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Neurosteroids that positively modulate GABAA receptors are among a growing list of rapidly acting antidepressants, including ketamine
and psychedelics. To develop increasingly specific treatments with fewer side effects, we explored the possibility of EEG signatures in
mice, which could serve as a cross-species screening tool. There are few studies of the impact of non-sedative doses of rapid
antidepressants on EEG in either rodents or humans. Here we hypothesize that EEG features may separate a rapid antidepressant
neurosteroid, allopregnanolone, from other GABAA positive modulators, pentobarbital and diazepam. Further, we compared the actions
GABA modulators with those of ketamine, an NMDA antagonist and prototype rapid antidepressant. We examined EEG spectra during
active exploration at two cortical locations and examined cross-regional and cross-frequency interactions. We found that at comparable
doses, the effects of allopregnanolone, despite purported selectivity for certain GABAAR subtypes, was indistinguishable from
pentobarbital during active waking exploration. The actions of diazepam had recognizable common features with allopregnanolone
and pentobarbital but was also distinct, consistent with subunit selectivity of benzodiazepines. Finally, ketamine exhibited no
distinguishing overlap with allopregnanolone in the parameters examined. Our results suggest that rapid antidepressants with different
molecular substrates may remain separated at the level of large-scale ensemble activity, but the studies leave open the possibility of
commonalities in more discrete circuits and/or in the context of a dysfunctional brain.
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INTRODUCTION
Recently the FDA approved brexanolone, a formulation of the
endogenous neurosteroid allopregnanolone (AlloP), as a rapid-
acting antidepressant therapy for postpartum depression. Syn-
thetic AlloP analogs may be useful for major depressive disorder
[1, 2]. AlloP thus joins ketamine and possibly psychedelics as
rapidly acting antidepressants [3–6]. Understanding features
common among rapid antidepressants is important for more
effective and selective neuropsychiatric treatments.
AlloP is a potent positive allosteric modulator (PAM) of GABAA

receptors (GABAAR), the primary fast inhibitory neurotransmitter
receptor in the CNS [7]. GABAARs are heteropentameric ligand
gated chloride channels found in virtually all CNS neurons.
Although nineteen GABAAR subunits have been identified, most
functional native receptors are composed of two α, two β, and a
variable fifth subunit. The identity of these subunits confers
physiologic and pharmacologic receptor properties. For example,
receptors containing a γ2 subunit are typically synaptic and drive
phasic inhibition, while receptors containing a δ or α5 subunit are
typically extrasynaptic and mediate tonic inhibition.
Subunit selectivity is believed to underlie actions of some

clinically important drugs, including benzodiazepines and neuro-
steroids. Benzodiazepines require certain α subunits and bind at

the interface of α and γ subunits and thus lack activity at δ
containing GABAARs [8]. Modulation at the benzodiazepine site can
affect both phasic inhibition through α1/2/3 containing receptors,
and tonic inhibition through actions at α5 containing GABAARs,
which are located primarily on excitatory pyramidal cells [9, 10].
While benzodiazepines produce reliable anxiolytic effects, they lack
clinically useful antidepressant activity. Neurosteroids, including
AlloP, enhance both phasic and tonic inhibition and may act
preferentially at δ-containing GABAARs [11–13]. Barbiturates are
broad spectrum GABAAR PAMs [14, 15] but could share selectivity
for δ-containing receptors with neurosteroids [16]. δ-containing
receptors are commonly found on principal neurons where they
are usually part of α4βδ or α6βδ pairings [17, 18]; however they are
also expressed by some interneurons, particularly parvalbumin
positive (PV+ ) fast spiking interneurons, where they comprise a
unique α1βδ pairing that has shown different pharmacologic
properties from classic δ subunit pairings in vitro [19, 20].
To develop even more effective and selective treatments, it is

necessary to expand our understanding of AlloP and its
modulation of brain circuits and network activity. The coordinated
activity of neurons gives rise to brain rhythms and extracellular
field oscillations that can be measured on the cortical surface with
electroencephalograms (EEG). The activity of interneurons is
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largely responsible for maintaining network oscillations. In
particular, gamma oscillation frequency is dependent on the
decay kinetics of inhibitory postsynaptic potentials on pyramidal
cells produced by GABA release from PV+ interneurons [21].
Additionally, the prolongation of these decay kinetics by
diazepam can modulate the frequency of oscillatory rhythms in
EEG signals including slowing theta and gamma oscillations in
mice, and potentiating beta frequency oscillations in rodents and
humans [22, 23]. Study of EEG alterations by AlloP can inform
about neurosteroid neuromodulation integrated across diverse
cell types over multiple circuits, presumably relevant to complex
behaviors. EEG is also readily applied to both rodents and humans.
Comparison of oscillatory modulation with that induced by other
known rapid antidepressants may yield insight into shared
network-level signatures of antidepressant drugs that could be
used to screen for new antidepressant activity.
While novel rapid-acting antidepressants such as AlloP and

ketamine produce persisting effects that outlive drug presence in
the brain, antidepressant effects emerge rapidly. Therefore, study
of network level activities acutely modulated by AlloP and other
rapid acting antidepressants may reveal common changes among
otherwise distinct drugs and help to inform the further develop-
ment of new antidepressants. In addition, differentiating network
modulation induced by AlloP from other drugs that share effects
on GABAARs, including the selective actions of benzodiazepines
described above, can help elucidate the mechanism through
which AlloP induces its antidepressant response.
Here we utilized video-EEG recordings in freely behaving mice to

characterize the network level effects of AlloP at a sub-sedative
dose. We included two categories of comparator drug treatments.
We first compared AlloP effects to those of pentobarbital and
diazepam, two GABAAR PAMs that lack known antidepressant
effects. Pentobarbital may lack the subunit-selective effects of AlloP
and diazepam outlined above [14–16]. Second, we compared EEG
effects of AlloP and another rapid acting antidepressant, ketamine,
to identify shared alterations to network activity that may indicate a
convergence of these two drugs with different molecular targets
toward network effects. AlloP robustly increased spectral power in
beta (12–30 Hz) and low gamma (30–55 Hz) frequency ranges
during active wake, a feature shared with pentobarbital. Diazepam,
which has more selective actions at GABAAR populations, had
weaker effects on this frequency range than AlloP or pentobarbital.
There were few similarities between the acute effects of AlloP and
ketamine on EEG. Similar comparative patterns characterized
changes to functional connectivity and cross-frequency coupling
by the drugs. Overall, the results indicate that ketamine and AlloP
differentially modulate network activity during the early phase of
drug action. Our results raise questions about the antidepressant
efficacy of barbiturates and the selectivity of AlloP.

METHODS
Drugs
AlloP (Sigma) was initially dissolved in 45% 2-hydroxypropyl β-cyclodextrin
(CDX) at a concentration of 1.2 mg/mL and sonicated until completely
dissolved, then further diluted in sterile saline (0.9% NaCl) to 0.6 mg/mL
AlloP and 22.5% CDX. Pentobarbital (Sigma) and ketamine (Sigma) were
both dissolved in sterile saline to final concentrations of 6 mg/mL and
2mg/mL respectively. Diazepam (Sigma) was dissolved in 40% propylene
glycol in sterile saline at a concentration of 0.2 mg/mL. All drugs were
delivered as a single intraperitoneal injection with the following doses
(mg/kg): AlloP 5, pentobarbital 15, diazepam 1, ketamine 10. Dosing was
determined by pilot studies ensuring no loss of righting reflex in the hour
following injection to target the sub-anesthetic dose range. AlloP and
ketamine doses were within ranges previously shown to produce
antidepressant-like effects in rodents [24–27].

EEG surgery
Mice (C57BL6/J JAX# 000664) of both sexes were anesthetized with isoflurane
(5% for induction, 1.5–2% for surgery), and mounted in a stereotactic frame

(Kopf, Tujunga, CA). Bilateral holes were drilled in the skull for insertion of
epidural screw electrodes for frontal (+0.7 AP, ± 0.5ML bregma), and parietal
(-2.0 AP, ± 1.5ML bregma) electrodes. An additional screw over the
cerebellum (-1.0 AP lambda) served as a common ground reference. To
facilitate vigilance scoring of EEG, a single stainless steel wire was implanted
in the nuchal muscle for EMG measurement. Animals were allowed to
recover in their home cages for three days before initiating EEG recordings.

EEG recording
For the duration of the experiment mice were maintained on reverse
lighting cycle and recordings were initiated in the first half of the dark
cycle to enrich for active wake behaviors throughout the period of acute
drug exposure. EEG was acquired from four mice simultaneously with each
recording chamber containing a 16ch RHD headstage with 3-axis
accelerometer (Intan technologies, C3335) controlled by a single Open-
Ephys acquisition board via the OpenEphys GUI. Signals were digitized at
1000 Hz and filtered from 0.1 to 250 Hz with a 2nd-order Butterworth
digital filter. A series of 5 cohorts of 4 animals each were recorded for a
total of 5 animals per drug group (AlloP 3M/2 F, pentobarbital 5 M/2 F,
diazepam 3M/2 F, ketamine 3 F/2 M). Animals were briefly habituated to
tethering and the recording chamber for 2 h at least one day prior to the
experimental session. Recordings for the experimental session began with
a 30min baseline recording period. Next a vehicle injection for each drug
condition was delivered, followed 30min later by the active drug. EEG
monitoring continued for 12 h.

EEG analysis
Raw data were imported into MATLAB for further analysis. Time frequency
spectrograms were generated from a wavelet transform of the raw EEG
signal, utilizing a set of 100 complex morlet wavelets centered from 1 to
100 Hz in 1 Hz steps with wavelet cycles increasing logarithmically from 3
to 30. 5 min of artifact-free EEG in which active wake was the dominant
behavioral state were identified from the baseline, vehicle, and drug
periods. Segments were identified by combined evidence of animal
movement from video, EMG, and accelerometer, and the presence of theta
rhythm in the parietal electrode. Typical behaviors defining these
segments included digging, ambulation, and rearing. Oscillations were
detected using the Better OSCillation (BOSC) method [28] which
incorporates both power and duration thresholds to detect true
oscillations, and produces the measure Pepisode, representing the propor-
tion of the time segment analyzed that an oscillation at a given frequency
was present. Raw power spectra calculated with traditional FFT based
methods confirmed main drug effects observed with the BOSC method
(Supplementary Methods, Fig. S1). Coherence was calculated between
ipsilateral frontal and parietal electrodes over 5 min of active wake EEG
using the multitaper coherency method in the Chronux MATLAB toolbox
[29, 30]. The coherencenysegc function was used with window length of
5 s and taper parameters [TW, K]= 7.5, 14 to calculate coherency of
oscillations <100 Hz. Coherency results were collapsed further into bins of
5 consecutive estimates before statistical testing. Theta-gamma phase
amplitude coupling was computed during the same segments of active
wake using the modulation index measure [31]. Briefly, low frequency
phase was extracted from the Hilbert transform of a series of bandpass
filtered signals centered from 4 to 15 Hz with 2 Hz bandwidth in 1 Hz steps,
and high frequency amplitude was extracted from the Hilbert transform of
a series of bandpass filtered signals centered from 15 to 100 Hz with 20 Hz
bandwidth in 5 Hz steps. The binning of high frequency amplitudes by
instantaneous low frequency phase allowed for the calculation of a
modulation index for each combination of low and high frequencies.

Statistics
For all drug conditions, statistical comparisons were made to the vehicle
injection period. Frequency distributions of Pepisode were assessed with a
repeated measures two-way ANOVA with factors of drug treatment and
oscillation frequency, followed by Dunnett’s multiple comparisons test for
each frequency of oscillation. Frequency bands for bandpower calculations
were defined as described previously [32], and the integral of the Pepisode
distribution within each frequency band was normalized to the vehicle
condition to allow for direct assessment of drug effects on bandpower. A
two-way repeated measures ANOVA was performed for each drug and
electrode to assess drug effects on vehicle-normalized bandpower
compared to the respective baseline conditions, followed by Dunnett’s
multiple comparisons test for each frequency band. Comparison of other
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drugs to the effects of AlloP was assessed for vehicle normalized Pepisode
distributions and bandpower with a standard two-way ANOVA followed by
Dunnett’s multiple comparisons test comparing effects of each drug to
AlloP. Coherence was tested with a two-way repeated measures ANOVA,
followed by Dunnett’s multiple comparisons test for each frequency bin. A
threshold of 5 continuous frequency bins (2.44 Hz bandwidth) was
considered a meaningful difference for multiple comparisons. Compar-
isons of summary statistics are presented as mean ± SEM along with an
estimate of the group differences ± 95% confidence interval calculated
from the Dunnett’s multiple comparisons test.
All results reported here, excluding coherence measures, were part of a

‘hypothesis testing’ phase of experiments, preceded by similar pilot studies
(hypothesis generating) performed on a smaller group of animals in a drug
crossover design (n= 4 mice treated with AlloP and ketamine). Additional
pilot experiments titrated dosages to ensure just sub-sedative effects.
Analysis approaches were worked out during the hypothesis generating
phase, and these preliminary results showed evidence for depressed theta-
gamma coupling for ketamine and AlloP, a commonality between
antidepressant drugs that did not replicate in the hypothesis testing
phase. Coherence measures were added during the later phase and thus
can be considered hypothesis-generating.

RESULTS
Acute effects of sub-sedative AlloP and comparators on
cortical EEG
To standardize the effect of behavioral state on EEG signals, we
focused on EEG changes in the active wake behavioral state during
the period of acute drug action. The dominant features of the
baseline active wake EEG are a robust theta frequency oscillation,
especially prominent in parietal electrodes, and the presence of
oscillations in the broad gamma frequency range. Injection of CDX
vehicle failed to alter either of these EEG features. A single
intraperitoneal injection of 5mg/kg AlloP showed rapid onset of
EEG changes during active wake, with effects persisting for up to
45min (Fig. 1A). The most prominent feature induced by AlloP was
an increase in beta (12–30 Hz) and low gamma (30–55 Hz)
frequency oscillations detected in all measured electrodes (Fig. 1B,
C). Notably, this increase in mid frequency range oscillations was
more prominent in frontal electrodes, which have lower baseline
power at these frequencies (Fig. 1B), than the parietal electrodes
(Fig. 1C). Additionally, AlloP reduced the level of high gamma
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Fig. 1 Sub-sedative AlloP acutely alters mid frequency range oscillations in active wake EEG. A Representative spectrograms showing time
course of acute drug exposure including baseline, vehicle, and drug periods. Black lines indicate vehicle and drug injection, horizontal white
lines indicate active segments used for further analysis, and white overlay represents animal activity measured via accelerometer. B, C AlloP
effects on frontal (B) and parietal (C) active wake EEG oscillations, represented as the proportion of analyzed time segment that an oscillation
at a given frequency was present (Pepisode; see Methods). Repeated measures two-way ANOVA showed an interaction between drug treatment
X oscillation frequency at both electrodes analyzed (Frontal – F(198,800)= 41.14, p < 0.0001, Parietal – F(198,800)= 33.59, p < 0.0001).
Horizontal bars indicate difference from vehicle after Dunnett’s multiple comparisons testing (black – baseline, orange – vehicle, red – AlloP
(5 mg/kg)). D Peak Pepisode of theta oscillations in parietal EEG. Right panel shows 95% confidence interval of mean difference of Pepisode
estimate. One-way repeated measures ANOVA revealed an effect of treatment on Pepisode (F(1.498, 5.991)= 49.38 p= 0.0003). Dunnet’s
multiple comparison showed a difference between Vehicle (VEH) and AlloP (Drug, D) peak (p= 0.0045). Baseline (no injection) is denoted as
BL. E Integrated bandpower of vehicle-normalized Pepisode distribution from frontal electrode. Dotted line indicates vehicle (normalizing
condition). Black symbols denote the baseline condition. Red symbols denote AlloP. Two-way repeated measures ANOVA showed drug
treatment X frequency band interaction (F(4, 20)= 52.20 p < 0.0001). Dunnett’s multiple comparisons showed difference between vehicle and
AlloP for alpha (p= 0.0075), beta (p < 0.0001) and gamma (p < 0.0001) band power. F Integrated band power of vehicle-normalized Pepisode
distribution from parietal electrode. Two-way repeated measures ANOVA revealed drug treatment X frequency band interaction (F(4,
20)= 37.41 p < 0.0001). Dunnett’s multiple comparisons showed difference between baseline and AlloP for alpha (p= 0.0003), beta
(p= 0.0241) and gamma (p < 0.0001) band power. Black circles and bars to the right of treatment groups in (E, F) represent estimate of mean
difference between drug and baseline treatment ± 95% confidence intervals calculated from Dunnett’s multiple comparisons test.
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frequency oscillations. As expected from active wake, parietal
electrodes showed prominent theta oscillations, likely hippocam-
pal driven, that were reduced by AlloP (Fig. 1D). When normalized
to the vehicle period, AlloP increased EEG power in the beta and
gamma bands compared to vehicle injection, coupled with a
reduction in alpha band power (Fig. 1E, F). We did not observe
evidence of a sex effect in the acute EEG response to AlloP during
active wake (Fig. S2), although the study was not powered to
detect small differences. Active wake segments sampled from
hours 6–9 and 9–12 of the recording session confirmed a return to
baseline EEG signatures (Fig. S3), indicating the above findings
represented acute effects of AlloP on network activity.
To investigate how the effects of AlloP compared with

behaviorally similar doses of other GABAAR PAMs, we compared
AlloP to pentobarbital and diazepam, two GABAAR PAMs with
different degrees of subunit selectivity. We found that both
pentobarbital and diazepam altered EEG with a timescale similar to
that of AlloP (Fig. 2A, D). Although we selected a dose of diazepam
that preserved enough active wake behavior necessary for our
intended analysis during acute drug exposure, the animals
receiving diazepam did exhibit more sleep behavior during the
hours immediately following drug injection (Fig. S4). Similar to the
oscillatory changes induced by AlloP, the acute effects of
pentobarbital and diazepam were strongest in mid frequency
range oscillations (Fig. 2B, E). Interestingly, pentobarbital induced
oscillations lower in the beta range (peak at ~35 Hz) than the
oscillations induced by diazepam (peak at ~50 Hz), and pentobar-
bital increased the mid frequency oscillations more than diazepam.
Additionally, both GABAAR PAMs decreased the strength of the
theta rhythm (Fig. 2C, F), similar to AlloP. Overall, pentobarbital

recapitulated all the changes evident with AlloP, while diazepam
only partially recapitulated the effects of the other GABA PAMs.
In efforts to find common patterns of altered network activity

induced by rapid-acting antidepressants, we compared the effects
of AlloP to those induced by a sub-sedative dose of ketamine, an
NMDA receptor antagonist that exhibits rapid antidepressant
effects [25]. Following injection of ketamine, all mice remained
active and showed drug-induced changes to the spectral content
of both frontal and parietal EEG with rapid onset (Fig. 3A).
Ketamine increased gamma frequency oscillations present during
active wake, particularly in a higher end of the gamma range than
the GABAAR targeting compounds (Fig. 3B). Moreover, unlike the
compounds targeting GABAARs, ketamine decreased oscillations in
the beta frequency range at both parietal and frontal sites (Fig. 3B,
~30 Hz). Interestingly, ketamine did not alter the strength of the
theta frequency oscillations, based on one-way ANOVA (Fig. 3C),
different from the other drugs in this study. However mean
difference analysis suggested that vehicle lowered the theta peak
probability (Fig. 3C, right). The basis of the apparent vehicle effect
in Fig. 3C is unclear but could involve a small effect of acute stress,
since pentobarbital and diazepam also showed small vehicle
effects at limited frequencies within the theta band (Fig. 2B, E).
Similarities and differences among drugs are most easily

visualized in side-by-side comparisons of spectral changes of all
4 drugs (Fig. 4). In Fig. 4, changes are expressed relative to
respective vehicle, which showed relatively little difference from
the uninjected state (baseline in Figs. 1–3, Fig. S5). Overall, the
acute effects of AlloP on EEG oscillations are most similar to those
of pentobarbital (Fig. 4A, D), a GABAAR PAM with broad subunit
actions [14, 15]. Although diazepam also increased oscillations in
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Fig. 2 Pentobarbital and diazepam share features with AlloP on EEG. Representative spectrograms showing time course of acute effects of
pentobarbital (A) and diazepam (D) on frontal (top panels) and parietal (bottom panels) EEG. Black lines indicate vehicle and drug injection,
horizontal white lines indicate active segments used for further analysis, and white overlay is trace from head-mounted accelerometer.
B Pentobarbital effects on frontal (left panel) and parietal (right panel) active wake EEG oscillations. Two-way ANOVA showed frequency X
drug interaction in both frontal (F(198, 1200)= 39.29, p < 0.0001) and parietal (F(198, 1200)= 51.17, p < 0.0001) electrodes. C Parietal theta
rhythm peak was reduced (one-way ANOVA, F(1.204, 7.227)= 32.89, p= 0.0001). Dunnett’s multiple comparisons test between vehicle and
pentobarbital revealed a difference (p= 0.0005). E Diazepam induced changes in frontal (left panel) and parietal (right panel) active wake EEG
oscillations. Two-way ANOVA showed frequency X drug interaction for frontal (F(198, 800)= 30.72, p < 0.0001) and parietal (F(198,
800)= 31.48, p < 0.0001) electrodes. F Theta frequency peak was reduced during acute diazepam effects (One-way ANOVA, effect of drug
treatment on peak F(1.218, 4.870)= 47.24, p= 0.0009). Dunnett’s multiple comparisons showed difference between vehicle and diazepam
(p= 0.0072). Horizontal lines in B, E represent difference from vehicle spectra following Dunnett’s multiple comparisons test with an alpha
threshold of 0.05.
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Fig. 4 AlloP and comparators: Changes to active wake EEG. A Drug effects on frontal electrode active wake power spectra normalized to
vehicle injection. Two-way ANOVA shows frequency X drug interaction (F(297,1800)= 17.75, p < 0.0001). B Drug-induced frontal EEG band
power changes. Two-way ANOVA shows frequency band X drug interaction (F (12, 90)= 17.33, p < 0.0001). AlloP was treated as a standard to
which other drugs were compared. AlloP differed from ketamine in alpha (p= 0.0405), beta (p < 0.0001) and gamma (p < 0.0001) bands. AlloP
differed in beta from pentobarbital (p < 0.0001). C Drug-induced changes on gamma sub-bands of frontal EEG. Two-way ANOVA revealed
frequency band X drug interaction (F (3,36)= 86.86 p < 0.0001). Dunnett’s multiple comparisons showed AlloP vs. ketamine (p < 0.0001) and
AlloP vs. diazepam (p= 0.0078) differences in low gamma sub-band, and AlloP vs ketamine (p < 0.0001) and AlloP vs. diazepam (p= 0.0051).
D Drug effects on parietal electrode active wake power spectra normalized to vehicle injection. Two-way ANOVA shows frequency X drug
interaction (F(297,1800)= 16.97, p < 0.0001). E Drug-induced parietal EEG band power changes. Two-way ANOVA revealed frequency band X
drug interaction (F (12,90)= 11.04 p < 0.0001). Dunnett’s multiple comparisons showed AlloP vs. ketamine difference in theta (p= 0.0486),
beta (p < 0.0001), and gamma (p < 0.0001). F Drug-induced changes on gamma sub-bands of parietal EEG. Two-way ANOVA revealed
frequency band X drug interaction (F (3,36)= 86.89, p < 0.0001). Dunnett’s multiple comparisons revealed AlloP vs. Ketamine difference in low
(p < 0.0001) and high (p < 0.0001) gamma. Horizontal lines in A, D show significant difference compared to AlloP from Dunnett’s multiple
comparisons test. AlloP – red, pentobarbital – blue, diazepam – green, ketamine – purple.
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the beta and low gamma ranges, it failed to reach the magnitude
of the AlloP and pentobarbital effects (Fig. 4A, D). Interestingly, all
four drugs in this study decreased parietal alpha band power
(Fig. 4E). Ketamine had opposing effects to the GABAAR targeting
compounds in the beta frequency range and was the only drug to
potentiate oscillations in the high gamma sub-band in the parietal
EEG (Fig. 4F).

AlloP tracks with other GABA-A PAMs but not ketamine on
measures of functional connectivity
Coherence between oscillatory signals across brain areas repre-
sents a measure of functional connectivity [33], Here we used
coherence between parietal and frontal EEG leads to assess
functional connectivity changes induced during AlloP and
comparator drug exposure. This coherence measure was pre-
viously employed to investigate the effects of ketamine on
functional connectivity [34]. AlloP decreased the coherence
between the frontal electrode and parietal electrode in the middle
frequency range with reductions occurring around 15 and 35 Hz
compared to the vehicle injection (Fig. 5A). These results suggest
an acute reduction in functional connectivity between the frontal
and parietal cortical areas during network modulation by AlloP.
To determine if the effects of AlloP on frontal-parietal EEG

coherence are specific to neurosteroid action on GABAARs, we
analyzed the effects of other GABAAR PAMs on coherence. Similar to
our spectral analyses, AlloP affected coherence in a similar pattern to
both pentobarbital and diazepam, which showed reductions in
coherence throughout the beta frequency range (Fig. 5B, C).
In addition, we analyzed the effects of ketamine on coherence

to investigate potential shared effects with AlloP (Fig. 5D).
Compared to AlloP, ketamine injection primarily reduced frontal-
parietal coherence in the lower end of the gamma frequency
range (Fig. 5D), notably at frequencies higher than those that
showed decreased coherence in the presence of AlloP.

Decreased phase amplitude coupling during exposure to
GABAAR PAMs but not ketamine
Among functional interactions in the brain, phase-amplitude
coupling (PAC) of theta and gamma frequencies has received
strong attention, as this measure is thought to be directly related
to many cognitive behaviors that are disrupted in neuropsychiatric
illness [35]. During active wake, the amplitude of higher frequency
gamma oscillations is modulated by the phase of the slower theta
rhythm [36]. We found that a single sub-sedative dose of AlloP
reduced theta-gamma PAC (Fig. 5E, I). The decreased coupling was
also observed in animals treated with pentobarbital (Fig. 5F, J) and
diazepam (Fig. 5G, K). Similar to the pattern of results above,
ketamine did not alter the strength of theta-gamma PAC, despite
the overall increase in gamma frequency power (Fig. 5H, L). Taken
together, the effects on theta-gamma PAC further suggest that
AlloP modulates cross-frequency cortical network activity most
similarly to a nonselective GABAAR PAM, with few similarities to
ketamine, a drug that shares rapid antidepressant effects.

DISCUSSION
Here we compared in mice the effects of AlloP and several
comparators on EEG signals during active exploration. All
compounds were compared at a just sub-sedative dose during
active wake. We also report the first assessment of theta-gamma
cross-frequency coupling measured in EEG during AlloP and
pentobarbital treatment. Both AlloP and pentobarbital promoted
frontal oscillations at 15–55 Hz, including the beta and low gamma
bands. AlloP and other GABAAR PAMs also disrupted higher order
network organization measured by frontal-parietal coherence and
theta-gamma PAC. Although we hypothesized that AlloP would
distinguish from other non-antidepressant GABAAR PAMs, sub-
sedative pentobarbital recapitulated with remarkable precision all

AlloP-induced EEG signatures. Interestingly, diazepam, a more
subunit-selective GABAAR PAM, showed a weaker increase of beta
and low gamma frequency power. Finally, ketamine induced
mostly distinct EEG features from the GABA PAMs. Several features
(e.g., reduced parietal alpha bandpower) were shared by all drugs.
Taken together, non-selective GABAAR PAMs, including AlloP, affect
network activity very similarly, and ketamine’s actions are distinct,
complicating efforts to identify a rapid antidepressant signature.
Previous studies have implicated increases in beta power as an

EEG signature of GABAAR PAMs at non sedative doses [37].
Additionally, two neuroactive steroids with GABAAR PAM activity,
alphaxalone and pregnanolone, increase beta frequency EEG
amplitudes measured from 11.5 to 30 Hz during IV administration
in rats while drug concentrations are in non-sedative ranges
[38, 39]. More recently, zuranolone (SAGE-217), a synthetic AlloP
analog in development for antidepressant treatment, increases
beta power in EEG recordings from humans, rats, and mice [24, 40].
In our study, the increase in beta power during active wake was
barely distinguishable from that of pentobarbital, suggesting that
increased waking beta power is a reliable measure sensitive to sub-
sedative broad-spectrum GABAAR PAM activity. While this signa-
ture is shared amongst GABAAR PAMs, increases in beta frequency
power has been observed following sedative/hypnotic doses of
non-GABAergic neurosteroids, as well as sedative doses of
ketamine. However these increases in beta frequency power are
accompanied by an increase in a broader low-frequency range
power coupled with a shift out of active wake behavior [41–43].
The quantitative overlap between AlloP and pentobarbital was
perhaps surprising given the purported selectivity of AlloP for δ
subunit containing receptors mediating tonic inhibition [44–46].
Based on work in recombinant receptors, pentobarbital, like AlloP,
increases agonist efficacy at low-efficacy δ-containing receptors
[16]. However, pentobarbital sleep time is unaffected in δ null
animals, different from neurosteroids [44]. Overall, our results
suggest that at the sub-sedative dose used here, AlloP and
pentobarbital behave similarly as nonselective GABAAR PAMs
in vivo. We are tempted to speculate that barbiturates in fact may
share desirable psychotropic properties with AlloP at sub-sedative
doses if EEG signatures identify those desirable properties.
Moreover, diazepam did not increase beta frequency power to
the same degree as AlloP and pentobarbital, potentially due to its
actions at GABAAR populations being limited to receptors contain-
ing a γ subunit [8]. Additionally, changes to network oscillations
may depend on the cell types that are affected directly by each
GABAAR PAM and the receptor subunit combinations present on
their surface. For example, δ-containing receptors are found in
α4βδ combinations on excitatory pyramidal cells and in α1βδ
combinations on PV+ interneurons [17–20]. The potential for AlloP
and pentobarbital to modulate the α1βδ receptors primarily found
on interneurons whose activity are essential for network oscilla-
tions further differentiates these two PAMs from diazepam.
Regardless, the increase in beta and low gamma power continues
to be a useful indication of network modulation through GABAAR
activity since ketamine, an NMDA receptor antagonist, did not
reliably increase EEG power in this range.
In addition to changes in average spectral power, study of the

interaction between oscillations of different frequencies may aide
in our understanding of how AlloP alters brain function.
Coherence and cross frequency coupling between theta and
gamma oscillations have been suggested to play an important
role in cognitive processes [35, 47]. Alteration of theta-gamma
coupling during acute drug exposure can assess the conse-
quences of the drug effects propagated across the activities of
many cell types that are crucial for maintaining these complex
oscillatory interactions. Although we did not identify a difference
between AlloP and other GABAAR PAMs, our results are consistent
with those previously described for exposure to low dose
diazepam [23] indicating that reduction in theta-gamma phase
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amplitude coupling likely characterizes all GABAAR PAMs. Inter-
estingly, GABAAR PAMs commonly exert amnestic effects, which
may reflect the ability of these drugs to disrupt higher order
oscillatory dynamics relevant for cognitive functions such as theta-

gamma coupling [48]. While previous reports have demonstrated
that higher doses of ketamine increased theta-gamma coupling in
hippocampal LFP recordings [49], we found that theta-gamma
coupling was unaltered in the cortical EEG during acute exposure
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Fig. 5 Coherence and phase amplitude coupling differentially altered by GABAAR PAMs compared to ketamine. A–D Coherence between
ipsilateral frontal and parietal electrodes during baseline (black), vehicle (orange), and drug (A – AlloP (red), B – pentobarbital (blue), C –
diazepam (green), D – ketamine (purple)). Two way repeated measures ANOVA revealed significant drug X frequency interaction for AlloP
(F(326,1312)= 6.496, p < 0.0001), pentobarbital (F(326,1968)= 10.40, p < 0.0001), diazepam (F(326,1312)= 6.450, p < 0.0001), and ketamine (F
(326,13120)= 2.385, p < 0.0001). Horizontal bars represent significant difference from vehicle condition from Dunnett’s multiple comparisons
with alpha 0.05 and for > 5 continuous frequency bins. Theta-gamma comodulograms from 5min of active wake during vehicle (left panels)
and drug (right panels) periods. White contour line represents threshold of significant coupling strength after Bonferroni correction. AlloP
(E, I), pentobarbital (F, J), and diazepam (G, K) all showed decreased coupling, with a shift to lower frequency pairs, while ketamine (H, L), did
not acutely alter coupling. Right panels show effects baseline and drug relative to vehicle normalization, including confidence intervals. One-
way ANOVA for modulation indices showed reduction by AlloP (F(1.435, 5.741)= 12.75, p= 0.0098), pentobarbital (F(1.334, 8.006)= 58.06,
p < 0.0001), and diazepam (F(1.559, 6.235)= 12.66, p= 0.0078), with Dunnett’s multiple comparisons showing reductions between drugs and
respective vehicle.
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to the lower dose used here that is presumably relevant to
antidepressant effects.
Despite the lack of unique signatures of AlloP effects on

network activity during acute drug exposure, this finding doesn’t
exclude acute or lasting commonalities between AlloP and
ketamine, distinct from other GABAAR PAMs. Although our study
represented a comprehensive evaluation of EEG oscillations, it is
possible that local recordings (e.g., local field recordings) from
relevant circuits would reveal commonalities among rapid
antidepressants. For example, simultaneous recordings from
ventral hippocampus and prefrontal cortex, a projection pre-
viously implicated in antidepressant effects of ketamine, may
allow for a more nuanced comparison with AlloP [50]. Additionally,
recordings from circuits relevant to behaviors associated with
depressive-like phenotypes, such as reward circuitry relevant to
anhedonia, may reveal common effects between rapid antide-
pressants that are not apparent in the cortical EEG signal [51, 52].
It is also possible that antidepressant drugs would exhibit
similarities only in the context of dysfunctional brain activity.
Indeed, our study can be considered a comprehensive baseline
against which effects of drugs in various perturbed states can be
compared. Further studies will be necessary to link direct actions
of drugs on neural oscillations with potential corrections of
dysfunctional baseline network activity. These studies will be a
crucial aspect of identifying predictive EEG based biomarkers for
antidepressant treatment response, which, to date, have failed to
emerge reliably for more traditional antidepressant therapies [53].
Ketamine and AlloP antidepressant effects greatly outlive

presence of drug. Thus, it is also possible that different triggers
during acute drug action may lead to common persisting effects.
Persisting effects of neurosteroids include changes in receptor
composition [54, 55] or membrane trafficking of some GABAAR
populations [56, 57]. Ketamine is not known to alter GABAAR
receptor expression or trafficking but increases glutamate and
BDNF signaling [58], which conceivably could lead to similar
effects on circuits as AlloP effects.
It also remains possible that the AlloP exposure in our study was

too brief to induce common changes to network activity. While a
single injection of ketamine in mice or intranasal administration in
humans can induce rapid and persistent antidepressant effects,
the dosing protocol currently used in patients undergoing
brexanolone treatment involves a considerably longer exposure
before symptom improvements are observed relative to placebo
treatment. Perhaps providing a longer duration of exposure to
sub-sedative AlloP or multiple consecutive doses is necessary to
produce circuit and network level responses different from those
seen during the immediate acute exposure.
In summary, our work is the first to examine commonalities

among anesthetics turned antidepressant: GABAA PAMs and
ketamine, with emphasis on mesoscale antidepressant triggers.
At the level of cortical EEG, we find little evidence of commonalities
between two distinct classes of rapidly acting antidepressants.
Instead, we find remarkable similarity between the mesoscale
actions of two broad-spectrum PAMs, despite differences in the
purported receptor selectivity and clinical effects.
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