Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early-life inflammation increases aggressive behavior in adult male mice through an astrocyte-neuron signaling

Abstract

Accumulating research has demonstrated a significant association between early-life inflammation and behavioral disorders later in life. However, the effects of early-life inflammation on aggressive behavior in adulthood remain poorly understood. Here, we show that early-life inflammation induced by lipopolysaccharide (LPS) upregulated neuronal dynamin-related protein 1 (DRP1) and impaired mitochondrial function in medial prefrontal cortex (mPFC) of adult mice, thereby increasing aggressive behavior in adulthood. We further identify that CCAAT/enhancer binding protein β (C/EBPβ) is the transcription factor of Dnm1l, which was activated by an increased release of lysophosphatidic acid (LPA) induced by early-life inflammation. Moreover, the overproduction of LPA was due to a specific increase in astrocyte-secreted autotaxin (ATX). Specific knockdown of astrocytic ATX reduced early-life inflammation-induced aggression in wild-type mice, but not in Thy1-C/EBPβ transgenic mice. Remarkably, coenzyme Q10 decreased early-life inflammation-induced aggressive behavior in adult mice. Altogether, these findings provide new insights into the molecular mechanisms by which early inflammation promotes aggressive behavior in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early-life inflammation exacerbates aggressive behavior by impairing mitochondrial function in adult mice.
Fig. 2: Early-life inflammation increases neuronal DRP1 expression in the mPFC of adult male mice.
Fig. 3: C/EBPβ transcriptionally activates DRP1 in mPFC neurons and mediates early-life inflammation-induced aggressive behavior in adult mice.
Fig. 4: Early-life inflammation increases LPA levels to activate C/EBPβ in the mPFC.
Fig. 5: Knockdown ATX in astrocytes decreases neuronal C/EBPβ-DRP1 axis activation.
Fig. 6: Aggression in LPS-treated Thy1-C/EBPβ transgenic mice is not affected by astrocytic ATX knockdown and coenzyme Q10 (CoQ10) decreases early-life inflammation-induced aggressive behavior in adult mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chaplin AB, Jones PB, Khandaker GM. Association between common early-childhood infection and subsequent depressive symptoms and psychotic experiences in adolescence: a population-based longitudinal birth cohort study. Psychol Med. 2020;52:1–11.

    PubMed  Google Scholar 

  2. Dinel A-L, Joffre C, Trifilieff P, Aubert A, Foury A, Le Ruyet P, et al. Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood. J Neuroinflammation. 2014;11:155.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gilmore JH, Jarskog LF. Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res. 1997;24:365–7.

    Article  PubMed  Google Scholar 

  4. Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24:881–97.

    Article  PubMed  Google Scholar 

  5. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107:234–56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Doenni VM, Song CM, Hill MN, Pittman QJ. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav Immun. 2017;63:176–85.

    Article  PubMed  Google Scholar 

  7. Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004;5:545–52.

    Article  PubMed  Google Scholar 

  8. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–39.

    Article  PubMed  Google Scholar 

  9. Suri D, Zanni G, Mahadevia D, Chuhma N, Saha R, Spivack S, et al. Dopamine transporter blockade during adolescence increases adult dopamine function, impulsivity, and aggression. Mol Psychiatry. 2023;28:3512–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swann P, Mirza-Davies A, O’Brien J. Associations between neuropsychiatric symptoms and inflammation in neurodegenerative dementia: a systematic review. J Inflamm Res. 2024;17:6113–41.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dantzer R. Cytokine, sickness behavior, and depression. Neurol Clin. 2006;24:441–60.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Perugi G, Angst J, Azorin J-M, Bowden CL, Mosolov S, Reis J, et al. Mixed features in patients with a major depressive episode: the BRIDGE-II-MIX study. J Clin Psychiatry. 2015;76:e351–58.

    Article  PubMed  Google Scholar 

  13. Avitsur R, Stark JL, Dhabhar FS, Kramer KA, Sheridan JF. Social experience alters the response to social stress in mice. Brain Behav Immun. 2003;17:426–37.

    Article  PubMed  Google Scholar 

  14. Coccaro EF, Lee R, Coussons-Read M. Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA Psychiatry. 2014;71:158–65.

    Article  PubMed  Google Scholar 

  15. Loeber R, Hay D. Key issues in the development of aggression and violence from childhood to early adulthood. Annu Rev Psychol. 1997;48:371–410.

    Article  PubMed  Google Scholar 

  16. Anderson CA, Bushman BJ. Human aggression. Annu Rev Psychol. 2002;53:27–51.

    Article  PubMed  Google Scholar 

  17. Little K, Olsson CA, Youssef GJ, Whittle S, Simmons JG, Yücel M, et al. Linking the serotonin transporter gene, family environments, hippocampal volume and depression onset: a prospective imaging gene × environment analysis. J Abnorm Psychol. 2015;124:834–49.

    Article  PubMed  Google Scholar 

  18. Lane SD, Kjome KL, Moeller FG. Neuropsychiatry of aggression. Neurol Clin. 2011;29:49–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maristany AJ, Sa BC, Murray C, Subramaniam AB, Oldak SE. Psychiatric manifestations of neurological diseases: a narrative review. Cureus. 2024;16:e64152.

    PubMed  PubMed Central  Google Scholar 

  20. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71:1121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martin CR, Preedy VR, Patel VB. Handbook of anger, aggression, and violence. Cham, Switzerland: Springer Nature; 2023.

  22. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20:2293.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573–89.e9.

    Article  PubMed  Google Scholar 

  24. Liang M, Zhong H, Rong J, Li Y, Zhu C, Zhou L, et al. Postnatal lipopolysaccharide exposure impairs adult neurogenesis and causes depression-like behaviors through astrocytes activation triggering GABAA receptor downregulation. Neuroscience. 2019;422:21–31.

    Article  PubMed  Google Scholar 

  25. Sekio M, Seki K. Lipopolysaccharide-induced depressive-like behavior is associated with α₁-adrenoceptor dependent downregulation of the membrane GluR1 subunit in the mouse medial prefrontal cortex and ventral tegmental area. Int J Neuropsychopharmacol. 2014;18:pyu005.

    PubMed  PubMed Central  Google Scholar 

  26. Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun. 2021;91:519–30.

    Article  PubMed  Google Scholar 

  27. Bernaus A, Blanco S, Sevilla A. Glia crosstalk in neuroinflammatory diseases. Front Cell Neurosci. 2020;14:209.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Song Y, Zhao S, Peng P, Zhang C, Liu Y, Chen Y, et al. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology. Neuroscience. 2024;560:381–96.

    Article  PubMed  Google Scholar 

  29. Padilla-Coreano N, Batra K, Patarino M, Chen Z, Rock RR, Zhang R, et al. Cortical ensembles orchestrate social competition through hypothalamic outputs. Nature. 2022;603:667–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Golden SA, Heshmati M, Flanigan M, Christoffel DJ, Guise K, Pfau ML, et al. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature. 2016;534:688–92.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu W-Z, Zhang W-H, Zheng Z-H, Zou J-X, Liu X-X, Huang S-H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:2221.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bai F, Huang L, Deng J, Long Z, Hao X, Chen P, et al. Prelimbic area to lateral hypothalamus circuit drives social aggression. iScience. 2023;26:107718.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23:1317–28.

    Article  PubMed  Google Scholar 

  34. Wang J, Yu H, Li X, Li F, Chen H, Zhang X, et al. A TrkB cleavage fragment in hippocampus promotes depressive-like behavior in mice. Brain Behav Immun. 2024;119:56–83.

    Article  PubMed  Google Scholar 

  35. Dong W-T, Long L-H, Deng Q, Liu D, Wang J-L, Wang F, et al. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab. 2023;5:2220–36.

    Article  PubMed  Google Scholar 

  36. Wang Y, Wang J, Chen H, Li X, Xu R, Gao F, et al. A tau fragment links depressive-like behaviors and cognitive declines in Alzheimer’s disease mouse models through attenuating mitochondrial function. Front Aging Neurosci. 2023;15:1293164.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: it is all about energy. Front Physiol. 2023;14:1114231.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miranda Mendonça AP, Hoppe LY, Gaviraghi A, de Araújo-Jorge TC, de Oliveira GM, Felippe RM, et al. Highly aggressive behavior induced by social stress is associated to reduced cytochrome c oxidase activity in mice brain cortex. Neurochem Int. 2019;126:210–7.

    Article  PubMed  Google Scholar 

  39. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13:106–18.

    Article  PubMed  Google Scholar 

  40. Wang Z-H, Xia Y, Wu Z, Kang SS, Zhang J-C, Liu P, et al. Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol. 2022;209:102212.

    Article  PubMed  Google Scholar 

  41. Hashimoto R, Koide H, Katoh Y. MEK inhibitors increase the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling. Cell Death Discov. 2023;9:374.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology. 2004;29:2007–17.

    Article  PubMed  Google Scholar 

  43. Scheggi S, De Montis MG, Gambarana C. Making sense of rodent models of anhedonia. Int J Neuropsychopharmacol. 2018;21:1049–65.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJA. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp. 2013. https://doi.org/10.3791/4367

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bordt EA, Block CL, Petrozziello T, Sadri-Vakili G, Smith CJ, Edlow AG, et al. Isolation of microglia from mouse or human tissue. STAR Protoc. 2020;1:100035.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang S, Dong W, Lin X, Xu K, Li K, Xiong S, et al. Disruption of the Na+/K+-ATPase-purinergic P2X7 receptor complex in microglia promotes stress-induced anxiety. Immunity. 2024;57:495–512.e11.

    Article  PubMed  Google Scholar 

  47. Chen H, Fu S, Li X, Shi M, Qian J, Zhao S, et al. Microglial glutaminase 1 mediates chronic restraint stress-induced depression-like behaviors and synaptic damages. Signal Transduct Target Ther. 2023;8:452.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, et al. The signaling pathways project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Sci Data. 2019;6:252.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–D662.

    Article  PubMed  Google Scholar 

  50. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–D182.

    Article  PubMed  Google Scholar 

  51. Breuillaud L, Rossetti C, Meylan EM, Mérinat C, Halfon O, Magistretti PJ, et al. Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice. Biol Psychiatry. 2012;72:528–36.

    Article  PubMed  Google Scholar 

  52. Crockett A, Hollis F. Brain mitochondria in behavior: more than a powerhouse. Trends Endocrinol Metab. 2024;35:1–3.

    Article  PubMed  Google Scholar 

  53. Aubry AV, Joseph Burnett C, Goodwin NL, Li L, Navarrete J, Zhang Y, et al. Sex differences in appetitive and reactive aggression. Neuropsychopharmacology. 2022;47:1746–54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14:193–204.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ren Q, Liu Z, Wu L, Yin G, Xie X, Kong W, et al. C/EBPβ: the structure, regulation, and its roles in inflammation-related diseases. Biomed Pharmacother. 2023;169:115938.

    Article  PubMed  Google Scholar 

  56. Poli V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem. 1998;273:29279–82.

    Article  PubMed  Google Scholar 

  57. Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, Reicher H, et al. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. J Neuroinflammation. 2020;17:127.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki E-A, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun. 2019;104:102327.

    Article  PubMed  Google Scholar 

  59. Geraldo LHM, de Sampaio Spohr TCL, do Amaral RF, da Fonseca ACC, Garcia C, de Almeida Mendes F, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther. 2021;6:45.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee Y, Messing A, Su M, Brenner M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia. 2008;56:481–93.

    Article  PubMed  Google Scholar 

  61. Kong S, Chen T-X, Jia X-L, Cheng X-L, Zeng M-L, Liang J-Y, et al. Cell-specific NFIA upregulation promotes epileptogenesis by TRPV4-mediated astrocyte reactivity. J Neuroinflammation. 2023;20:247.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hargreaves I, Heaton RA, Mantle D. Disorders of human coenzyme Q10 metabolism: an overview. Int J Mol Sci. 2020;21:6695.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–99.

    Article  PubMed  Google Scholar 

  64. Rangaraju V, Lewis TL, Hirabayashi Y, Bergami M, Motori E, Cartoni R, et al. Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease. J Neurosci. 2019;39:8200–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hathcock JN, Shao A. Risk assessment for coenzyme Q10 (Ubiquinone). Regul Toxicol Pharmacol. 2006;45:282–8.

    Article  PubMed  Google Scholar 

  66. Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19:574–94.

    Article  PubMed  Google Scholar 

  67. Hall CN, Klein-Flügge MC, Howarth C, Attwell D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci. 2012;32:8940–51.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Duan C, Wang L, Zhang J, Xiang X, Wu Y, Zhang Z, et al. Mdivi-1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1 GTPase activity. Redox Biol. 2020;37:101706.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation. 2022;19:41.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–83.

    Article  PubMed  Google Scholar 

  72. Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation. 2022;19:132.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci. 2019;73:143–53.

    Article  PubMed  Google Scholar 

  74. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990;9:1897–906.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang Z-H, Xiang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-Secretase by upregulating C/EBPβ in Alzheimer’s disease. Cell Rep. 2019;28:655–69.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Caruso R, Antenora F, Riba M, Belvederi Murri M, Biancosino B, Zerbinati L, et al. Aggressive behavior and psychiatric inpatients: a narrative review of the literature with a focus on the European experience. Curr Psychiatry Rep. 2021;23:29.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Varshney M, Mahapatra A, Krishnan V, Gupta R, Deb KS. Violence and mental illness: what is the true story? J Epidemiol Community Health. 2016;70:223–5.

    Article  PubMed  Google Scholar 

  78. Painuly NP, Grover S, Gupta N, Mattoo SK. Prevalence of anger attacks in depressive and anxiety disorders: implications for their construct? Psychiatry Clin Neurosci. 2011;65:165–74.

    Article  PubMed  Google Scholar 

  79. Liu Q, Cole DA. Aggressive outbursts among adults with major depressive disorder: results from the collaborative psychiatric epidemiological surveys. J Psychiatr Res. 2021;135:325–31.

    Article  PubMed  Google Scholar 

  80. Fava M. Depression with anger attacks. J Clin Psychiatry. 1998;59(Suppl 18):18–22.

    PubMed  Google Scholar 

  81. Painuly N, Sharan P, Mattoo SK. Relationship of anger and anger attacks with depression: a brief review. Eur Arch Psychiatry Clin Neurosci. 2005;255:215–22.

    Article  PubMed  Google Scholar 

  82. Jiang M, Wang L, Sheng H. Mitochondria in depression: the dysfunction of mitochondrial energy metabolism and quality control systems. CNS Neurosci Ther. 2024;30:e14576.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, et al. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol. 2010;177:575–85.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen H, Lu M, Lyu Q, Shi L, Zhou C, Li M, et al. Mitochondrial dynamics dysfunction: unraveling the hidden link to depression. Biomed Pharmacother. 2024;175:116656.

    Article  PubMed  Google Scholar 

  85. Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7:532–9.

    Article  PubMed  Google Scholar 

  86. Morgan RO, Sail KR, Snow AL, Davila JA, Fouladi NN, Kunik ME. Modeling causes of aggressive behavior in patients with dementia. Gerontologist. 2013;53:738–47.

    Article  PubMed  Google Scholar 

  87. Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev. 2020;64:101191.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang X, Su B, Lee H-g, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29:9090–103.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Reddy PH, Manczak M, Yin X, Reddy AP. Synergistic protective effects of mitochondrial division inhibitor 1 and mitochondria-targeted small peptide SS31 in Alzheimer’s disease. J Alzheimers Dis. 2018;62:1549–65.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reddy PH, Manczak M, Yin X. Mitochondria-division inhibitor 1 protects against Amyloid-β induced mitochondrial fragmentation and synaptic damage in Alzheimer’s disease. J Alzheimers Dis. 2017;58:147–62.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, et al. C/EBPβ: a transcription factor associated with the irreversible progression of Alzheimer’s disease. CNS Neurosci Ther. 2024;30:e14721.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Johnson FK, Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: new insights and future challenges. Brain Behav Immun. 2018;69:18–27.

    Article  PubMed  Google Scholar 

  93. Schwarz JM, Bilbo SD. LPS elicits a much larger and broader inflammatory response than Escherichia coli infection within the hippocampus of neonatal rats. Neurosci Lett. 2011;497:110–5.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.

    Article  PubMed  Google Scholar 

  95. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  PubMed  Google Scholar 

  96. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rong J, Yang Y, Liang M, Zhong H, Li Y, Zhu Y, et al. Neonatal inflammation increases hippocampal KCC2 expression through methylation-mediated TGF-β1 downregulation leading to impaired hippocampal cognitive function and synaptic plasticity in adult mice. J Neuroinflammation. 2023;20:15.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lee S, Xu G, Jay TR, Bhatta S, Kim K-W, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538–46.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Abbink MR, van Deijk A-LF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia. 2019;67:1637–53.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yu G, Cao F, Hou T, Cheng Y, Jia B, Yu L, et al. Astrocyte reactivation in medial prefrontal cortex contributes to obesity-promoted depressive-like behaviors. J Neuroinflammation. 2022;19:166.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mac Giollabhui N, Ng TH, Ellman LM, Alloy LB. The longitudinal associations of inflammatory biomarkers and depression revisited: systematic review, meta-analysis, and meta-regression. Mol Psychiatry. 2021;26:3302–14.

    Article  Google Scholar 

  104. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, et al. Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn. 2008;237:3280–94.

    Article  PubMed  Google Scholar 

  105. Suckau O, Gross I, Schrötter S, Yang F, Luo J, Wree A, et al. LPA1, LPA2, LPA4, and LPA6 receptor expression during mouse brain development. Dev Dyn. 2019;248:375–95.

    Article  PubMed  PubMed Central  Google Scholar 

  106. An S, Dickens MA, Bleu T, Hallmark OG, Goetzl EJ. Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem Biophys Res Commun. 1997;231:619–22.

    Article  PubMed  Google Scholar 

  107. Kingsbury MA, Rehen SK, Contos JJA, Higgins CM, Chun J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci. 2003;6:1292–9.

    Article  PubMed  Google Scholar 

  108. Sibille E. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin Neurosci. 2013;15:53–65.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Turner T, Stein EA. Non-statin treatments for managing LDL cholesterol and their outcomes. Clin Ther. 2015;37:2751–69.

    Article  PubMed  Google Scholar 

  110. Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic acid signaling in the nervous system. Neuron. 2015;85:669–82.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev. 2004;46:71–117.

    Article  PubMed  Google Scholar 

  112. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science. 2000;289:591–4.

    Article  PubMed  Google Scholar 

  113. Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8:536–46.

    Article  PubMed  Google Scholar 

  114. Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci. 1999;2:1032–7.

    Article  PubMed  Google Scholar 

  115. Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod. 2008;78:432–7.

    Article  PubMed  Google Scholar 

  116. Been LE, Gibbons AB, Meisel RL. Towards a neurobiology of female aggression. Neuropharmacology. 2019;156:107451.

    Article  PubMed  Google Scholar 

  117. Hashikawa K, Hashikawa Y, Lischinsky J, Lin D. The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet. 2018;34:755–76.

    Article  PubMed  Google Scholar 

  118. Lee H, Kim D-W, Remedios R, Anthony TE, Chang A, Madisen L, et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature. 2014;509:627–32.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat Neurosci. 2017;20:1580–90.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Unger EK, Burke KJ, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10:453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Giraldo E, Palmero-Canton D, Martinez-Rojas B, Sanchez-Martin MDM, Moreno-Manzano V. Optogenetic modulation of neural progenitor cells improves neuroregenerative potential. Int J Mol Sci. 2020;22:365.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156:825–35.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Keqiang Ye at Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences for generously providing Thy1-human C/EBPβ mice.

Funding

This work was supported by National Key Research Projects of China (No. 2021YFA1302400 to Z.-H.W), National Natural Science Foundation of China (No. 82371439 to Z.-H.W), Laboratory Animal Research Project of Hubei (No.2022DFE021 to Z.-H.W), Cross-Innovation Talent Project of Wuhan University People’s Hospital (JCRCZN-2022-002 to Z.-H.W), Wuhan University People’s Hospital Sixth Round of Young Key Talent Project (RMQNZD2024004 to Z.-H.W), Major Project of Science and Technology Innovation of Hubei Province (2024BCA003 to J.X and Z.-H.W), National Key R&D Program of China (2023YFC2308404 to X.X), Technology Innovation Team Project of Hubei Province (220171677 to X.X), National Natural Science Foundation of China (No. 82202410, and 82372201 to Q.M), Hubei Provincial Natural Science Foundation of China (No. 2022CFA022 to Q.M).

Author information

Authors and Affiliations

Contributions

JBW, JHW, HYC and FG contributed equally to this work. Z-HW conceptualized and designed all studies. JBW, JHW, HYC, FG, RFX, YDL, SD, FL, XL, YKS, XZC, and JQZ performed and analyzed the behavioral tests and molecular experiments, conducted animal treatment, virus injection and drug delivery. RFX and HYW conducted bioinformatic analysis and transcription factor prediction. JX, XJL, QM, and XX analyzed the data by double-blind method. JBW, JHW, HYC, FG, DS, and Z-HW wrote the manuscript.

Corresponding authors

Correspondence to Qing-tao Meng, Xuan Xiao or Zhi-Hao Wang.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All animal experimental protocols were approved by the Laboratory Animal Welfare Ethical Committee of Renmin Hospital of Wuhan University (Approval No. WDRM 20250402A). Animal care and handling were conducted in accordance with the National Institutes of Health (NIH) animal care guidelines and the institutional guidelines of Wuhan University. Additionally, all procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of Renmin Hospital of Wuhan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J., Chen, H. et al. Early-life inflammation increases aggressive behavior in adult male mice through an astrocyte-neuron signaling. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03260-1

Search

Quick links