Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Connectome-based markers predict the sub-types of frontotemporal dementia

Abstract

Frontotemporal dementia (FTD) presents a complex spectrum of neurodegenerative disorders, encompassing distinct subtypes with varied clinical manifestations. This study investigates alterations in brain module organization associated with FTD subtypes using connectome analysis, aiming to identify potential biomarkers and enhance subtype prediction. Resting-state functional magnetic resonance imaging data were obtained from 41 individuals with behavioral variant frontotemporal dementia (BV-FTD), 32 with semantic variant frontotemporal dementia (SV-FTD), 28 with progressive non-fluent aphasia frontotemporal dementia (PNFA-FTD), and 94 healthy controls. Individual functional brain networks were constructed at the voxel level and binarized based on density thresholds. Modular segregation index (MSI) and participation coefficient (PC) were calculated to assess module integrity and identify regions with altered nodal properties. The relationship between modular measures and clinical scores was examined, and machine learning models were developed for subtype prediction. Both BV-FTD and SV-FTD groups exhibited decreased MSI in the subcortical module (SUB), default mode network (DMN), and ventral attention network (VAN) compared to healthy controls. Additionally, BV-FTD specifically displayed disrupted frontoparietal network (FPN) integrity compared to other FTD subtypes and controls. All FTD subtypes showed increased PC values in the insular region and reduced connections between the insular and VAN/FPN compared to controls. Moreover, significant associations between specific network alterations and clinical variables were observed. Machine learning models utilizing these matrices achieved high performance in differentiating FTD subtypes. This pilot study reveals diverse brain module organization across FTD subtypes, shedding light on both shared and distinct neurobiological underpinnings of the disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data analysis flowchat.
Fig. 2: Differences in module segregation index and intra- and intermodular connections among the four groups.
Fig. 3: PC values and connections across FTD subtypes.
Fig. 4: Correlations between clinical variables and MSI of networks.
Fig. 5: Performance of multi-class classification between subtypes of FTD and HC.

Similar content being viewed by others

Data availability

Data utilized in crafting this article were sourced from the FTLDNI databases, accessible at https://cind.ucsf.edu/research/grants/frontotemporal-lobar-degeneration-neuroimaging-initiative-0. It is important to note that while the investigators associated with FTLDNI contributed to the design and execution of the initiative and/or provided data, they did not partake in the analysis or drafting of this report. The code generated for this study are available on request to the corresponding author.

References

  1. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol. 2017;13:406–19.

    Article  PubMed  CAS  Google Scholar 

  4. Lashley T, Rohrer JD, Mead S, Revesz T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol. 2015;41:858–81.

    Article  PubMed  Google Scholar 

  5. Seo SW, Thibodeau MP, Perry DC, Hua A, Sidhu M, Sible I, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology. 2018;90:e1047–e56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Whitwell JL. FTD spectrum: neuroimaging across the FTD spectrum. Prog Mol Biol Transl Sci. 2019;165:187–223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Koziol LF, Barker LA, Joyce AW, Hrin S. Structure and function of large-scale brain systems. Appl Neuropsychol Child. 2014;3:236–44.

    Article  PubMed  Google Scholar 

  8. Eldaief MC, Brickhouse M, Katsumi Y, Rosen H, Carvalho N, Touroutoglou A, et al. Atrophy in behavioural variant frontotemporal dementia spans multiple large-scale prefrontal and temporal networks. Brain. 2023.

  9. Gu Y, Li L, Zhang Y, Ma J, Yang C, Xiao Y, et al. The overlapping modular organization of human brain functional networks across the adult lifespan. Neuroimage. 2022;253:119125.

    Article  PubMed  Google Scholar 

  10. Gallen CL, D’Esposito M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn Sci. 2019;23:293–304.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bertolero MA, Yeo BT, D’Esposito M. The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci USA. 2015;112:E6798–807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Contreras JA, Avena-Koenigsberger A, Risacher SL, West JD, Tallman E, McDonald BC, et al. Resting state network modularity along the prodromal late onset Alzheimer’s disease continuum. Neuroimage Clin. 2019;22:101687.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Necus J, Peraza LR, Mehraram R, Wang Y, O’Brien JT, et al. The functional brain favours segregated modular connectivity at old age unless affected by neurodegeneration. Commun Biol. 2021;4:973.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nicastro N, Mak E, Surendranathan A, Rittman T, Rowe JB, O’Brien JT. Altered structural connectivity networks in dementia with lewy bodies. Brain Imaging Behav. 2021;15:2445–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ng ASL, Wang J, Ng KK, Chong JSX, Qian X, Lim JKW, et al. Distinct network topology in Alzheimer’s disease and behavioral variant frontotemporal dementia. Alzheimer’s Res Ther. 2021;13:13.

    Article  Google Scholar 

  16. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133:1352–67.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mandelli ML, Welch AE, Vilaplana E, Watson C, Battistella G, Brown JA, et al. Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex. 2018;108:252–64.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manouvelou S, Koutoulidis V, Tsougos I, Tolia M, Kyrgias G, Anyfantakis G, et al. Differential diagnosis of behavioral variant and semantic variant of frontotemporal dementia using visual rating scales. Curr Med Imaging. 2020;16:444–51.

    Article  PubMed  Google Scholar 

  19. Russell LL, Greaves CV, Bocchetta M, Nicholas J, Convery RS, Moore K, et al. Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex. 2020;133:384–98.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lampe L, Huppertz HJ, Anderl-Straub S, Albrecht F, Ballarini T, Bisenius S, et al. Multiclass prediction of different dementia syndromes based on multi-centric volumetric MRI imaging. Neuroimage Clin. 2023;37:103320.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58:1803–9.

    Article  PubMed  CAS  Google Scholar 

  22. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6.

    Article  PubMed  CAS  Google Scholar 

  23. Dickie EW, Shahab S, Hawco C, Miranda D, Herman G, Argyelan M, et al. Robust hierarchically organized whole-brain patterns of dysconnectivity in schizophrenia spectrum disorders observed after personalized intrinsic network topography. Hum Brain Mapp. 2023;44:5153–66.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lindquist MA, Geuter S, Wager TD, Caffo BS. Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Hum Brain Mapp. 2019;40:2358–76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73.

    Article  PubMed  CAS  Google Scholar 

  26. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex (New York, NY: 1991). 2016;26:3508–26.

    Google Scholar 

  27. Ma Q, Tang Y, Wang F, Liao X, Jiang X, Wei S, et al. Transdiagnostic dysfunctions in brain modules across patients with schizophrenia, bipolar disorder, and major depressive disorder: a connectome-based study. Schizophr Bull. 2020;46:699–712.

    Article  PubMed  Google Scholar 

  28. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  29. Tsvetanov KA, Gazzina S, Jones PS, van Swieten J, Borroni B, Sanchez-Valle R, et al. Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer’s Dement. 2021;17:500–14.

    Article  CAS  Google Scholar 

  30. Ewers M, Luan Y, Frontzkowski L, Neitzel J, Rubinski A, Dichgans M, et al. Segregation of functional networks is associated with cognitive resilience in Alzheimer’s disease. Brain. 2021;144:2176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69.

    Article  PubMed  Google Scholar 

  32. Nigro S, Filardi M, Tafuri B, De Blasi R, Cedola A, Gigli G, et al. The role of graph theory in evaluating brain network alterations in frontotemporal dementia. Front Neurol. 2022;13:910054.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neylan K, Miller B. New approaches to the treatment of frontotemporal dementia. Neurotherapeutics. 2023;20:1055–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jiskoot L, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 2015;14:253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  36. Chiong W, Wilson SM, D’Esposito M, Kayser AS, Grossman SN, Poorzand P, et al. The salience network causally influences default mode network activity during moral reasoning. Brain. 2013;136:1929–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Day GS, Farb NAS, Tang-Wai DF, Masellis M, Black SE, Freedman M, et al. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurology. 2013;70:1249–53.

    PubMed  Google Scholar 

  38. Pini L, de Lange SC, Pizzini FB, Boscolo Galazzo I, Manenti R, Cotelli M, et al. A low-dimensional cognitive-network space in Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Res Ther. 2022;14:199.

    Article  Google Scholar 

  39. Chen Y, Zeng Q, Wang Y, Luo X, Sun Y, Zhang L, et al. Characterizing differences in functional connectivity between posterior cortical atrophy and semantic dementia by seed-based approach. Front Aging Neurosci. 2022;14:850977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Guo CC, Gorno-Tempini ML, Gesierich B, Henry M, Trujillo A, Shany-Ur T, et al. Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain. 2013;136:2979–91.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Urban-Kowalczyk M, Kasjaniuk M, Śmigielski J, Kotlicka-Antczak M. Major depression and onset of frontotemporal dementia. Neuropsychiatr Dis Treat. 2022;18:2807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci. 2018;20:133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hafkemeijer A, Möller C, Dopper EG, Jiskoot LC, van den Berg-Huysmans AA, van Swieten JC, et al. A longitudinal study on resting state functional connectivity in behavioral variant frontotemporal dementia and Alzheimer’s disease. J Alzheimers Dis. 2017;55:521–37.

    Article  PubMed  CAS  Google Scholar 

  44. Rolls ET. The functions of the orbitofrontal cortex. Brain Cogn. 2004;55:11–29.

    Article  PubMed  Google Scholar 

  45. Jackowski AP, Araújo Filho GM, Almeida AG, Araújo CM, Reis M, Nery F, et al. The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Braz J Psychiatry. 2012;34:207–12.

    Article  PubMed  Google Scholar 

  46. Liu L, Chu M, Nie B, Jiang D, Xie K, Cui Y, et al. Altered metabolic connectivity within the limbic cortico-striato-thalamo-cortical circuit in presymptomatic and symptomatic behavioral variant frontotemporal dementia. Alzheimer’s Res Ther. 2023;15:3.

    Article  CAS  Google Scholar 

  47. Wong S, Wei G, Husain M, Hodges JR, Piguet O, Irish M, et al. Altered reward processing underpins emotional apathy in dementia. Cogn Affect Behav Neurosci. 2023;23:354–70.

    Article  PubMed  Google Scholar 

  48. Hazelton JL, Fittipaldi S, Fraile-Vazquez M, Sourty M, Legaz A, Hudson AL, et al. Thinking versus feeling: How interoception and cognition influence emotion recognition in behavioural-variant frontotemporal dementia, Alzheimer’s disease, and Parkinson’s disease. Cortex. 2023;163:66–79.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hua AY, Roy ARK, Kosik EL, Morris NA, Chow TE, Lukic S, et al. Diminished baseline autonomic outflow in semantic dementia relates to left-lateralized insula atrophy. Neuroimage Clin. 2023;40:103522.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sokołowski A, Roy ARK, Goh SM, Hardy EG, Datta S, Cobigo Y, et al. Neuropsychiatric symptoms and imbalance of atrophy in behavioral variant frontotemporal dementia. Hum Brain Mapp. 2023;44:5013–29.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pasquini L, Nana AL, Toller G, Brown JA, Deng J, Staffaroni A, et al. Salience network atrophy links neuron type-specific pathobiology to loss of empathy in frontotemporal dementia. Cereb Cortex. 2020;30:5387–99.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bevan-Jones WR, Cope TE, Jones PS, Kaalund SS, Passamonti L, Allinson K, et al. Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum. Brain. 2020;143:1010–26.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Qu J, Ma H, Chen T, Liu T, Zhu D. Exploring Alzheimer’s disease: a comprehensive brain connectome-based survey. Psychoradiology. 2024;4:kkad033.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang WFZ, Toller G, Shdo S, Kotz SA, Brown J, Seeley WW, et al. Resting functional connectivity in the semantic appraisal network predicts accuracy of emotion identification. NeuroImage: Clinical. 2021;31:102755.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Macau (MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF), and the Macao Science and Technology Development Fund (FDCT 0015/2023/ITP1, FDCT0048/2021/AGJ, and FDCT0020/2019/AMJ).

Author information

Authors and Affiliations

Authors

Contributions

X.Z.: conceptualization, data curation, methodology, software, data analysis, visualization, writing—original draft, writing—review and editing, visualization. J. H.: data analysis, visualization. K. Z.: data curation. S. X.: data analysis. X. X.: visualization. Y.Z.: supervision, funding support, writing and editing.

Corresponding author

Correspondence to Zhen Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All methods were performed in accordance with the relevant guidelines and regulations. The study protocol and all procedures were approved by the Institutional Review Board of the University of Macau. Approval was also granted by the FTLDNI ethics committee. The FTLDNI project is coordinated by the University of California, San Francisco (UCSF) Memory and Aging Center, and data were obtained through a data use agreement via the LONI Image & Data Archive. All methods were carried out in accordance with the relevant guidelines and regulations.

Informed consent

All participants in the FTLDNI project provided written informed consent for study participation, data collection, and data sharing in accordance with the Declaration of Helsinki. No identifiable images from human participants are included in this article, and therefore no separate consent for publication of images was required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., He, J., Zhang, K. et al. Connectome-based markers predict the sub-types of frontotemporal dementia. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03290-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03290-9

Search

Quick links