [20, 21]. This finding may be critical to future
efforts at identifying which obesity pharmacotherapies may be
repurposed for AUD and vice versa.
As with genetics, significant progress has been made toward

understanding how environmental and sociocultural factors
influence AUD and obesity, although attention to specific
environmental factors often differs between the two diseases.
For example, the past decade has seen significant changes in the
awareness that ‘built environment’ and access to nutritious foods
(e.g., ‘food deserts’) greatly influence the development of obesity
[22–24], but relatively less attention has been paid to evidence
that access and availability of alcohol promotes problematic
drinking [25, 26]. Furthermore, it is well-established that social
factors and social networks play a role in both AUD and obesity; in
fact, they influence alcohol consumption [27], and have effects
that may be either obesogenic or protective [28–30]. More
broadly, it is important to recognize that in addition to genetic
and biological factors, social determinants of health, including
socioeconomic status, employment, education, housing, and
trauma history play a critical role in the development and
maintenance of AUD and obesity. Therefore, prevention of chronic
diseases like AUD and obesity should include the development of
more and better community and national programs and policies
aimed at addressing the social determinants of health that affect
AUD and obesity and the associated medical consequences. This
requires a comprehensive approach that includes not only
biological but also social, environmental, and psychological factors
[31, 32].
Notwithstanding their uneven application across obesity and

AUD, we are encouraged by increased awareness that socio-
cultural factors considerably influence the development and
course of both diseases. The present review, however, does not
cover environmental, sociocultural, or genetic factors contributing
to AUD and obesity, nor does it discuss related clinical

phenotypes, including eating disorders, or the debate about
whether obesity results from ‘food addiction’ [33, 34]. Rather, our
focus is on how AUD and obesity’s shared neurobiological
mechanisms, clinical features, and responses to extant treatments
may inform our understanding of these two diseases, in the hope
of highlighting new research opportunities and therapeutic
targets that may ultimately lessen the burden of AUD and obesity.

Clinical consequences of AUD and obesity
Both AUD and obesity lead to several medical consequences. AUD
is not solely a mental health but a “whole body” disorder, playing
a causal role in more than 200 diseases, injuries, and other health
conditions [35, 36]. Similarly, obesity plays a causal role in the
development of several diseases [37]. One might postulate a
simple model whereby the shared negative health outcomes of
AUD and obesity result from an increase in caloric intake with
heavy alcohol consumption which then promotes the develop-
ment of obesity. This is unlikely, however, as experimental and
epidemiological findings suggest that excess energy from alcohol
has a relatively greater effect on non-daily alcohol drinkers than in
daily heavy drinkers [38].
AUD and obesity are responsible for significant organ damage

and consequent medical complications, including (but not limited
to) on the liver, gut, pancreas, nervous system, cardiovascular
system, endocrine system, and immune function, plus increased
risk for other medical conditions like cancers [36, 39]. The
mechanisms underlying these interactions are complex and not
fully understood; some are distinct to AUD or obesity, while others
overlap. Some alcohol-associated organ damage is related to the
direct toxic effects of alcohol on cells, tissues, and organs, while
some obesity-related medical consequences are attributed to
increased fat mass and/or increased release of peptides from
enlarged fat cells [37]. By contrast, inflammation, and especially
low-grade inflammation, as well as dysregulated immunity (e.g.,
altered leucocyte counts as well as cell-mediated immune
responses), is shared between AUD and obesity, contributing at
multiple levels to their related medical complications, but also
representing potential treatment targets [40, 41]. For comprehen-
sive reviews on mechanisms and signaling pathways related to
these complications, see e.g. [37, 39] for obesity and [36] for AUD.
Some of the medical consequences linked to AUD or obesity arise
from their comorbidities, either directly or indirectly. For example,
both AUD and obesity are directly responsible for hypertension
and cardiomyopathies, with hypertension potentially further
exacerbating cardiomyopathies.
Clinically, there are some distinct features in the management

of patients with AUD and those with obesity. Obesity-related
medical consequences are typically chronic in nature and acute
manifestations are secondary to the underlying organ damage.
For example, obesity leads to cardiovascular disease (CVD), which
in turn may lead to acute myocardial infarction (MI). Another
example is that obesity leads to diabetes which in turn may lead
to e.g., acute diabetic ketoacidosis. While these scenarios are also
observed in people with AUD (AUD→ CVD→MI; AUD → diabetes
→ acute diabetic ketoacidosis, etc.), AUD and alcohol drinking are
also directly responsible for acute medical conditions, including
after acute alcohol intoxication [42]. For example, while AUD
chronically increases the risk of diabetes, acute alcohol intoxica-
tion (even in absence of AUD) may cause hypoglycemia. In
addition to alcohol-related gastrointestinal chronic conditions like
peptic ulcer disease and esophagitis, acute alcohol intoxication
may lead to acute esophagitis and gastritis with severe nausea
and vomiting and in some cases life-threating complications due
to e.g., bleeding and Mallory-Weiss syndrome (tear or laceration of
the gastroesophageal junction) [42]. These medical emergencies
are often the result of an ‘acute on chronic’ worsening of alcohol-
associated medical complications, e.g., acute on chronic gastritis,
hepatitis, pancreatitis.
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Given that AUD and obesity are common and frequently co-
exist, the related medical consequences often arise from their
additive or synergistic effects. For example, hypertension and
cardiomyopathy are common in people with obesity and/or AUD;
weight loss as well alcohol abstinence or even reduction are
associated with improvement in cardiovascular comorbidities
[37, 43, 44]. Importantly, patients with both AUD and obesity are
even more likely to have comorbid cardiovascular complications
due to the dual etiology.
Hepatic diseases offer another cogent example of the dual

etiology of AUD and obesity in organ-related damage and
consequences. People with alcohol-associated cirrhosis have a
much lower life expectancy than the general population (on
average 14 years shorter for men and 16 years shorter for women)
[45]. Not only is alcohol a main cause of chronic liver disease and
acute liver failure, but also with the development of new effective
treatments for hepatitis C, alcohol has now become the leading
cause of cirrhosis and the leading indication for liver transplanta-
tion in the United States [46]. Like alcohol use, obesity in the
United States has also increased, leading to an increase in the
previously named non-alcoholic fatty liver disease (NAFLD)
[39, 47]. Several studies have shown accelerated liver disease in
people with metabolic syndrome (central adiposity, diabetes,
hypertension, and dyslipidemia) who also drink alcohol [48]. For
example, a study from Northern Europe showed a ~ 7‐fold
increase in incidence of severe liver disease in people with
greater central adiposity who also consumed >1 and >2 alcohol-
containing drinks/day for women and men, respectively [49]; such
increase approached 20-fold in people with diabetes versus those
without. In other words, not only are AUD and obesity two leading
causes of liver diseases, but also their frequent comorbidity
contributes to accelerated development and worsening of liver
disease. The increased knowledge of overlapping biological
processes that contribute to both NAFLD and alcohol-asso-
ciated/related liver disease (ALD), coupled with the increased
clinical and public relevance of this dual etiology, has led to a
recent effort across multiple international liver societies to
develop a new nomenclature. NAFLD has been replaced with
metabolic dysfunction-associated steatotic liver disease (MASLD),
and a new category, outside of pure MASLD, was created and
named MetALD to describe those with MASLD who consume
excessive amounts of alcohol (140 and 210 g/week for women and
men, respectively) [50]. This new nomenclature acknowledges the
common clinical feature of concomitant metabolic- and alcohol-
related contributions to hepatic steatosis and subsequent liver
inflammation, damage, and degeneration. This interdisciplinary
approach may serve as a model for studying other medical
conditions due to AUD and obesity comorbidity.
It is also key to consider the important role of sex differences in

the development and clinical manifestations of both obesity and
AUD, including differences in alcohol and food metabolism. In
fact, not only sex differences exist in obesity and AUD per se, but
also treatment response may vary as a function of sex.
Furthermore, growing evidence shows sex differences in the
medical consequences of these chronic diseases, including
obesity-related conditions like obstructive sleep apnea and heart
failure [51], and AUD-related conditions like ALD [46].

NEUROSCIENTIFIC KNOWLEDGE AND SHARED MECHANISMS
OF AUD AND OBESITY
Both AUD and obesity are characterized by compulsive con-
summatory behaviors that persist despite adverse consequences,
at least partially consistent with intersecting neurobiological
mechanisms [33, 52]. Emerging research highlights common brain
circuitries that contribute to these behaviors [33, 52]. Under-
standing the circuit-based mechanisms of AUD and obesity can
provide valuable insights into their shared pathophysiology. This

section will put special emphasis on GLP-1-related mechanisms in
obesity and AUD, given the growing evidence of its important role
in both disorders and the related treatment implications, as
discussed later.

Mechanisms related to reward processing and dopamine-
related pathways
Consumption of alcohol and energy-dense palatable foods
increases the activity of dopamine neurons in ventral midbrain,
leading to enhanced dopamine transmission in the nucleus
accumbens (NAc) and other areas of the striatum. Dopamine-
dependent and -independent signaling in the NAc and dorsal
striatum regulate alcohol and palatable food consumption.
Furthermore, prolonged alcohol drinking and weight gain
resulting from overeating of energy-dense food are associated
with deficits in mesostriatal dopamine transmission [53, 54],
possibly involving mechanisms that originate in the gastrointest-
inal tract [55–58]. Positron emission tomography (PET) studies
have established that striatal Dopamine D2 receptor (D2R)
availability is decreased in individuals with AUD and obesity
[59–64]. Disrupted D2R signaling in the striatum is thought to play
an important role in AUD and diet-induced obesity. Indeed, the
TaqIA allele of the DRD2/ANKK1 gene locus, which results in
reduced striatal D2R expression, is associated with increased
predisposition to AUD and obesity [65–67]. D2R gene knockout
mice show increased aversion to alcohol, reduced alcohol
consumption, and reduced sensitivity to the locomotor impairing
effects of alcohol [68]. Furthermore, conditional deletion of D2Rs
from striatal medium spiny neurons in mice reduces their
sensitivity to the locomotor-impairing effects of alcohol and
precipitates compulsive-like alcohol consumption, as reflected by
drinking despite negative consequences [69]. In rats, RNA
interference-mediated knockdown of D2Rs in the striatum
similarly rendered consumption of palatable food similarly
resistant to the appetite-suppressing effects of punished-
associated conditioned stimuli [70]. These findings suggest that
striatal D2R signaling contributes to the compulsive nature of both
AUD and obesity. Notably, GLP-1 receptor agonists (GLP-1RAs)
modulate dopamine signaling in the striatum and other brain
regions [71–83], which is thought to contribute to their inhibitory
effects on alcohol and food consumption.

Mechanisms related to stress, including hypothalamic and
extrahypothalamic pathways
Stress plays an important role in the etiology and maintenance of
both AUD and obesity [84–86]. The hypothalamic-pituitary-adrenal
(HPA) axis mediates physiological and behavioral adaptations to
prolonged stress, and chronic activation of this system can drive
maladaptive behaviors, including over-consumption of alcohol
and palatable food [87, 88]. In AUD, stress-induced activation of
the HPA axis is thought to enhance alcohol craving and
consumption in part to obtain the transient stress-alleviating
actions of alcohol [89, 90]. Similarly, chronic stress is associated
with overeating, particularly of palatable high-energy foods, a
phenomenon sometimes referred to as “comfort eating” [91–93].
The central nucleus of the amygdala (CeA) is a core component of
the extended amygdala and a critical node linking stress and
reward pathways [94]. Dysregulated neural activity in the CeA is
thought to contribute to stress-enhanced consumption of alcohol
and palatable food through HPA-dependent and -independent
mechanisms [95–99]. The bed nucleus of the stria terminalis
(BNST) is another component of the extended amygdala heavily
implicated in stress-related alcohol and palatable food consump-
tion [100–105]. Neurons in the CeA and BNST express GLP-1Rs,
and both structures are thought to regulate the effects of GLP-
1RAs on the HPA axis and consummatory behaviors [106–114].
The hypothalamus is essential for maintaining energy home-

ostasis [115]. Major hypothalamic nuclei, including the arcuate
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nucleus, paraventricular nucleus, and lateral hypothalamus,
integrate energy-related signals from peripheral hormones,
including leptin, ghrelin, insulin, glucose-dependent insulinotropic
polypeptide (GIP), and glucagon, to regulate feeding behavior and
energy expenditure [115]. Weight gain resulting from the over-
consumption of palatable food is associated with structural and
functional adaptions in the hypothalamus, particularly in the
lateral hypothalamus, which contribute to the development of
compulsive-like food intake [116–120]. Alcohol drinking also
affects hypothalamic function and can alter hunger and satiety
signals to promote food consumption [121–123], while hunger-
related hormones that act on the hypothalamus can stimulate
alcohol craving and intake [122, 124]. The lateral hypothalamus
also regulates alcohol seeking and consumption [125–128]. GLP-
1R signaling in the lateral hypothalamus and other hypothalamic
nuclei regulates alcohol and food consumption [129–132].

Mechanisms related to satiety and appetite
The nucleus of the solitary tract (NTS) and area postrema (AP) in
the hindbrain contain transcriptionally heterogeneous popula-
tions of neurons that regulate satiety-related suppression of
appetite, food avoidance, malaise, and nausea [133–136]. Diet-
induced adaptations in NTS and AP neurons are thought to
contribute to the development of overeating and obesity
[133, 137–139]. Lesioning AP neurons increases alcohol consump-
tion in rats through an unclear mechanism independent of
alcohol-induced aversion or nausea [140]. Little is currently known
about the role of NTS neurons in regulating alcohol consumption,
although these cells regulate the consumption of other addictive
drugs [141]. Notably, the NTS contains a population of
preproglucagon-producing (PPG+) neurons that are the predomi-
nant or exclusive source of GLP-1 in the brain [142–145]. The NTS
and AP also contain high concentrations of GLP-1Rs [146]. It was
recently established that activation of GLP-1R-expressing (GLP1R+)
neurons in the NTS triggered satiety and reduced food intake
independent of aversion, while activation of GLP1R+ neurons in
the AP elicited aversion accompanied by suppressed food intake.
Little is currently known about the role of GLP1R+ neurons in the
NTS and AP in regulating compulsive alcohol and food
consumption.
In addition to PPG+ neurons in the NTS, GLP-1 is also produced

by entero-endocrine cells in the gastrointestinal tract [147–149].
Peripheral GLP-1 is rapidly degraded by dipeptidylpeptidase-4
(DDP-4) and is unlikely to accumulate to levels sufficient to
stimulate brain GLP-1R signaling [142–145]. However, peripheral
GLP-1 can stimulate GLP-1R-expressing nodose (vagal) sensory
neurons that innervate the gastrointestinal tract and hepatic
portal vein and transmit feeding-related information to the NTS
[150–153]. GLP1R+ nodose neurons play an important role in
regulating meal termination and the appetite-suppressing effects
of peripheral GLP-1 [154–159]. Impaired transmission of satiety-
related information from the gastrointestinal tract to the NTS by
nodose neurons may contribute to diet-induced obesity
[160–162]. Nodose sensory neurons have also been implicated
in the regulation of alcohol consumption [163], although few
studies have directly investigated peripheral sensory mechanisms
of alcohol reinforcement. Currently, it is unclear whether the
suppression of alcohol and palatable food consumption by GLP-
1RAs results from activation of GLP1R+ nodose neurons, stimula-
tion of GLP1R+ neurons in the brain or a combination of both.

Prefrontal cortex mechanisms related to cognitive control/
behavioral inhibition
In individuals with obesity and substance use disorders including
AUD, increased prefrontal cortex (PFC) activity has been noted in
responses to both food and drug cues respectively [164, 165].
Given this and the established role of the PFC in cognitive control
and attention [166], it is notable that some studies have found

evidence that both conditions are associated with decreased
behavioral inhibition in the presence of either food- or alcohol-
stimuli as well as altered PFC activity (particularly in the
dorsolateral PFC and anterior cingulate cortex) while performing
food- or alcohol-related cognitive control neuroimaging tasks (for
review, see [167]). Regardless of whether this PFC dysfunction is a
cause or consequence of either obesity or AUD, its implications for
treatment adherence and persistence are clear: whether in weight
loss for obesity or reducing alcohol consumption in the context of
AUD, more cognitive control and behavioral inhibition is better
than less. Cognitive and behavioral treatments that emphasize the
development of cognitive control and behavioral inhibition have
demonstrated efficacy in promoting weight loss and reducing
alcohol consumption [168–170], and neuromodulation of the
dorsolateral PFC via transcranial magnetic stimulation (TMS) has
exhibited potential efficacy for both conditions as well [171, 172]
(see neuromodulation section below).

Neuroimaging studies of AUD and obesity
There exist expansive human neuroimaging literature examining
obesity and AUD. Although a thorough analysis of the similarities
and differences among these literatures is beyond the scope of
this review, a few general comments are worth making here. First,
PET and functional magnetic resonance imaging (fMRI) studies
using visual, olfactory, and gustatory stimuli overwhelmingly find
that perception of food and alcohol cues activates overlapping
distributed neural networks. These include striate and extrastriate
visual areas to process visual features, gustatory and interoceptive
regions in the insula to predict taste and the effects of food and
alcohol on the body, and appetitive and reward-related regions in
striatum and orbitofrontal cortex that represent the motivational
salience and anticipated hedonic value of food and alcohol cues
[164, 173–177].
Although neuroimaging studies have largely examined obesity

and AUD phenotypes separately, their findings are generally
overlapping and, within the limitations of neuroimaging’s spatial
and temporal resolution, highly consistent with the preclinical
studies reviewed above. For example, human PET and fMRI studies
do not typically report engagement of sub-voxel-sized hypotha-
lamic or brainstem sub-nuclei that powerfully impact food and
alcohol consumption, but they do point to larger structures
highlighted in preclinical studies. These include the ventral and
dorsal striatum, anterior cingulate, orbitofrontal cortex, and
amygdala, which typically exhibit greater activation to food or
alcohol stimuli in people with obesity or AUD compared to
controls [164, 173, 175, 178]. This presents an important question:
if human neuroimaging is only able to measure a subset of the
known circuitry underlying appetitive responses to food and
alcohol, why bother? The answer is that it is challenging to reliably
measure certain important phenomena in animals, such as the
phenomenological experience of food or drug craving during
voluntary abstinence [179–181]. Here, again, evidence suggests
that the neural substrates of alcohol and food craving are largely
overlapping, encompassing the ventromedial/orbitofrontal PFC,
dorsal and subgenual anterior cingulate cortex, ventral striatum,
parietal and temporal areas, cerebellum, and amygdala, with
machine-learning classifier algorithms trained on one class of
stimuli (e.g., food) reliably predicting craving for the other class
(e.g., alcohol), and vice versa [182].

TREATMENTS OF AUD AND OBESITY
Behavioral and pharmacological interventions, in addition to
lifestyle modifications, constitute the mainstream treatment
options to manage AUD as well as obesity.
For AUD, Alcoholics Anonymous and 12-Step facilitation

treatments and other similar programs have historically played a
key role in helping people maintain alcohol abstinence and
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reduce alcohol drinking [183]. Evidence-based behavioral treat-
ments for AUD encompass brief interventions (including as part of
the Screening, Brief Intervention, and Referral to Treatment (SBIRT)
approach), motivational interviewing, cognitive behavioral thera-
pies (CBT), contingency management, and mindfulness-based
interventions [184–186]. Medications approved by the Food and
Drug Administration (FDA) to treat AUD are naltrexone, acampro-
sate, and disulfiram. A few other medications have also shown
efficacy and are sometimes used off-label for AUD, including
topiramate, gabapentin, baclofen, and varenicline [186–188].
Optimal approach, albeit rarely implemented in clinical practice,
would include pharmacotherapy plus an evidence-based beha-
vioral therapy [189].
Many patients with AUD or other substance use disorders report

an increase in food cravings and weight gain upon cessation of
alcohol consumption and drug use [190–192]. The various
accounts offered for this phenomenon generally fall into two
camps [191]. One hypothesis asserts that individuals with
substance use disorders have a strong neurobiological propensity
for compulsive/addictive behaviors that include overeating, and
that food motivation, which is often suppressed by the effects of
alcohol and drugs, returns in force upon abstinence. An alternative
‘addiction transfer’ hypothesis asserts that following cessation of
substance use, individuals may replace drug rewards with other
substances (e.g., food) which stimulate similar neurobiological
reward pathways. Although a full discussion of this topic is beyond
the scope of this review, it is noteworthy that both accounts
ground the phenomenon of increased food craving following
cessation of alcohol or drug use in the shared neurobiological
bases of obesity and alcohol and other substance use disorders.
The main treatment modalities for obesity considerably overlap

with those used for AUD. Behavioral treatments for obesity are
often delivered as part of multicomponent programs such as
Weight Watchers and Diabetes Prevention Program and include
goal setting, monitoring and adjustment of calorie intake and
physical activity, stimulus control, stress management, and CBT
[193–195]. FDA-approved medications for obesity include phen-
termine, phendimetrazine, and diethylpropion for short-term use
and phentermine-topiramate, naltrexone-bupropion, orlistat, and
more recently the GLP-1RAs liraglutide and semaglutide, and the
GLP-1/GIP dual receptor agonist tirzepatide for long-term use.
Other medications such as metformin, topiramate, and bupropion
are also used off-label for weight loss [195, 196]. It is particularly
intriguing that pharmacotherapies for AUD, e.g., naltrexone and
topiramate, also reduce appetite and promote weight loss, a
clinical observation consistent with the neurobiological overlap
between AUD and obesity discussed before. Moreover, emerging
research suggests that feeding-related and metabolic endocrine
pathways such as ghrelin and GLP-1 could serve as promising
pharmacotherapeutic targets for AUD [197].
The development, approval, and rapid clinical adoption of GLP-

1RAs like semaglutide and tirzepatide has revolutionized the
medical management of obesity and comorbid conditions such as
diabetes, obstructive sleep apnea, liver and cardiovascular
diseases [198, 199]. Following food intake, GLP-1 stimulates
insulin secretion and inhibits glucagon release from the pancreas,
hence regulating glucose homeostasis. Activation of GLP-1Rs also
delays gastric emptying, reduces gastrointestinal motility, and
overall suppresses appetite and food intake [200]. Compared to
the first generation of GLP-1RAs (e.g., exenatide), newer GLP-1RAs
(e.g., semaglutide) and poly agonists (e.g., tirzepatide, retatrutide)
have higher affinity for the GLP-1R, longer half-lives, and are more
potent, leading to high efficacy for glucose control and weight
reduction [201–203].
Growing evidence suggests that GLP-1RAs also reduce alcohol

use and may be repurposed to treat AUD. Preclinical experiments
across different species, using various models and conducted by
independent laboratories, show that central or peripheral

administration of GLP-1RAs reduce alcohol intake and other
related outcomes such as alcohol-induced conditioned place
preference [197, 204, 205]. While initial studies were done with
first-generation GLP-1RAs, more recent work has consistently
found a robust effect with semaglutide reducing binge-like
alcohol drinking in mice [110], operant self-administration, alcohol
intake, and relapse-like drinking in rats [72, 110], and alcohol
consumption in alcohol-preferring vervet monkeys [206]. In
addition to their impact on appetite and consummatory behaviors
[207, 208], several mechanisms have been proposed to mediate
GLP-1RAs’ effects on alcohol intake, including interactions with
reward-related pathways [209–212], stress [213–215], cognition
and neuroprotection [216–218], pain and aversion [113, 219, 220],
and inflammation [221–223].
Clinical work on the potential efficacy of GLP-1RAs for AUD is

under way. In a 26-week clinical trial, exenatide 2mg/week had no
significant effect on the primary outcome of alcohol drinking in
the full sample (dropout rate: 54.3%), while it reduced alcohol cue-
reactivity (fMRI) and dopamine transporter availability (SPECT) in
the brain. Exploratory analyses found a significant reduction in
alcohol intake among exenatide-treated participants who had a
BMI > 30 kg/m2, whereas an opposite effect was found among
those with a BMI < 25 kg/m2 [224]. In a secondary analysis of a 12-
week smoking cessation trial, dulaglutide 1.5 mg/week signifi-
cantly reduced weekly alcohol consumption (most participants
had a BMI > 29.9 kg/m2, and all received varenicline and
behavioral counseling) [225]. Furthermore, recent case series and
analyses of social media posts indicate that patients receiving
semaglutide or tirzepatide report beneficial effects on alcohol-
related outcomes [226–229]. With the exponential growth in
clinical use of GLP-1RAs, pharmacoepidemiological studies have
also analyzed the association between receipt of GLP-1RAs and
alcohol-related outcome, using real-world electronic health
records. A recent study using aggregate data from 61 healthcare
organizations found that receipt of semaglutide, compared to
other non-GLP-1RA anti-obesity and anti-diabetes medications,
was associated with reduced risks of incident and recurrent AUD
[230]. Other large-scale studies using different datasets have also
found beneficial effects with GLP-1RAs on other outcomes,
including the frequency and quantity of alcohol use as measured
by alcohol use disorders identification test-consumption (AUDIT-C)
[231], alcohol-related events [232], intoxication [233], and
hospitalizations [234]. While these observational findings are
promising, randomized controlled trials (RCTs) are needed to draw
conclusions [235, 236]. A recent RCT showed that low-dose
semaglutide was effective, compared to placebo, in reducing
laboratory alcohol self-administration, as well as drinks per
drinking days, heavy drinking, and alcohol craving during the
2-month trial duration [237]. Additional ongoing clinical trials are
studying GLP-1RAs, mostly semaglutide, in individuals with AUD
and comorbid conditions. Beyond the GLP-1 system, several other
feeding/metabolic endocrine pathways have also shown promise
as potential pharmacotherapeutic targets for AUD and/or obesity,
including (but not limited to) ghrelin [238–243], orexins [244–248],
amylin [249–252], and fibroblast growth factor 21 [253–256].
Further research is needed to investigate the safety and efficacy of
novel medications targeting these and other systems for the
treatment of AUD and/or obesity.
Beyond behavioral and pharmacological treatments, growing

evidence supports the potential use of neuromodulation techni-
ques such as repeated TMS (rTMS), transcranial direct current
stimulation (tDCS), deep brain stimulation, and vagus nerve
stimulation, as emerging treatments for addictions, including AUD.
Among these promising neuromodulation approaches, rTMS is the
most investigated technique, using several coils (including the
most common 8-coil and the H-coil for deep-TMS) and targeting
different brain regions, the most common being the dorsolateral
PFC. Of note, the salience network represents a hub of several
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circuits and networks associated with AUD and recent evidence
suggests that rTMS targeting the salience network may be
particularly promising for AUD [257]. Similarly, growing evidence
suggests a role of neuromodulation approaches for obesity. While
previous systematic reviews did not observe clear evidence for
these approaches with obesity [258], more recent meta-analytical
evidence based on RCTs supports that rTMS as well as tDCS lead
to weight loss in people with obesity, possibly via a reduction in
food craving [172]. Nonetheless, larger RCTs are needed to assess
the potential of rTMS and other neuromodulation approaches for
treating AUD and obesity.

BARIATRIC SURGERY FOR OBESITY AND INCREASED RISK OF
AUD
Bariatric surgery is the most effective long-term treatment for
severe obesity [259], with over two million procedures in the past
decade in the United States [260]. As prevalence of severe obesity
grows and new guidelines endorse these surgeries for pediatric
patients [261], procedure volumes are expected to climb. In the
United States today, sleeve gastrectomy (SG) accounts for ~70%
and Roux-en-Y gastric bypass (RYGB) for 27% of cases [262].
Laparoscopic gastric banding (LAGB), has dwindled to less than
1% of surgeries because of modest weight loss and greater long-
term weight regain [262]. LAGB merely constricts gastric volume,
whereas SG (resection of ~70–80% of the stomach, leaving a
tubular remnant) and RYGB (creation of a small gastric pouch
anastomosed to the jejunum) fundamentally change gastrointest-
inal anatomy and physiology. These alterations enhance signals
such as GLP-1 [263, 264] reshaping appetite, reward processing,
and glycemic control, earning SG and RYGB the label “metabolic
surgeries.”
The concept of surgically treating obesity traces back to mid-

20th-century observations that patients who underwent partial/
total gastrectomy for ulcers or cancer often shed substantial
weight [265]. Those same gastric resections, however, were
accompanied by unexpectedly high rates of AUD [266, 267]. Only
in the late 2000s was a similar association recognized for bariatric
procedures [268].
Preclinical work supports a causal link. In several studies, rats

with obesity that received RYGB consumed more alcohol or
worked harder for oral [57, 269, 270] or intravenous [271, 272]
alcohol than sham-operated controls suggesting a biological
driver of postoperative alcohol misuse. In rodents, SG does not
increase alcohol consumption [273–275] (for a detailed review, see
also [276]). These divergent findings in rodent models hint that
the magnitude and/or mechanisms related to AUD risk may vary
by procedure.
One of the earliest clinical signals came from an alcohol

treatment program that noted disproportionate enrollment of
RYGB patients [277]. Two prospective cohorts in the United
States subsequently documented a near-doubling in the incidence
of AUD [278] and increased frequency of alcohol use [279] two
years after RYGB versus LAGB. At five-year follow-up, ~20% of
RYGB patients met AUD criteria determined by the Alcohol Use
Disorders Identification Test [280]. A Swedish registry (n= 12,277,
1980–2006) showed that RYGB was associated with a two-fold
greater risk of inpatient AUD treatment than LAGB [281] and the
controlled Swedish Obese Subjects study confirmed an elevated
risk after gastric bypass [282]. A Danish national cohort
(n= 14309; 95% RYGB) extended these findings, revealing a 7%
higher hazard of AUD five years post-surgery compared with both
pre-surgery values and nonsurgical controls with obesity [283].
Because SG became widespread after 2014, the data set in
humans is smaller than that for RYGB, but several [284–286]
though not all [287–289] studies suggest SG approximates RYGB
in raising AUD risk, particularly for de novo post-operative alcohol
problems.

Multiple, potentially interacting mechanisms have been pro-
posed for the increased risk of AUD after metabolic surgery. First,
SG and RYGB accelerate alcohol absorption and reduce first-pass
metabolism by quickening gastric emptying, which result in earlier
and higher blood alcohol concentration (BAC) peaks [290–295].
Women can surpass the legal driving BAC limit (0.08%) within
minutes of consuming less than two standard drinks
[293, 294, 296]. Rapid central (brain) delivery is strongly linked
to addictive potential [297]. Furthermore, a BAC of 0.08% meets
the definition for binge alcohol drinking, which typically occurs
after women consume 4 (and men 5) standard drinks within 2 h
[298]. Therefore, RYGB/SG surgeries can turn moderate-seeming
intake into pharmacological binge episodes that foster alcohol
tolerance, which can further drive AUD [299, 300]. The magnitude
of the alcohol-pharmacokinetic changes that follow metabolic
surgeries is likely underestimated in studies that use breath
analyzers, which cannot capture the very early post-ingestion BAC
peaks after RYGB and SG [294, 301, 302].
Second, metabolic surgeries dramatically shift gut-peptide

profiles that modulate reward circuits. GLP-1 rises sharply post-
prandially [303] whereas fasting ghrelin falls (in SG and at least
early in RYGB) [304, 305]. In rodent models, enhanced sensitivity of
central ghrelin receptor (the growth hormone secretagogue
receptor (GHSR)) mediates heightened motivation for alcohol
[271]. Remarkably, 40-50% of patients with high-risk alcohol use
before surgery reduced drinking within the first year after RYGB
surgery [278, 306–308] yet AUD risk surges two or more years later
[278, 279, 284]. This temporal pattern supports the idea of
dynamic neuroadaptations —initial peptide changes may blunt
reward [309], but chronic reductions in ghrelin, for example, could
up-regulate GHSR and later amplify alcohol seeking [303].
Third, the marked post-operative caloric restriction inherent to

SG and RYGB could sensitize mesolimbic dopamine pathways,
paralleling findings that food deprivation enhances the rewarding
effects of drugs in humans and animal models [310–312]. Finally,
obesity itself is associated with reward-circuit alterations resem-
bling those caused by AUD [64, 313], as reviewed above. Once
highly palatable foods become less reinforcing after surgery,
patients may “transfer” reward seeking to alcohol [314].
Key knowledge gaps remain. SG is linked to increased AUD in

humans but not in rodent models; resolving whether species
differences, surgical techniques, or alter alcohol pharmacokinetics
accounts for this discrepancy is essential. Another critical research
area involves surgery in the pediatric population, who as
teenagers and young adults will have a higher baseline propensity
for binge drinking. The Teen-LABS study found that 47% of
adolescents who underwent metabolic surgery screened positive
for excessive alcohol drinking or alcohol-related problems eight
years later [315]. As metabolic surgery expands in youth, clinicians
must recognize altered alcohol metabolism and implement age-
appropriate screening and counseling. Finally, growing evidence
links post-bariatric AUD to alcohol-related organ injury, including
liver disease [316, 317]. Systematic screening algorithms as well as
targeted preventive and therapeutic strategies are urgently
needed to maximize the metabolic benefits of surgery while
mitigating its unintended addiction-related harms.

OPEN QUESTIONS, CHALLENGES, AND FINAL REMARKS
This narrative critical review provides an overview of the
overlapping features of AUD and obesity (Fig. 1). AUD and obesity
are two chronic endemic diseases which share common
neurobiological mechanisms, identified in animal models and
human neuroimaging studies, and both lead to many similar
medical consequences. Another important evidence of the
overlap between AUD and obesity is that some treatment
modalities work for both weight loss and alcohol reduction.
Unfortunately, both AUD and obesity are dramatically under-
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treated and stigmatized. Our healthcare structure is based on
organ-specific specialized approaches and the focus is often
treating medical consequences rather than root causes (e.g.,
treating hypertension but ignoring the underlying AUD and/or
obesity). Second, many healthcare providers are not trained in the
screening, diagnosis, and management of these diseases,
although the addiction medicine / addiction psychiatry and
obesity medicine fields are growing. Screening for alcohol
problems is not routinely done in primary care. While weight is
routinely measured, there is rarely a focused discussion about it.
Third, patients often do not seek treatment for their obesity or
AUD, due to a variety of reasons, including denial, lack of
awareness that effective treatments exist, and the stigma
surrounding obesity and AUD. People with obesity, as well as
those with AUD, are subject to significant stigma with severe
personal, societal, and healthcare consequences [318, 319]. Stigma

causes physical and psychological harm to patients, and affected
individuals are less likely to receive adequate evidence-based care
and treatments [318, 319].
The development of GLP-1RAs as new effective treatments for

weight loss has revolutionized medicine. There is much that can
be learned and applied to the addiction field, including for AUD. A
few examples follow.

1) The treatment of obesity is changing significantly because
of the increased acceptance that it is medical condition,
rather than simply a lifestyle choice. Likewise, it is critical to
promote awareness of addiction, including AUD, as a
chronic relapsing and treatable brain disease [320–322].
This notion does not negate the important role of
environmental and social factors in AUD, but the medical
disease model of addiction highlights the need to develop

Metabolic surgery is linked
to increased AUD risk

AUD  Obesity

Brain 
Mechanisms

Reward Stress Neuroinflammation

Medical Consequences

Treatments

Behavioral
Psychological
Interventions

Pharmaco-
therapies

Neuromodulation
Techniques

Fig. 1 Overlaps, similarities and differences between alcohol use disorder and obesity. Development and course of alcohol use disorder
(AUD) and obesity share several central and peripheral mechanisms, such as dysregulations in reward processing, stress pathways,
consummatory behavior, inflammation, immunity, and endocrine systems. Some of the key brain regions with shared neurocircuitry between
AUD and obesity include ventral and dorsal striatum, extended amygdala, prefrontal cortex, hypothalamus, nucleus of the solitary tract, and
area postrema. Genetic, environmental, and psychosocial factors, some shared and some distinct, also contribute to the natural history of AUD
and obesity. While some comorbidities are more prevalent or specific to one condition, AUD and obesity lead to several overlapping medical
consequences, such as cancers, liver, gastrointestinal, and cardiovascular diseases, and disruptions in endocrine and immune systems. In
addition to lifestyle modifications, treatment options for AUD and obesity include a range of interventions. Some behavioral psychological
interventions such as motivational interviewing and cognitive behavioral therapies are used for both conditions, while others are more
specific to one (e.g., contingency management for AUD). Food and Drug Administration (FDA)-approved and off-label medications used to
treat AUD and obesity also have some commonalities (e.g., naltrexone, topiramate) and growing evidence suggests that, pending additional
evidence, anti-obesity GLP-1 therapies (e.g., semaglutide, tirzepatide) have the potential to be repurposed for AUD. Furthermore, growing
evidence supports the potential use of neuromodulation techniques such as repeated transcranial magnetic stimulation (rTMS) and others, as
emerging novel treatments for obesity as well as addictions, including AUD. Finally, preclinical and human studies suggest a link between
metabolic surgeries and increased risk of AUD.
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new treatments, including pharmacotherapies and neuro-
modulation approaches.

2) It is crucial to reduce stigma not only at the individual
patient level but also at the organizational and structural
levels, including among healthcare providers and policy
makers.

3) In addition to increasing clinicians’ awareness of AUD as a
medical disorder, an important lesson to learn from the
“GLP-1” era is that these complex multifaceted medical
conditions need to be studied and managed by multi-
disciplinary teams, not just a niche of highly specialized
providers. The use of GLP-1RAs is impacting not only obesity
medicine, but also primary care, cardiology, nephology,
hepatology, and surgery. Similarly, AUD is a “whole body”
disease, and the engagement of diverse clinicians/disci-
plines is critically important to improve the screening,
diagnosis, and management of people with AUD. Initial
efforts in this direction are under way between the
addiction and hepatology fields in managing people with
AUD and ALD [46–48, 323]; such approaches must be
expanded across other relevant disciplines. Specific to the
current efforts aimed at testing GLP-1RAs for addictions,
including AUD, safety considerations are also of paramount
importance. For example, patients with AUD may have
malnutrition or metabolic conditions that may be worsened
by these drugs e.g., loss of free fat mass. The latter is
particularly important to keep in mind in patients with AUD
and comorbid ALD who often present with sarcopenia.
Furthermore, alcohol is one of the main causes of
pancreatitis and GLP-1RAs are associated with increased
risk of pancreatitis, therefore extra caution is needed in this
patient population.

4) The often-prohibitive costs associated with the newer GLP-
1RAs for obesity serve as a reminder that similar equity
issues may rise for people with AUD, should these or other
medications be proven to be effective in AUD [235].
Therefore, it will be imperative to ensure that future new
effective treatments have a wide implementation among
people with AUD.

5) Given some challenges with accessing GLP-1RAs, e.g., due to
shortage in the market, prohibitive costs and other factors,
the obesity medicine field has observed an uptake in the
prescription of other approved medications for obesity.
While there is a need for more pharmacotherapies for AUD,
we already have FDA-approved medications for AUD
(acamprosate, disulfiram, naltrexone). Despite meta-
analytical evidence that naltrexone and acamprosate are
effective in people with AUD [324], it’s estimated that <2%
of people with AUD in the United States receive an FDA-
approved medication for AUD [325]. Therefore, it’s critical to
increase the use of FDA-approved medications for AUD for
those seeking treatment, while the research field continues
to work toward the discovery and development of
additional effective treatments.
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