Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucagon-like Peptide-1 receptor agonists as emerging therapeutics in bipolar disorder: a narrative review of preclinical and clinical evidence

Abstract

Bipolar disorder (BD) is a chronic and disabling psychiatric illness characterized by complex pathophysiological mechanisms. Traditional treatments often fail to address these multidimensional processes, highlighting the need for novel therapeutic strategies. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), widely used for metabolic disorders, have emerged as promising candidates for a range of neuropsychiatric conditions due to their broad neurobiological effects. This narrative review synthesizes preclinical, clinical, and real-world evidence evaluating the therapeutic potential of GLP-1RAs in BD. These agents modulate neurotransmission, reduce neuroinflammation and oxidative stress, enhance mitochondrial and neurotrophic function, and improve insulin sensitivity and hypothalamic-pituitary-adrenal (HPA) axis regulation. These mechanisms are implicated in the neurobiology of BD, and preliminary findings suggest benefits across core psychopathological domains and common comorbidities, including depression, anxiety, mania, cognitive dysfunction, weight gain, and substance use disorders. While human data—particularly in BD populations—remain limited, evidence points to potential adjunctive benefits, especially in individuals with metabolic or cognitive vulnerabilities. Given their pleiotropic actions and established safety profile, GLP-1RAs represent compelling candidates for drug repurposing in BD. Well-powered, controlled trials are needed to confirm efficacy and safety, identify optimal subgroups, and evaluate long-term outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, et al. Bipolar disorders. Lancet. 2020;396:1841–56.

    Article  CAS  PubMed  Google Scholar 

  2. Oliva V, Fico G, De Prisco M, Gonda X, Rosa AR, Vieta E. Bipolar disorders: an update on critical aspects. Lancet Reg Health Eur. 2024;48:101135.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Léda-Rêgo G, Studart-Bottó P, Abbade P, Rabelo-Da-Ponte FD, Casqueiro JS, Sarmento S, et al. Lifetime prevalence of psychiatric comorbidities in patients with bipolar disorder: a systematic review and meta-analysis. Psychiatry Res. 2024;337:115953.

    Article  PubMed  Google Scholar 

  4. Liu YK, Ling S, Lui LMW, Ceban F, Vinberg M, Kessing LV, et al. Prevalence of type 2 diabetes mellitus, impaired fasting glucose, general obesity, and abdominal obesity in patients with bipolar disorder: a systematic review and meta-analysis. J Affect Disord. 2022;300:449–61.

    Article  CAS  PubMed  Google Scholar 

  5. Jawad MY, Meshkat S, Tabassum A, McKenzie A, Di Vincenzo JD, Guo Z, et al. The bidirectional association of nonalcoholic fatty liver disease with depression, bipolar disorder, and schizophrenia. CNS Spectr. 2023;28:541–60.

    Article  PubMed  Google Scholar 

  6. McIntyre RS, Alda M, Baldessarini RJ, Bauer M, Berk M, Correll CU, et al. The clinical characterization of the adult patient with bipolar disorder aimed at personalization of management. World Psychiatry. 2022;21:364–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Robinson N, Bergen SE. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: current knowledge and future directions. Front Genet. 2021;12:686666.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry. 2024;14:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giménez-Palomo A, Guitart-Mampel M, Meseguer A, Borràs R, García-García FJ, Tobías E, et al. Reduced mitochondrial respiratory capacity in patients with acute episodes of bipolar disorder: could bipolar disorder be a state-dependent mitochondrial disease? Acta Psychiatr Scand. 2024;149:52–64.

    Article  PubMed  Google Scholar 

  10. Belvederi Murri M, Prestia D, Mondelli V, Pariante C, Patti S, Olivieri B, et al. The HPA axis in bipolar disorder: systematic review and meta-analysis. Psychoneuroendocrinology. 2016;63:327–42.

    Article  CAS  PubMed  Google Scholar 

  11. Calkin CV. Insulin resistance takes center stage: a new paradigm in the progression of bipolar disorder. Ann Med. 2019;51:281.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nierenberg AA, Agustini B, Köhler-Forsberg O, Cusin C, Katz D, Sylvia LG, et al. Diagnosis and treatment of bipolar disorder: a review. JAMA. 2023;330:1370–80.

    Article  CAS  PubMed  Google Scholar 

  13. McIntyre RS, Kwan ATH, Rosenblat JD, Teopiz KM, Mansur RB. Psychotropic drug–related weight gain and its treatment. Am J Psychiatry. 2024;181:26–38. https://doi.org/10.1176/appi.ajp.20230922.

    Article  PubMed  Google Scholar 

  14. Drucker DJ. The GLP-1 journey: from discovery science to therapeutic impact. J Clin Invest. 2024;134:e175634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Committee ADAPP, ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, et al. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2025. Diabetes Care. 2025;48:S181–S206.

    Article  Google Scholar 

  16. McIntyre RS, Rasgon N, Goldberg JF, Wong S, Le GH, Mansur RB, et al. The effect of glucagon-like peptide-1 and glucose dependent insulinotropic polypeptide receptor agonists on neurogenesis, differentiation, and plasticity (Neuro-GDP): potential mechanistically informed therapeutics in the treatment and prevention of mental disorders. CNS Spectr. 2025;30:e23.

    Article  PubMed  Google Scholar 

  17. Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Javed D, Jajja FA, Javed A. GLP-1 receptor agonists: a revolution in the treatment of Parkinson’s disease? Eur Neuropsychopharmacol. 2024;86:11–12.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JM, Sharifi M, Oshman L, Griauzde DH, Chua KP. Dispensing of glucagon-like Peptide-1 receptor agonists to adolescents and young adults, 2020–2023. JAMA. 2024;331:2041–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep. 2021;73:1020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Zhao P, Wang W, Guo L, Pan Q. The antidepressant effects of GLP-1 receptor agonists: a systematic review and meta-analysis. Am J Geriatr Psychiatry. 2024;32:117–27.

    Article  PubMed  Google Scholar 

  22. Levy B, Manove E. Functional outcome in bipolar disorder: the big picture. Depress Res Treat. 2012;2012:12.

    Google Scholar 

  23. Mcelroy SL, Guerdjikova AI, Blom TJ, Mori N, Romo-Nava F. Liraglutide in obese or overweight individuals with stable bipolar disorder. J Clin Psychopharmacol. 2024;44:89–95.

    Article  CAS  PubMed  Google Scholar 

  24. Mansur RB, Ahmed J, Cha DS, Woldeyohannes HO, Subramaniapillai M, Lovshin J, et al. Liraglutide promotes improvements in objective measures of cognitive dysfunction in individuals with mood disorders: a pilot, open-label study. J Affect Disord. 2017;207:114–20.

    Article  CAS  PubMed  Google Scholar 

  25. Cuomo A, Bolognesi S, Goracci A, Ciuoli C, Crescenzi BB, Maina G, et al. Feasibility, adherence and efficacy of liraglutide treatment in a sample of individuals with mood disorders and obesity. Front Psychiatry. 2019;10:432154.

    Google Scholar 

  26. Lee SE, Lee NY, Kim SH, Kim KA, Kim YS. Effect of liraglutide 3.0 mg treatment on weight reduction in obese antipsychotic-treated patients. Psychiatry Res. 2021;299:113830.

    Article  CAS  PubMed  Google Scholar 

  27. Magioncalda P, Martino M. A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry. 2021;27:202–11.

    Article  PubMed  Google Scholar 

  28. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role ofglucagon and GLP-1 in health and disease. Physiol Rev. 2015;95:513–48.

    Article  CAS  PubMed  Google Scholar 

  29. Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4:718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez E, Martínez MD, Roncero I, Chowen JA, García-Cuartero B, Gispert JD, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem. 2005;92:798–806.

    Article  CAS  PubMed  Google Scholar 

  31. Hsu TM, Hahn JD, Konanur VR, Lam A, Kanoski SE. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology. 2014;40:327.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zeng N, Cutts EJ, Lopez CB, Kaur S, Duran M, Virkus SA, et al. Anatomical and functional characterization of central amygdala Glucagon-like peptide 1 receptor expressing neurons. Front Behav Neurosci. 2021;15:724030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Bloemendaal L, ten Kulve JS, La Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014;221:T1–T16.

    Article  PubMed  Google Scholar 

  34. Kalra S, Bhattacharya S, Kapoor N. Contemporary classification of Glucagon-like peptide 1 receptor agonists (GLP1RAs). Diabetes Ther. 2021;12:2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. West J, Li M, Wong S, Le GH, Teopiz KM, Valentino K, et al. Are Glucagon-like peptide-1 (GLP-1) receptor agonists Central Nervous System (CNS) penetrant: a narrative review. Neurol Ther. 2025;14:1157–66. https://doi.org/10.1007/S40120-025-00724-Y.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Au HCT, Zheng YJ, Le GH, Wong S, Teopiz KM, Kwan ATH, et al. Association of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and neurogenesis: a systematic review. Acta Neuropsychiatr. 2025;37:e50.

    Article  PubMed  Google Scholar 

  38. Trujillo PharmD J, Jennifer Trujillo C. Safety and tolerability of once-weekly GLP-1 receptor agonists in type 2 diabetes. J Clin Pharm Ther. 2020;45:43–60.

    Article  Google Scholar 

  39. Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM. Neuromolecular etiology of bipolar disorder: possible therapeutic targets of mood stabilizers. Clin Psychopharmacol Neurosci. 2022;20:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Owji AA, Khoshdel Z, Sanea F, Panjehshahin MR, Shojaee Fard M, Smith DM, et al. Effects of intracerebroventricular injection of glucagon like peptide-1 and its related peptides on serotonin metabolism and on levels of amino acids in the rat hypothalamus. Brain Res. 2002;929:70–75.

    Article  CAS  PubMed  Google Scholar 

  41. Korol SV, Jin Z, Babateen O, Birnir B. GLP-1 and exendin-4 transiently enhance GABAA receptor–mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes. 2015;64:79–89.

    Article  CAS  PubMed  Google Scholar 

  42. Rebosio C, Balbi M, Passalacqua M, Ricciarelli R, Fedele E. Presynaptic GLP-1 receptors enhance the depolarization-evoked release of glutamate and GABA in the mouse cortex and hippocampus. Biofactors. 2018;44:148–57.

    Article  CAS  PubMed  Google Scholar 

  43. Hernandez NS, Weir VR, Ragnini K, Merkel R, Zhang Y, Mace K, et al. GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA. Mol Psychiatry. 2021;26:4394–408.

    Article  CAS  PubMed  Google Scholar 

  44. Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav. 2014;136:135–44.

    Article  CAS  PubMed  Google Scholar 

  45. Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry. 2016;6:809.

    Article  Google Scholar 

  46. Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav. 2017;176:17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci. 2016;9:66–70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep. 2015;12:726–33.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rosenblat JD, McIntyre RS. Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci. 2017;7:144.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sayana P, Colpo GD, Simões LR, Giridharan VV, Teixeira AL, Quevedo J, et al. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res. 2017;92:160–82.

    Article  PubMed  Google Scholar 

  51. Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, et al. Central glucagon-like peptide 1 receptor activation inhibits toll-like receptor agonist-induced inflammation. Cell Metab. 2024;36:130–143.e5.

    Article  CAS  PubMed  Google Scholar 

  52. Velmurugan K, Balamurugan AN, Loganathan G, Ahmad A, Hering BJ, Pugazhenthi S. Antiapoptotic actions of Exendin-4 against hypoxia and cytokines are augmented by CREB. Endocrinology. 2012;153:1116–28.

    Article  CAS  PubMed  Google Scholar 

  53. Yoon G, Kim YK, Song J. Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res. 2020;152:104615.

    Article  CAS  PubMed  Google Scholar 

  54. Mcclean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31:6587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab. 2024;15:20420188231222370.

    Article  Google Scholar 

  56. Ventorp F, Bay-Richter C, Nagendra AS, Janelidze S, Matsson VS, Lipton J, et al. Exendin-4 treatment improves LPS-induced depressive-like behavior without affecting pro-inflammatory cytokines. J Parkinsons Dis. 2017;7:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Andreazza AC, Duong A, Young LT. Bipolar disorder as a mitochondrial disease. Biol Psychiatry. 2018;83:720–1.

    Article  PubMed  Google Scholar 

  58. Morris G, Walder K, Mcgee SL, Dean OM, Tye SJ, Maes M, et al. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev. 2017;74:1–20.

    Article  CAS  PubMed  Google Scholar 

  59. Andreazza AC, Kauer-Sant’Anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 2008;111:135–44.

    Article  CAS  PubMed  Google Scholar 

  60. Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, et al. Na+, K+-ATPase signaling and bipolar disorder. Int J Mol Sci. 2018;19:2314.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Todorova V, Blokland A. Mitochondria and synaptic plasticity in the mature and aging nervous system. Curr Neuropharmacol. 2016;15:166–73.

    Article  Google Scholar 

  62. González-García I, Gruber T, García-Cáceres C. Insulin action on astrocytes: from energy homeostasis to behaviour. J Neuroendocrinol. 2021;33:e12953.

    Article  PubMed  Google Scholar 

  63. Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, Sousa GL, et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci. 2016;36:3531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Timper K, del Río-Martín A, Cremer AL, Bremser S, Alber J, Giavalisco P, et al. GLP-1 Receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab. 2020;31:1189–1205.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang RF, Xue GF, Hölscher C, Tian MJ, Feng P, Zheng JY, et al. Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by status epilepticus. Epilepsy Res. 2018;142:45–52.

    Article  CAS  PubMed  Google Scholar 

  66. He W, Wang H, Zhao C, Tian X, Li L, Wang H. Role of liraglutide in brain repair promotion through Sirt1-mediated mitochondrial improvement in stroke. J Cell Physiol. 2020;235:2986–3001.

    Article  CAS  PubMed  Google Scholar 

  67. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  PubMed  Google Scholar 

  68. Thompson Ray M, Cynthia, Weickert S, Wyatt E, Webster MJ, Ray T, et al. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36:195–203.

    Article  PubMed  Google Scholar 

  69. Huang TL, Hung YY, Te Lee C, Chen RF. Serum protein levels of brain-derived neurotrophic factor and tropomyosin-related Kinase B in bipolar disorder: effects of mood stabilizers. Neuropsychobiology. 2012;65:65–69.

    Article  CAS  PubMed  Google Scholar 

  70. Craddock N, O’Donovan MC, Owen MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet. 2005;42:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valvassori SS, Resende WR, Budni J, Dal-Pont GC, Bavaresco DV, Reus GZ, et al. Sodium butyrate, a histone deacetylase inhibitor, reverses behavioral and mitochondrial alterations in animal models of depression induced by Early- or Late-life stress. Curr Neurovasc Res. 2015;12:312–20.

    Article  CAS  PubMed  Google Scholar 

  72. Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, et al. Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res. 2010;44:506–10.

    Article  PubMed  Google Scholar 

  73. Valvassori SS, Mariot E, Varela RB, Bavaresco DV, Dal-Pont GC, Ferreira CL, et al. The role of neurotrophic factors in manic-, anxious- and depressive-like behaviors induced by amphetamine sensitization: implications to the animal model of bipolar disorder. J Affect Disord. 2019;245:1106–13.

    Article  CAS  PubMed  Google Scholar 

  74. Varela RB, Valvassori SS, Lopes-Borges J, Mariot E, Dal-Pont GC, Amboni RT, et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res. 2015;61:114–21.

    Article  PubMed  Google Scholar 

  75. Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, et al. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging. 2018;64:33–43.

    Article  CAS  PubMed  Google Scholar 

  76. Gumuslu E, Mutlu O, Celikyurt IK, Ulak G, Akar F, Erden F, et al. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol. 2016;30:376–84.

    Article  CAS  PubMed  Google Scholar 

  77. Ji C, Xue GF, Lijun C, Feng P, Li D, Li L, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson′s disease by increasing expression of BNDF. Brain Res. 2016;1634:1–11.

    Article  CAS  PubMed  Google Scholar 

  78. Park SW, Mansur RB, Lee Y, Lee JH, Seo MK, Choi AJ, et al. Liraglutide activates mTORC1 signaling and AMPA receptors in rat hippocampal neurons under toxic conditions. Front Neurosci. 2018;12:417341.

    Article  Google Scholar 

  79. Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease. J Neurosci Res. 2008;86:326–38.

    Article  CAS  PubMed  Google Scholar 

  80. Hamilton A, Patterson S, Porter D, Gault VA, Holscher C. Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res. 2011;89:481–9.

    Article  CAS  PubMed  Google Scholar 

  81. Song Y, Yang J, Chang M, Wei Y, Yin Z, Zhu Y, et al. Shared and distinct functional connectivity of hippocampal subregions in schizophrenia, bipolar disorder, and major depressive disorder. Front Psychiatry. 2022;13:993356.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry. 2019;24:1296–318.

    Article  PubMed  Google Scholar 

  83. Syan SK, Smith M, Frey BN, Remtulla R, Kapczinski F, Hall GBC, et al. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review. J Psychiatry Neurosci. 2018;43:298.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Au HCT, Zheng YJ, Le GH, Wong S, Phan L, Teopiz KM, et al. A systematic review in effects of glucagon-like peptide-1 (GLP-1) mono-agonists on functional connectivity: target engagement and rationale for the development in mental disorders. J Affect Disord. 2025;370:321–7.

    Article  PubMed  Google Scholar 

  85. Watson KT, Wroolie TE, Tong G, Foland-Ross LC, Frangou S, Singh M, et al. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease. Behav Brain Res. 2019;356:271–8.

    Article  CAS  PubMed  Google Scholar 

  86. Juruena MF, Cleare AJ, Young AH. Neuroendocrine stress system in bipolar disorder. Curr Top Behav Neurosci. 2021;48:149–71.

    Article  CAS  PubMed  Google Scholar 

  87. Daban C, Vieta E, Mackin P, Young AH. Hypothalamic-pituitary-adrenal axis and bipolar disorder. Psychiatr Clin North Am. 2005;28:469–80.

    Article  CAS  PubMed  Google Scholar 

  88. Diz-Chaves Y, Mastoor Z, Spuch C, González-Matías LC, Mallo F. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int J Mol Sci. 2022;23:9583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, Martís A, Fernandez AM, Catalina PAF, et al. GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology. 2010;151:2629–40.

    Article  CAS  PubMed  Google Scholar 

  90. Gil-Lozano M, Romani-́Pérez M, Outeiriño-Iglesias V, Vigo E, González-Matías LC, Brubaker PL, et al. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered Exendin-4 on the Hypothalamic-Pituitary-Adrenal axis of male rats. Endocrinology. 2014;155:2511–23.

    Article  PubMed  Google Scholar 

  91. Winzeler B, Da Conceição I, Refardt J, Sailer CO, Dutilh G, Christ-Crain M. Effects of Glucagon-like peptide-1 receptor agonists on Hypothalamic-Pituitary-Adrenal axis in healthy volunteers. J Clin Endocrinol Metab. 2019;104:202–8.

    Article  PubMed  Google Scholar 

  92. Charles EF, Lambert CG, Kerner B. Bipolar disorder and diabetes mellitus: evidence for disease-modifying effects and treatment implications. Int J Bipolar Disord. 2016;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Steardo L, Fabrazzo M, Sampogna G, Monteleone AM, D’Agostino G, Monteleone P, et al. Impaired glucose metabolism in bipolar patients and response to mood stabilizer treatments. J Affect Disord. 2019;245:174–9.

    Article  PubMed  Google Scholar 

  94. Hajek T, Calkin C, Blagdon R, Slaney C, Uher R, Alda M. Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology. 2014;39:2910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mansur RB, Delgado-Peraza F, Subramaniapillai M, Lee Y, Iacobucci M, Nasri F, et al. Exploring brain insulin resistance in adults with bipolar depression using extracellular vesicles of neuronal origin. J Psychiatr Res. 2021;133:82–92.

    Article  PubMed  Google Scholar 

  96. Van Der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GMJ. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-D-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem. 2005;94:1158–66.

    Article  PubMed  Google Scholar 

  97. Shah S, Iqbal M, Karam J, Salifu M, McFarlane SI. Oxidative stress, glucose metabolism, and the prevention of type 2 diabetes: pathophysiological insights. Antioxid Redox Signal. 2007;9:911–29.

    Article  CAS  PubMed  Google Scholar 

  98. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3:46–56.

    Article  CAS  PubMed  Google Scholar 

  99. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Invest. 2012;122:1339–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Long-Smith CM, Manning S, McClean PL, Coakley MF, O’Halloran DJ, Holscher C, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of alzheimer’s disease. Neuromolecular Med. 2013;15:102–14.

    Article  CAS  PubMed  Google Scholar 

  101. Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimer’s & Dementia. 2014;10:S12–S25.

    Article  Google Scholar 

  102. Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, et al. Exenatide regulates cerebral glucose metabolism in brain areas associated with glucose homeostasis and reward system. Diabetes. 2015;64:3406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vieta E, Valentí M. Pharmacological management of bipolar depression: acute treatment, maintenance, and prophylaxis. CNS Drugs. 2013;27:515–29.

    Article  CAS  PubMed  Google Scholar 

  104. De Giorgi R, Ghenciulescu A, Dziwisz O, Taquet M, Adler AI, Koychev I, et al. An analysis on the role of glucagon-like peptide-1 receptor agonists in cognitive and mental health disorders. Nat Mental Health. 2025;2025:1–20.

    Google Scholar 

  105. Turan I, Sayan Ozacmak H, Ozacmak VH, Ergenc M, Bayraktaroğlu T. The effects of glucagon-like peptide 1 receptor agonist (exenatide) on memory impairment, and anxiety- and depression-like behavior induced by REM sleep deprivation. Brain Res Bull. 2021;174:194–202.

    Article  CAS  PubMed  Google Scholar 

  106. Krass M, Volke A, Rünkorg K, Wegener G, Lund S, Abildgaard A, et al. GLP-1 receptor agonists have a sustained stimulatory effect on corticosterone release after chronic treatment. Acta Neuropsychiatr. 2014;27:25–32.

    Article  PubMed  Google Scholar 

  107. Weina H, Yuhu N, Christian H, Birong L, Feiyu S, Le W. Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity. Brain Res. 2018;1694:55–62.

    Article  PubMed  Google Scholar 

  108. Bertelli PR, Mocelin R, Marcon M, Sachett A, Gomez R, Rosa AR, et al. Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110388.

    Article  CAS  PubMed  Google Scholar 

  109. Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54–66.

    Article  CAS  PubMed  Google Scholar 

  110. Seo MK, Jeong S, Seog DH, Lee JA, Lee JH, Lee Y, et al. Effects of liraglutide on depressive behavior in a mouse depression model and cognition in the probe trial of Morris water maze test. J Affect Disord. 2023;324:8–15.

    Article  CAS  PubMed  Google Scholar 

  111. Sağlam C, Turan İ, Özaçmak HS. The effect of glucagon like peptide-1 receptor agonist on behavioral despair and anxiety-like behavior in ovariectomized rats: modulation of BDNF/CREB, Nrf2 and lipocalin 2. Behav Brain Res. 2022;435:114053.

    Article  PubMed  Google Scholar 

  112. Darwish AB, El Sayed NS, Salama AAA, Saad MA. Dulaglutide impedes depressive-like behavior persuaded by chronic social defeat stress model in male C57BL/6 mice: Implications on GLP-1R and cAMP/PKA signaling pathway in the hippocampus. Life Sci. 2023;320:121546.

    Article  CAS  PubMed  Google Scholar 

  113. Ren G, Xue P, Wu B, Yang F, Wu X. Intranasal treatment of lixisenatide attenuated emotional and olfactory symptoms via CREB-mediated adult neurogenesis in mouse depression model. Aging. 2021;13:3896–908.

    Article  Google Scholar 

  114. Aygun H. Exendin-4 increases absence-like seizures and anxiety–depression-like behaviors in WAG/Rij rats. Epilepsy Behav. 2021;123:108246.

    Article  PubMed  Google Scholar 

  115. de Souza AG, Chaves Filho AJM, Souza Oliveira JV, de Souza DAA, Lopes IS, de Carvalho MAJ, et al. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother. 2019;109:429–39.

    Article  PubMed  Google Scholar 

  116. Yang F, Wang X, Qi J, Zhang K, Jiang Y, Feng B, et al. Glucagon-like Peptide 1 receptor activation inhibits microglial pyroptosis via promoting mitophagy to alleviate depression-like behaviors in diabetic mice. Nutrients. 2022;15:38.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mansur RB, Fries GR, Trevizol AP, Subramaniapillai M, Lovshin J, Lin K, et al. The effect of body mass index on glucagon-like peptide receptor gene expression in the post mortem brain from individuals with mood and psychotic disorders. Eur Neuropsychopharmacol. 2019;29:137–46.

    Article  CAS  PubMed  Google Scholar 

  118. Pozzi M, Mazhar F, Peeters GGAM, Vantaggiato C, Nobile M, Clementi E, et al. A systematic review of the antidepressant effects of glucagon-like peptide 1 (GLP-1) functional agonists: further link between metabolism and psychopathology: special Section on “Translational and Neuroscience Studies in Affective Disorders”. J Affect Disord. 2019;257:774–8.

    Article  CAS  Google Scholar 

  119. Bode BW, Testa MA, Magwire M, Hale PM, Hammer M, Blonde L, et al. Patient-reported outcomes following treatment with the human GLP-1 analogue liraglutide or glimepiride in monotherapy: results from a randomized controlled trial in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:604–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Wit HM, Vervoort GMM, Jansen HJ, De Grauw WJC, De Galan BE, Tack CJ. Liraglutide reverses pronounced insulin-associated weight gain, improves glycaemic control and decreases insulin dose in patients with type 2 diabetes: a 26 week, randomised clinical trial (ELEGANT). Diabetologia. 2014;57:1812–9.

    Article  PubMed  Google Scholar 

  121. O’Neil PM, Aroda VR, Astrup A, Kushner R, Lau DCW, Wadden TA, et al. Neuropsychiatric safety with liraglutide 3.0 mg for weight management: results from randomized controlled phase 2 and 3a trials. Diabetes Obes Metab. 2017;19:1529–36.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kahal H, Kilpatrick E, Rigby A, Coady A, Atkin S. The effects of treatment with liraglutide on quality of life and depression in young obese women with PCOS and controls. Gynecol Endocrinol. 2019;35:142–5.

    Article  CAS  PubMed  Google Scholar 

  123. de Wit HM, Vervoort GM, Jansen HJ, de Galan BE, Tack CJ. Durable efficacy of liraglutide in patients with type 2 diabetes and pronounced insulin-associated weight gain: 52-week results from the Effect of Liraglutide on insulin-associated wEight GAiN in patients with Type 2 diabetes’ (ELEGANT) randomized controlled trial. J Intern Med. 2016;279:283–92.

    Article  PubMed  Google Scholar 

  124. Idris I, Abdulla H, Tilbrook S, Dean R, Ali N. Exenatide improves excessive daytime sleepiness and wakefulness in obese patients with type 2 diabetes without obstructive sleep apnoea. J Sleep Res. 2013;22:70–75.

    Article  PubMed  Google Scholar 

  125. Moulton CD, Pickup JC, Amiel SA, Winkley K, Ismail K. Investigating incretin-based therapies as a novel treatment for depression in type 2 diabetes: findings from the South London Diabetes (SOUL-D) Study. Prim Care Diabetes. 2016;10:156–9.

    Article  CAS  PubMed  Google Scholar 

  126. Tasci I, Naharci MI, Bozoglu E, Safer U, Aydogdu A, Yilmaz BF, et al. Cognitive and functional influences of vildagliptin, a DPP-4 Inhibitor, added to ongoing metformin therapy in elderly with type 2 diabetes. Endocr Metab Immune Disord Drug Targets. 2013;13:256–63.

    Article  CAS  PubMed  Google Scholar 

  127. Grant P, Lipscomb D, Quin J. Psychological and quality of life changes in patients using GLP-1 analogues. J Diabetes Complications. 2011;25:244–6.

    Article  PubMed  Google Scholar 

  128. Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miras AD, Pérez-Pevida B, Aldhwayan M, Kamocka A, McGlone ER, Al-Najim W, et al. Adjunctive liraglutide treatment in patients with persistent or recurrent type 2 diabetes after metabolic surgery (GRAVITAS): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7:549–59.

    Article  CAS  PubMed  Google Scholar 

  130. Best JH, Rubin RR, Peyrot M, Li Y, Yan P, Malloy J, et al. Weight-related quality of life, health utility, psychological well-being, and satisfaction with exenatide once weekly compared with sitagliptin or pioglitazone after 26 weeks of treatment. Diabetes Care. 2011;34:314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Reaney M, Mathieu C, Östenson CG, Matthaei S, Krarup T, Kiljański J, et al. Patient-reported outcomes among patients using exenatide twice daily or insulin in clinical practice in six European countries: the CHOICE prospective observational study. Health Qual Life Outcomes. 2013;11:217.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gonzalez JS, Bebu I, Krause-Steinrauf H, Hoogendoorn CJ, Crespo-Ramos G, Presley C, et al. Differential effects of type 2 diabetes treatment regimens on diabetes distress and depressive symptoms in the glycemia reduction approaches in diabetes: a Comparative Effectiveness Study (GRADE). Diabetes Care. 2024;47:610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Battini V, Van Manen RP, Gringeri M, Mosini G, Guarnieri G, Bombelli A, et al. The potential antidepressant effect of antidiabetic agents: new insights from a pharmacovigilance study based on data from the reporting system databases FAERS and VigiBase. Front Pharmacol. 2023;14:1128387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsai WH, Sung FC, Chiu LT, Shih YH, Tsai MC, Wu SI. Decreased risk of anxiety in diabetic patients receiving Glucagon-like peptide-1 receptor agonist: a Nationwide, Population-Based Cohort Study. Front Pharmacol. 2022;13:765446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moulton CD, Hopkins CWP, Ismail K, Stahl D. Repositioning of diabetes treatments for depressive symptoms: a systematic review and meta-analysis of clinical trials. Psychoneuroendocrinology. 2018;94:91–103.

    Article  PubMed  Google Scholar 

  136. Spoorthy MS, Chakrabarti S, Grover S. Comorbidity of bipolar and anxiety disorders: an overview of trends in research. World J Psychiatry. 2019;9:7.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kinzig KP, D’Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueredo HF, et al. CNS Glucagon-like Peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci. 2003;23:6163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Maclusky NJ, Cook S, Scrocchi L, Shin J, Kim J, Vaccarino F, et al. Neuroendocrine function and response to stress in mice with complete disruption of Glucagon-like Peptide-1 receptor signaling. Endocrinology. 2000;141:752–62.

    Article  CAS  PubMed  Google Scholar 

  139. Grillon C, Levenson J, Pine DS. A single dose of the selective serotonin reuptake inhibitor citalopram exacerbates anxiety in humans: a Fear-Potentiated Startle Study. Neuropsychopharmacology. 2007;32:225–31.

    Article  CAS  PubMed  Google Scholar 

  140. Strawn JR, D’Alessio DA, Keck PE, Seeley RJ. Failure of glucagon-like peptide-1 to induce panic attacks or anxiety in patients with panic disorder. J Psychiatr Res. 2008;42:787–9.

    Article  CAS  PubMed  Google Scholar 

  141. Eren-Yazicioglu CY, Kara B, Sancak S, Uysal SP, Yazici D, Okuroglu N, et al. Effect of exenatide use on cognitive and affective functioning in obese patients with type 2 diabetes mellitus: exenatide use mediates depressive scores through increased perceived stress levels. J Clin Psychopharmacol. 2021;41:428–35.

    Article  CAS  PubMed  Google Scholar 

  142. Miller A, Joyce B, Bartelt K, Deckert J. Most GLP-1 medications correlated with a lower likelihood of anxiety and depression diagnoses. Epic Research. 2024 Feb 6 [cited 2025 Jan 24]. Available from: https://www.epicresearch.org/articles/most-glp-1-medications-correlated-with-a-lower-likelihood-of-anxiety-and-depression-diagnoses.

  143. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, et al. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1677–81.

    Article  CAS  PubMed  Google Scholar 

  144. de Sousa RT, Zarate CA, Zanetti MV, Costa AC, Talib LL, Gattaz WF, et al. Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. J Psychiatr Res. 2014;50:36–41.

    Article  PubMed  Google Scholar 

  145. Luca A, Calandra C, Luca M. Gsk3 signalling and redox status in bipolar disorder: evidence from lithium efficacy. Oxid Med Cell Longev. 2016;2016:3030547.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Niciu MJ, Ionescu DF, Mathews DC, Richards EM, Zarate CA. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part II: bipolar disorder. CNS Spectr. 2013;18:242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–31.

    Article  CAS  PubMed  Google Scholar 

  148. Chaves Filho AJM, Cunha NL, de Souza AG, Soares MVR, Jucá PM, de Queiroz T, et al. The GLP-1 receptor agonist liraglutide reverses mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: relevance for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109872.

    Article  CAS  PubMed  Google Scholar 

  149. Çiçekli MN, Tiryaki ES, Altun A, Günaydın C. GLP-1 agonist liraglutide improves ouabain-induced mania and depressive state via GSK-3β pathway. J Recept Signal Transduct. 2022;42:486–94.

    Article  Google Scholar 

  150. Gualtieri CT, Morgan DW. The frequency of cognitive impairment in patients with anxiety, depression, and bipolar disorder: an unaccounted source of variance in clinical trials. J Clin Psychiatry. 2008;69:1122–30.

    Article  PubMed  Google Scholar 

  151. Miskowiak KW, Carvalho AF, Vieta E, Kessing LV. Cognitive enhancement treatments for bipolar disorder: a systematic review and methodological recommendations. Eur Neuropsychopharmacol. 2016;26:1541–61.

    Article  CAS  PubMed  Google Scholar 

  152. Bora E, McIntyre RS, Ozerdem A. Neurococognitive and neuroimaging correlates of obesity and components of metabolic syndrome in bipolar disorder: a systematic review. Psychol Med. 2019;49:738–49.

    Article  PubMed  Google Scholar 

  153. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9:1173–9.

    Article  CAS  PubMed  Google Scholar 

  154. Taati M, Barzegar PEF, Raisi A. Exercise improves spatial learning and memory performance through the Central GLP-1 receptors. Behav Neurol. 2022;2022:2900628.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Porter DW, Kerr BD, Flatt PR, Holscher C, Gault VA. Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance. Diabetes Obes Metab. 2010;12:891–9.

    Article  CAS  PubMed  Google Scholar 

  156. Iwai T, Suzuki M, Kobayashi K, Mori K, Mogi Y, Oka JI. The influences of juvenile diabetes on memory and hippocampal plasticity in rats: improving effects of glucagon-like peptide-1. Neurosci Res. 2009;64:67–74.

    Article  CAS  PubMed  Google Scholar 

  157. Lennox R, Flatt PR, Gault VA. Lixisenatide improves recognition memory and exerts neuroprotective actions in high-fat fed mice. Peptides (NY). 2014;61:38–47.

    Article  CAS  Google Scholar 

  158. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, et al. The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res. 2013;237:164–71.

    Article  CAS  PubMed  Google Scholar 

  159. Erbil D, Eren CY, Demirel C, Küçüker MU, Solaroğlu I, Eser HY. GLP-1’s role in neuroprotection: a systematic review. Brain Inj. 2019;33:734–819.

    Article  PubMed  Google Scholar 

  160. Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: an in-depth review. Front Neurosci. 2022;16:970925.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Luan S, Cheng W, Wang C, Gong J, Zhou J. Impact of glucagon-like peptide 1 analogs on cognitive function among patients with type 2 diabetes mellitus: a systematic review and meta−analysis. Front Endocrinol (Lausanne). 2022;13:1047883.

    Article  PubMed  Google Scholar 

  163. Nørgaard CH, Friedrich S, Hansen CT, Gerds T, Ballard C, Møller DV, et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimers Dement (N Y). 2022;8:e12268.

    Article  PubMed  Google Scholar 

  164. Tang H, Shao H, Shaaban CE, Yang K, Brown J, Anton S, et al. Newer glucose-lowering drugs and risk of dementia: a systematic review and meta-analysis of observational studies. J Am Geriatr Soc. 2023;71:2096–106.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Dei Cas A, Micheli MM, Aldigeri R, Gardini S, Ferrari-Pellegrini F, Perini M, et al. Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. J Endocrinol Invest. 2024;47:2339–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ishøy PL, Fagerlund B, Broberg BV, Bak N, Knop FK, Glenthøj BY, et al. No cognitive-enhancing effect of GLP-1 receptor agonism in antipsychotic-treated, obese patients with schizophrenia. Acta Psychiatr Scand. 2017;136:52–62.

    Article  PubMed  Google Scholar 

  167. Mansur RB, Zugman A, Ahmed J, Cha DS, Subramaniapillai M, Lee Y, et al. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders. Eur Neuropsychopharmacol. 2017;27:1153–62.

    Article  CAS  PubMed  Google Scholar 

  168. Edge MD, Johnson SL, Ng T, Carver CS. Iowa gambling task performance in euthymic bipolar i disorder: a meta-analysis and empirical study. J Affect Disord. 2013;150:115–22.

    Article  PubMed  Google Scholar 

  169. Adida M, Jollant F, Clark L, Besnier N, Guillaume S, Kaladjian A, et al. Trait-related decision-making impairment in the three phases of bipolar disorder. Biol Psychiatry. 2011;70:357–65.

    Article  PubMed  Google Scholar 

  170. Pouchon A, Vinckier F, Dondé C, Gueguen MC, Polosan M, Bastin J. Reward and punishment learning deficits among bipolar disorder subtypes. J Affect Disord. 2023;340:694–702.

    Article  PubMed  Google Scholar 

  171. Jiménez E, Solé B, Arias B, Mitjans M, Varo C, Reinares M, et al. Characterizing decision-making and reward processing in bipolar disorder: a cluster analysis. Eur Neuropsychopharmacol. 2018;28:863–74.

    Article  PubMed  Google Scholar 

  172. Badulescu S, Tabassum A, Le GH, Wong S, Phan L, Gill H, et al. Glucagon-like peptide 1 agonist and effects on reward behaviour: a systematic review. Physiol Behav. 2024;283:114622.

    Article  CAS  PubMed  Google Scholar 

  173. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19:1242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yammine L, Green CE, Kosten TR, de Dios C, Suchting R, Lane SD, et al. Exenatide adjunct to nicotine patch facilitates smoking cessation and may reduce post-cessation weight gain: a pilot randomized controlled trial. Nicotine Tob Res. 2021;23:1682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bae JH, Choi HJ, Cho KIK, Kim LK, Kwon JS, Cho YM. Glucagon-like Peptide-1 receptor agonist differentially affects brain activation in response to visual food cues in lean and obese individuals with type 2 diabetes mellitus. Diabetes Metab J. 2019;44:248–59.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–96.

    Article  PubMed  Google Scholar 

  177. Hanssen R, Rigoux L, Kuzmanovic B, Iglesias S, Kretschmer AC, Schlamann M, et al. Liraglutide restores impaired associative learning in individuals with obesity. Nat Metab. 2023;5:1352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gold AK, Otto MW, Deckersbach T, Sylvia LG, Nierenberg AA, Kinrys G. Substance use comorbidity in bipolar disorder: a qualitative review of treatment strategies and outcomes. Am J Addict. 2018;27:188–201.

    Article  PubMed  Google Scholar 

  179. Lalli M, Brouillette K, Kapczinski F, de Azevedo Cardoso T. Substance use as a risk factor for bipolar disorder: a systematic review. J Psychiatr Res. 2021;144:285–95.

    Article  PubMed  Google Scholar 

  180. Albanese MJ, Pies R. The bipolar patient with comorbid substance use disorder: recognition and management. CNS Drugs. 2004;18:585–96.

    Article  PubMed  Google Scholar 

  181. Richardson T, Garavan H. Relationships between substance use and hypomanic symptoms in a non-clinical sample. Ment Health Subst Use. 2011;4:211–21.

    Article  Google Scholar 

  182. González-Pinto A, Goikolea JM, Zorrilla I, Bernardo M, Arrojo M, Cunill R, et al. Clinical practice guideline on pharmacological and psychological management of adult patients with bipolar disorder and comorbid substance use. Adicciones. 2022;34:142–56.

    Article  PubMed  Google Scholar 

  183. Volkow ND. Personalizing the treatment of substance use disorders. Am J Psychiatry. 2020;177:113–6. https://doi.org/10.1176/AppiAjp201919121284

    Article  PubMed  Google Scholar 

  184. Facal F, Costas J. Genomic evidence of GLP-1 receptor as target for the treatment of substance use disorders. Eur Neuropsychopharmacol. 2025;92:48–49.

    Article  CAS  PubMed  Google Scholar 

  185. Zheng YJ, Soegiharto C, Au HCT, Valentino K, Le GH, Wong S, et al. A systematic review on the role of glucagon-like peptide-1 receptor agonists on alcohol-related behaviors: potential therapeutic strategy for alcohol use disorder. Acta Neuropsychiatr. 2025;37:e51.

    Article  PubMed  Google Scholar 

  186. Kruse Klausen M, Thomsen M, Wortwein G, Fink-Jensen A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br J Pharmacol. 2022;179:625–41.

    Article  CAS  Google Scholar 

  187. Merkel R, Hernandez NS, Weir V, Zhang Y, Caffrey A, Rich MT, et al. An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking. Sci Adv. 2025;11:eadr5051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tuesta LM, Chen Z, Duncan A, Fowler CD, Ishikawa M, Lee BR, et al. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci. 2017;20:708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Aranäs C, Edvardsson CE, Shevchouk OT, Zhang Q, Witley S, Blid Sköldheden S, et al. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. EBioMedicine. 2023;93:104642.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Thomsen M, Holst JJ, Molander A, Linnet K, Ptito M, Fink-Jensen A. Effects of glucagon-like peptide 1 analogs on alcohol intake in alcohol-preferring vervet monkeys. Psychopharmacology (Berl). 2019;236:603–11.

    Article  CAS  PubMed  Google Scholar 

  191. Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav. 2016;161:140–4.

    Article  CAS  PubMed  Google Scholar 

  192. Volkow ND, Xu R. GLP-1R agonist medications for addiction treatment. Addiction. 2025;120:198–200.

    Article  PubMed  Google Scholar 

  193. Butelman ER, Goldstein RZ, Nwaneshiudu CA, Girdhar K, Roussos P, Russo SJ, et al. Neuroimmune mechanisms of opioid use disorder and recovery: translatability to human studies, and future research directions. Neuroscience. 2023;528:102–16.

    Article  CAS  PubMed  Google Scholar 

  194. Martinelli S, Mazzotta A, Longaroni M, Petrucciani N. Potential role of glucagon-like peptide-1 (GLP-1) receptor agonists in substance use disorder: a systematic review of randomized trials. Drug Alcohol Depend. 2024;264:112424.

    Article  CAS  PubMed  Google Scholar 

  195. Probst L, Monnerat S, Vogt DR, Lengsfeld S, Burkard T, Meienberg A, et al. Effects of dulaglutide on alcohol consumption during smoking cessation. JCI Insight. 2023;8:e170419.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Klausen MK, Jensen ME, Møller M, Le Dous N, Jensen AMØ, Zeeman VA, et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight. 2022;7:e159863.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Angarita GA, Matuskey D, Pittman B, Costeines JL, Potenza MN, Jastreboff AM, et al. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend. 2021;221:108614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Vukajlovic T, Bologna K, et al. Effect of dulaglutide in promoting abstinence during smoking cessation: a single-centre, randomized, double-blind, placebo-controlled, parallel group trial. EClinicalMedicine. 2023;57:101865.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat Commun. 2024;15:5177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lähteenvuo M, Tiihonen J, Solismaa A, Tanskanen A, Mittendorfer-Rutz E, Taipale H. Repurposing semaglutide and liraglutide for alcohol use disorder. JAMA Psychiatry. 2025;82:94–98.

    Article  PubMed  Google Scholar 

  201. Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of semaglutide with reduced incidence and relapse of cannabis use disorder in real-world populations: a Retrospective Cohort study. Mol Psychiatry. 2024;29:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sletved KSO, Ziersen SC, Andersen PK, Vinberg M, Kessing LV. Socio-economic functioning in patients with bipolar disorder and their unaffected siblings – results from a nation-wide population-based longitudinal study. Psychol Med. 2023;53:706–13.

    Article  PubMed  Google Scholar 

  203. Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat. 2017;13:2231.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Fagiolini A, Kupfer DJ, Houck PR, Novick DM, Frank E. Obesity as a correlate of outcome in patients with bipolar I disorder. Am J Psychiatr. 2003;160:112–7.

    Article  PubMed  Google Scholar 

  205. Leutner M, Dervic E, Bellach L, Klimek P, Thurner S, Kautzky A. Obesity as pleiotropic risk state for metabolic and mental health throughout life. Transl Psychiatry. 2023;13:175.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Menon T, Lee S, Gong XY, Wong S, Le GH, Kwan ATH, et al. A systematic review on the efficacy of GLP-1 receptor agonists in mitigating psychotropic drug-related weight gain. CNS Spectr. 2024. 2024. https://doi.org/10.1017/S1092852924000531.

  207. Whicher CA, Price HC, Phiri P, Rathod S, Barnard-Kelly K, Ngianga K, et al. The use of liraglutide 3.0 mg daily in the management of overweight and obesity in people with schizophrenia, schizoaffective disorder and first episode psychosis: results of a pilot randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2021;23:1262–71.

    Article  CAS  PubMed  Google Scholar 

  208. Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Svensson CK, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in Clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatr. 2017;74:719–28.

    Article  Google Scholar 

  209. Siskind DJ, Russell AW, Gamble C, Winckel K, Mayfield K, Hollingworth S, et al. Treatment of clozapine-associated obesity and diabetes with exenatide in adults with schizophrenia: a randomized controlled trial (CODEX). Diabetes Obes Metab. 2018;20:1050–5.

    Article  CAS  PubMed  Google Scholar 

  210. Ishøy PL, Knop FK, Broberg BV, Bak N, Andersen UB, Jørgensen NR, et al. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2017;19:162–71.

    Article  PubMed  Google Scholar 

  211. Shetty R, Basheer FT, Poojari PG, Thunga G, Chandran VP, Acharya LD. Adverse drug reactions of GLP-1 agonists: a systematic review of case reports. Diabetes Metab Syndr. 2022;16:102427.

    Article  CAS  PubMed  Google Scholar 

  212. Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud. 2015;11:202.

    Article  PubMed Central  Google Scholar 

  213. Silverii GA, Marinelli C, Mannucci E, Rotella F. Glucagon-like peptide-1 receptor agonists and mental health: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2024;26:2505–8.

    Article  PubMed  Google Scholar 

  214. Nakhla M, Nair A, Balani P, Ujjawal A, Arun Kumar P, Dasari M, et al. Risk of suicide, hair loss, and aspiration with GLP1-receptor agonists and other diabetic agents: a Real-World Pharmacovigilance Study. Cardiovasc Drugs Ther. 2024. 2024. https://doi.org/10.1007/S10557-024-07613-W.

  215. Ueda P, Söderling J, Wintzell V, Svanström H, Pazzagli L, Eliasson B, et al. GLP-1 receptor agonist use and risk of suicide death. JAMA Intern Med. 2024;184:1301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hurtado I, Robles C, Peiró S, García-Sempere A, Sanfélix-Gimeno G. Association of glucagon-like peptide-1 receptor agonists with suicidal ideation and self-injury in individuals with diabetes and obesity: a propensity-weighted, population-based cohort study. Diabetologia. 2024;67:2471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tang H, Lu Y, Donahoo WT, Shao H, Shi L, Fonseca VA, et al. Glucagon-like Peptide-1 receptor agonists and risk for suicidal ideation and behaviors in U.S. Older adults with type 2 diabetes: a Target Trial Emulation Study. Ann Intern Med. 2024;177:1004–15.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Gamble JM, Chibrikov E, Midodzi WK, Twells LK, Majumdar SR. Examining the risk of depression or self-harm associated with incretin-based therapies used to manage hyperglycaemia in patients with type 2 diabetes: a Cohort Study using the UK Clinical Practice Research Datalink. BMJ Open. 2018;8:e023830.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Chen C, Zhou R, Fu F, Xiao J. Postmarket safety profile of suicide/self-injury for GLP-1 receptor agonist: a real-world pharmacovigilance analysis. Eur Psychiatry. 2023;66:e99.

    Article  PubMed  PubMed Central  Google Scholar 

  220. De Giorgi R, Koychev I, Adler AI, Cowen PJ, Harmer CJ, Harrison PJ, et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched Cohort study. EClinicalMedicine. 2024;74:102726.

    Article  PubMed  PubMed Central  Google Scholar 

  221. European Medicines Agency. Association between exposure to GLP-1 receptor agonists and risk of suicide-related and self-harm-related events. HMA-EMA Catalogues of real-world data sources and studies. 2023 [cited 2025 Jan 24]. Available from:https://catalogues.ema.europa.eu/node/3953/methodological-aspects

  222. Kornelius E, Huang JY, Lo SC, Huang CN, Yang YS. The risk of depression, anxiety, and suicidal behavior in patients with obesity on glucagon like peptide-1 receptor agonist therapy. Sci Rep. 2024;14:24433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ruggiero R, Mascolo A, Spezzaferri A, Carpentieri C, Torella D, Sportiello L, et al. Glucagon-like Peptide-1 receptor agonists and suicidal ideation: analysis of real-word data collected in the European pharmacovigilance database. Pharmaceuticals. 2024;17:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat Med. 2024;30:168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Kerem L, Stokar J. Risk of suicidal ideation or attempts in adolescents with obesity treated with GLP1 receptor agonists. JAMA Pediatr. 2024;178:1307–15.

    Article  PubMed  Google Scholar 

  226. Nassar M, Misra A, Bloomgarden Z. Impact of treatment with GLP-1RAs on suicide attempts in adults persons with type 2 diabetes: a retrospective comparative effectiveness study based on a global TriNetX health research database. J Diabetes. 2024;16:e13547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. European Medicines Agency. EMA statement on ongoing review of GLP-1 receptor agonists. European Medicines Agency. 2023 Jul 11 [cited 2025 Jan 19]. Available from: https://www.ema.europa.eu/en/news/ema-statement-ongoing-review-glp-1-receptor-agonists

  228. Fick M. Exclusive: UK probes Novo’s Ozempic, weight-loss drug Saxenda over suicidal, self-harming thoughts. Reuters. 2023 Jul 26 [cited 2025 Jan 19]. Available from: https://www.reuters.com/business/healthcare-pharmaceuticals/uk-probing-novos-ozempic-weight-loss-drug-saxenda-over-suicidal-self-harming-2023-07-26/

  229. McIntyre RS, Mansur RB, Rosenblat JD, Kwan ATH. The association between glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: reports to the Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin Drug Saf. 2024;23:47–55.

    Article  CAS  PubMed  Google Scholar 

  230. Wang F, Wang S, Zong QQ, Zhang Q, Ng CH, Ungvari GS, et al. Prevalence of comorbid major depressive disorder in Type 2 diabetes: a meta-analysis of comparative and epidemiological studies. Diabet Med. 2019;36:961–9.

    Article  CAS  PubMed  Google Scholar 

  231. Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: its prevalence and influence as a prognostic factor: a systematic review. Psychiatry Investig. 2020;17:715.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Valentino K, Teopiz KM, Cheung W, Wong S, Le GH, Rosenblat JD, et al. The effect of glucagon-like Peptide-1 receptor agonists on measures of suicidality: a systematic review. J Psychiatr Res. 2025;183:112–26.

    Article  PubMed  Google Scholar 

  233. McIntyre RS. Glucagon-Like Peptide-1 Receptor Agonists and Suicidality: Association Versus Causation and the Need for Ongoing Surveillance. Am J Psychiatry. 2025:appiajp20241087. https://doi.org/10.1176/appi.ajp.20241087.

  234. Zhou J, Zheng Y, Xu B, Long S, Zhu LE, Liu Y, et al. Exploration of the potential association between GLP-1 receptor agonists and suicidal or self-injurious behaviors: a pharmacovigilance study based on the FDA Adverse Event Reporting System database. BMC Med. 2024;22:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Schoretsanitis G, Weiler S, Barbui C, Raschi E, Gastaldon C. Disproportionality analysis from world health organization data on semaglutide, liraglutide, and suicidality. JAMA Netw Open. 2024;7:e2423385–e2423385.

    Article  PubMed  PubMed Central  Google Scholar 

  236. McIntyre RS, Mansur RB, Rosenblat JD, Rhee TG, Cao B, Teopiz KM, et al. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: a replication study using reports to the World Health Organization pharmacovigilance database (VigiBase®). J Affect Disord. 2025;369:922–7.

    Article  CAS  PubMed  Google Scholar 

  237. Hunger JM, Major B, Blodorn A, Miller CT. Weighed down by stigma: how weight-based social identity threat contributes to weight gain and poor health. Soc Personal Psychol Compass. 2015;9:255–68.

    Article  PubMed  PubMed Central  Google Scholar 

  238. McGrath KH, Haller W, Bines JE. Starvation and fasting: biochemical aspects. Encyclopedia of Human Nutrition. 2023;1–4:645–56. Fourth Edition1–4

    Article  Google Scholar 

  239. Montoya A, Bruins R, Katzman MA, Blier P. The noradrenergic paradox: implications in the management of depression and anxiety. Neuropsychiatr Dis Treat. 2016;12:541–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. O’Connor DB, Ferguson E, Green JA, O’Carroll RE, O’Connor RC. Cortisol levels and suicidal behavior: a meta-analysis. Psychoneuroendocrinology. 2016;63:370–9.

    Article  PubMed  Google Scholar 

  241. Bhatti JA, Nathens AB, Thiruchelvam D, Grantcharov T, Goldstein BI, Redelmeier DA. Self-harm emergencies after bariatric surgery: a Population-Based Cohort Study. JAMA Surg. 2016;151:226–32.

    Article  PubMed  Google Scholar 

  242. Østergaard SD, Hieronymus F. Psilocybin for treatment-resistant depression. New Eng J Med. 2023;388:e22.

  243. Giurgiuca A, Nemes B, Schipor S, Caragheorgheopol A, Boscaiu V, Cozman D, et al. Cortisol levels and suicide in bipolar I disorder. Acta Endocrinologica (Bucharest). 2017;13:188.

    Article  CAS  Google Scholar 

  244. Plans L, Barrot C, Nieto E, Rios J, Schulze TG, Papiol S, et al. Association between completed suicide and bipolar disorder: a systematic review of the literature. J Affect Disord. 2019;242:111–22.

    Article  CAS  PubMed  Google Scholar 

  245. Valvassori SS, Dal-Pont GC, Varela RB, Resende WR, Gava FF, Mina FG, et al. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder: cognitive and neurochemical alterations in BD model. J Affect Disord. 2021;282:1195–202.

    Article  CAS  PubMed  Google Scholar 

  246. Cooper DH, Ramachandra R, Ceban F, Di Vincenzo JD, Rhee TG, Mansur RB, et al. Glucagon-like peptide 1 (GLP-1) receptor agonists as a protective factor for incident depression in patients with diabetes mellitus: a systematic review. J Psychiatr Res. 2023;164:80–89.

    Article  PubMed  Google Scholar 

  247. Jalleh RJ, Plummer MP, Marathe CS, Umapathysivam MM, Quast DR, Rayner CK, et al. Clinical consequences of delayed gastric emptying with GLP-1 receptor agonists and tirzepatide. J Clin Endocrinol Metab. 2024;110:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Vieta E. Neuroprogression happens. Psychol Med. 2024;54:3760.

    Article  PubMed Central  Google Scholar 

  249. Yatham LN, Schaffer A, Kessing LV, Miskowiak K, Kapczinski F, Vieta E, et al. Early intervention, relapse prevention, and neuroprogression in bipolar disorder: the evidence matters. Bipolar Disord. 2024;26:313–6.

    Article  PubMed  Google Scholar 

  250. Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F. Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand. 2016;134:91–103.

    Article  CAS  PubMed  Google Scholar 

  251. Grewal S, McKinlay S, Kapczinski F, Pfaffenseller B, Wollenhaupt-Aguiar B. Biomarkers of neuroprogression and late staging in bipolar disorder: a systematic review. Aust N Z J Psychiatr. 2023;57:328–43.

    Article  Google Scholar 

  252. Wollenhaupt-Aguiar B, Kapczinski F, Pfaffenseller B. Biological pathways associated with neuroprogression in bipolar disorder. Brain Sci. 2021;11:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rodriguez PJ, Zhang V, Gratzl S, Do D, Cartwright BG, Baker C, et al. Discontinuation and reinitiation of dual-labeled GLP-1 receptor agonists among US adults with overweight or obesity. JAMA Netw Open. 2025;8:e2457349–e2457349.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Polonsky W, Gamble C, Iyer N, Martin M, Hamersky C. Exploring why people with type 2 diabetes do or do not persist with Glucagon-like Peptide-1 receptor agonist therapy: a Qualitative Study. Diabetes Spectr. 2021;34:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Waldrop SW, Johnson VR, Stanford FC. Inequalities in the provision of GLP-1 receptor agonists for the treatment of obesity. Nat Med. 2024;30:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Razavi MS, Fathi M, Vahednia E, Ardani AR, Honari S, Akbarzadeh F, et al. Cognitive rehabilitation in bipolar spectrum disorder: a systematic review. IBRO Neurosci Rep. 2024;16:509–17.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Vieta E, Torrent C. Functional remediation: the pathway from remission to recovery in bipolar disorder. World Psychiatry. 2016;15:288.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Nomoto H, Oba-Yamamoto C, Takahashi Y, Takeuchi J, Nagai S, Yokoyama H, et al. Effects of switching from liraglutide or dulaglutide to subcutaneous semaglutide on glucose metabolism and treatment satisfaction in patients with type 2 diabetes: protocol for a Multicenter, Prospective, Randomized, Open-Label, Blinded-Endpoint, Parallel-Group Comparison Study (The SWITCH-SEMA 1 Study). Diabetes Ther. 2021;12:955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Guglielmi G. The weight-loss drugs being tested in 2025: will they beat ozempic? Nature. 2025;638:591–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cristian-Daniel Llach received the support of a fellowship from “la Caixa” Foundation (ID 100010434 - fellowship code LCF/BQ/EU22/11930062).

Author information

Authors and Affiliations

Authors

Contributions

CDLL: Writing – review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. SB: Writing – review & editing. AT: Writing – review & editing. HS: Writing – review & editing. HG: Writing – review & editing. GHL: Writing – review & editing. EV: Writing – review & editing. RSM: Writing – review & editing. JDR: Writing – review & editing, Supervision. RBM: Writing – review & editing, Supervision.

Corresponding author

Correspondence to Cristian-Daniel Llach.

Ethics declarations

Competing interests

Cristian-Daniel Llach received financial support from the ‘La Caixa’ Foundation, which provided salary support during the fellowship through its fellowship programs. However, the foundation was not involved in any stage of this manuscript, including its design, writing, revision, or submission. There are no conflicts of interest between the author’s research and the ‘La Caixa’ Foundation. C.L. has also received CME-related honoraria or consulting fees from CASEN Recordati, Organon, Lundbeck, and the Academy for Continuing Medical Education (Akademijazakme), with no financial or other conflicts of interest relevant to the subject of this article. Eduard Vieta has received grants and served as consultant, advisor or CME speaker for the following entities: AB-Biotics, Abbott, AbbVie, Adamed, Alcediag, Angelini, Biogen, Beckley-Psytech, Biohaven, Boehringer-Ingelheim, Casen-Recordati, Celon Pharma, Clariane, Compass, Dainippon Sumitomo Pharma, Esteve, Ethypharm, Ferrer, Gedeon Richter, GH Research, Glaxo-Smith Kline, HMNC, Intra-Cellular therapies, Idorsia, Johnson & Johnson, Lundbeck, Luye Pharma, Medincell, Merck, Mitsubishi Tanabe Pharma, Newraxpharm, Newron, Novartis, Organon, Orion Corporation, Otsuka, Roche, Rovi, Sage, Sanofi-Aventis, Sunovion, Takeda, Teva, and Viatris, outside the submitted work. Dr. Roger S. McIntyre has received research grant support from CIHR/GACD/National Natural Science Foundation of China (NSFC) and the Milken Institute; speaker/consultation fees from Lundbeck, Janssen, Alkermes, Neumora Therapeutics, Boehringer Ingelheim, Sage, Biogen, Mitsubishi Tanabe, Purdue, Pfizer, Otsuka, Takeda, Neurocrine, Neurawell, Sunovion, Bausch Health, Axsome, Novo Nordisk, Kris, Sanofi, Eisai, Intra-Cellular, NewBridge Pharmaceuticals, Viatris, Abbvie and Atai Life Sciences. Dr. Joshua D Rosenblat has received research grant support from the Canadian Institute of Health Research (CIHR), Physician Services Inc (PSI) Foundation, Labatt Brain Health Network, Brain and Cognition Discovery Foundation (BCDF), Canadian Cancer Society, Canadian Psychiatric Association, Academic Scholars Award, American Psychiatric Association, American Society of Psychopharmacology, University of Toronto, University Health Network Centre for Mental Health, Joseph M. West Family Memorial Fund, Inagene and Timeposters Fellowship and industry funding for speaker/consultation/research fees from iGan, Boehringer Ingelheim, Abbvie, Braxia Health (Canadian Rapid Treatment Centre of Excellence), Braxia Scientific, Janssen, Allergan, Lundbeck, Sunovion and COMPASS.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llach, CD., Badulescu, S., Tabassum, A. et al. Glucagon-like Peptide-1 receptor agonists as emerging therapeutics in bipolar disorder: a narrative review of preclinical and clinical evidence. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03261-0

Search

Quick links