Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule natural product sophoricoside reduces peripheral neuropathic pain via directly blocking of NaV1.6 in dorsal root ganglion nociceptive neurons

Abstract

Peripheral neuropathic pain poses a significant global health challenge. Current drugs for peripheral neuropathic pain often fall short in efficacy or come with severe side effects, emphasizing the critical need for the development of highly effective and well-tolerated alternatives. Sophoricoside (SOP) is a nature product-derived isoflavone that possesses various pharmacological effects on inflammatory and neuropathy diseases. Here, in this study, analgesic effect was investigated by intrathecally administration of SOP/vehicle to spared nerve injury (SNI) or paclitaxel-induced peripheral neuropathic pain (PINP) rodent models, and mechanical allodynia was measured in Von Frey tests. Ipsilateral L4–L6 dorsal root ganglia (DRG) were used for protein expression. In silico molecular docking analysis was applied for assessing compound-target binding affinity. Primary cultured DRG neurons were utilized to investigate SOP’s effect on veratridine-triggered nociceptor activities and its selective inhibition of voltage-gated sodium channels subtype 1.6 (NaV1.6). The results showed SOP treatment alleviated mechanical allodynia in SNI and PINP rodent models (paw withdrawal threshold after 1 h of injection: SNI-vehicle: 1.385 ± 0.338 g; SNI-SOP: 9.963 ± 2.029 g, P < 0.001; PINP-vehicle: 5.040 ± 0.985 g; PINP-SOP: 8.287 ± 3.812 g, P = 0.004). SOP presented effects on both inhibiting veratridine-triggered nociceptor activities (oscillatory population: vehicle: 39.9 ± 7.3%; SOP: 30.7 ± 9.8%, P = 0.021) and selectively blocking NaV1.6 in DRG sensory neurons. Molecular docking analysis indicated direct binding between SOP and NaV1.6, leading to its endocytosis in DRG Sensory Neurons. In conclusion, SOP alleviated nociceptive allodynia induced by peripheral nerve injury via selectively blocking of NaV1.6 in DRG nociceptive neurons. we highlight its potential as an analgesic and elucidate its mechanism involving NaV1.6 endocytosis. This research opens avenues for exploring the analgesic effects of SOP and its potential impact on neuropathic pain therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of sophoricoside treatment on mechanical allodynia in rat models of peripheral neuropathic pain.
Fig. 2: Sophoricoside inhibited veratridine-triggered nociceptor activities of DRG neurons.
Fig. 3: Sophoricoside reduces the total NaV currents in DRG sensory neurons.
Fig. 4: Sophoricoside shows distinct effects on different subtypes of NaV channels.
Fig. 5: Sophoricoside directly binds to the active area of NaV1.6 channel and reduces NaV1.6 currents by promoting its endocytosis.

Similar content being viewed by others

References

  1. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb Mortal Wkly Rep. 2018;67:1001–1006. https://doi.org/10.15585/mmwr.mm6736a2.

  2. Tsang A, Von Korff M, Lee S, Alonso J, Karam E, Angermeyer MC, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders. J Pain. 2008;9:883–91. https://doi.org/10.1016/j.jpain.2008.05.005.

    Article  PubMed  Google Scholar 

  3. Elzahaf RA, Tashani OA, Unsworth BA, Johnson MI. The prevalence of chronic pain with an analysis of countries with a Human Development Index less than 0.9: a systematic review without meta-analysis. Curr Med Res Opin. 2012;28:1221–9. https://doi.org/10.1185/03007995.2012.703132.

    Article  PubMed  Google Scholar 

  4. Fornasari D. Pharmacotherapy for neuropathic pain: a review. Pain Ther. 2017;6:25–33. https://doi.org/10.1007/s40122-017-0091-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haroutounian S, Nikolajsen L, Bendtsen TF, Finnerup NB, Kristensen AD, Hasselstrom JB, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155:1272–9. https://doi.org/10.1016/j.pain.2014.03.022

    Article  PubMed  Google Scholar 

  6. Bajaj S, Ong ST, Chandy KG. Contributions of natural products to ion channel pharmacology. Nat Prod Rep. 2020;37:703–16. https://doi.org/10.1039/c9np00056a

    Article  CAS  PubMed  Google Scholar 

  7. Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol. 2018;175:2138–57. https://doi.org/10.1111/bph.13962

    Article  CAS  PubMed  Google Scholar 

  8. Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell. 2019;176:702–715.e714. https://doi.org/10.1016/j.cell.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  9. Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG. Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett. 2005;579:2166-70 https://doi.org/10.1016/j.febslet.2005.03.009.

    Article  CAS  PubMed  Google Scholar 

  10. Xie W, Strong JA, Ye L, Mao JX, Zhang JM. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain. 2013;154:1170–80. https://doi.org/10.1016/j.pain.2013.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie W, Strong JA, Zhang JM. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain. Neuroscience. 2015;291:317–30. https://doi.org/10.1016/j.neuroscience.2015.02.010.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka BS, Zhao P, Dib-Hajj FB, Morisset V, Tate S, Waxman SG, et al. A gain-of-function mutation in Nav1.6 in a case of trigeminal neuralgia. Mol Med. 2016;22:338–48. https://doi.org/10.2119/molmed.2016.00131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Huang J, Zhao P, Persson A-K, Dib-Hajj FB, Cheng X, et al. Conditional knockout of NaV1.6 in adult mice ameliorates neuropathic pain. Sci Rep. 2018;8:3845. https://doi.org/10.1038/s41598-018-22216-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Shao J, Wang J, Liu Y, Zhang Y, Zhang M, et al. MiR-30b-5p attenuates oxaliplatin-induced peripheral neuropathic pain through the voltage-gated sodium channel Nav1.6 in rats. Neuropharmacology. 2019;153:111–20. https://doi.org/10.1016/j.neuropharm.2019.04.024.

    Article  CAS  PubMed  Google Scholar 

  15. Khan FA, Ali G, Rahman K, Khan Y, Ayaz M, Mosa OF, et al. Efficacy of 2-hydroxyflavanone in rodent models of pain and inflammation: involvement of opioidergic and GABAergic anti-nociceptive mechanisms. Molecules. 2022;27. https://doi.org/10.3390/molecules27175431.

  16. Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, et al. Pharmacological features, health benefits and clinical implications of honokiol. J Biomol Struct Dyn. 2023;41:7511–33. https://doi.org/10.1080/07391102.2022.2120541.

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich L, Cingolani G, Ko YH, Iaselli M, Miciaccia M, Perrone MG, et al. Learning from nature: from a marine natural product to synthetic cyclooxygenase-1 inhibitors by automated de novo design. Adv Sci. 2021;8:e2100832. https://doi.org/10.1002/advs.202100832.

    Article  CAS  Google Scholar 

  18. Wu YX, Zeng S, Wan BB, Wang YY, Sun HX, Liu G, et al. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis. Int Immunopharmacol. 2021;90:107187. https://doi.org/10.1016/j.intimp.2020.107187.

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, He D, Li Z, Gao X, Yang S, Cui M, et al. Oral administration of sophoricoside (SOP) inhibits neuronal damage and neuroinflammation to curb neurodegeneration in Parkinson’s disease. Chem Biol Interact. 2023;384:110726. https://doi.org/10.1016/j.cbi.2023.110726.

    Article  CAS  PubMed  Google Scholar 

  20. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58. https://doi.org/10.1016/S0304-3959(00)00276-1.

    Article  PubMed  Google Scholar 

  21. Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD, et al. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci. 2018;38:1124–36. https://doi.org/10.1523/JNEUROSCI.0899-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang H, Shan Z, Guo W, Wang Y, Cai S, Li F, et al. Reversal of peripheral neuropathic pain by the small-molecule natural product narirutin via block of Na(v)1.7 voltage-gated sodium channel. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms232314842.

  24. Cai S, Moutal A, Yu J, Chew LA, Isensee J, Chawla R, et al. Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med. 2021;13:eabh1314. https://doi.org/10.1126/scitranslmed.abh1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, et al. (-)-Hardwickiic acid and hautriwaic acid induce antinociception via blockade of Tetrodotoxin-sensitive voltage-dependent sodium channels. ACS Chem Neurosci. 2019;10:1716–28. https://doi.org/10.1021/acschemneuro.8b00617.

    Article  CAS  PubMed  Google Scholar 

  26. Rosker C, Lohberger B, Hofer D, Steinecker B, Quasthoff S, Schreibmayer W. The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel. Am J Physiol Cell Physiol. 2007;293:C783–789. https://doi.org/10.1152/ajpcell.00070.2007.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Shan Z, Yang H, Xing Y, Guo W, Cheng J, et al. Quercetin, main active ingredient of Moutan Cortex, alleviates chronic orofacial pain via block of voltage-gated sodium channel. Anesth Analg. 2023. https://doi.org/10.1213/ANE.0000000000006730.

  28. Wu C, Luan H, Wang S, Zhang X, Wang R, Jin L, et al. Modulation of lipogenesis and glucose consumption in HepG2 cells and C2C12 myotubes by sophoricoside. Molecules. 2013;18:15624–35. https://doi.org/10.3390/molecules181215624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li W, Lu Y. Hepatoprotective effects of sophoricoside against fructose-induced liver injury via regulating lipid metabolism, oxidation, and inflammation in mice. J Food Sci. 2018;83:552–8. https://doi.org/10.1111/1750-3841.14047.

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Ding X, Wang T, Mou S, Sun H, Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today. 2019;24:1389–97. https://doi.org/10.1016/j.drudis.2019.05.014.

    Article  CAS  PubMed  Google Scholar 

  31. Eijkenboom I, Sopacua M, Hoeijmakers JGJ, de Greef BTA, Lindsey P, Almomani R, et al. Yield of peripheral sodium channels gene screening in pure small fibre neuropathy. J Neurol Neurosurg Psychiatry. 2019;90:342–52. https://doi.org/10.1136/jnnp-2018-319042.

    Article  PubMed  Google Scholar 

  32. Mohammed ZA, Doran C, Grundy D, Nassar MA. Veratridine produces distinct calcium response profiles in mouse dorsal root ganglia neurons. Sci Rep. 2017;7:45221. https://doi.org/10.1038/srep45221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohammed ZA, Kaloyanova K, Nassar MA. An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery. Pain. 2020;161:1100–8. https://doi.org/10.1097/j.pain.0000000000001802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol. 2007;579:1–14. https://doi.org/10.1113/jphysiol.2006.121483.

    Article  CAS  PubMed  Google Scholar 

  35. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73. https://doi.org/10.1016/S1474-4422(14)70251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101:259–301. https://doi.org/10.1152/physrev.00045.2019.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Luo D, Liang Z, Lao L, Rong J. Plant natural product puerarin ameliorates depressive behaviors and chronic pain in mice with spared nerve injury (SNI). Mol Neurobiol. 2017;54:2801–12. https://doi.org/10.1007/s12035-016-9870-x.

    Article  CAS  PubMed  Google Scholar 

  38. Woodbury A, McCrary MR, Yu SP. Molecular targets and natural compounds in drug development for the treatment of inflammatory pain. Curr Drug Targets. 2018;19:1905–15. https://doi.org/10.2174/1389450119666180514120438.

    Article  CAS  PubMed  Google Scholar 

  39. Taha O, Opitz T, Mueller M, Pitsch J, Becker A, Evert BO, et al. Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons. Exp Neurol. 2017;297:25–35. https://doi.org/10.1016/j.expneurol.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  40. Deuis JR, Zimmermann K, Romanovsky AA, Possani LD, Cabot PJ, Lewis RJ, et al. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain. 2013;154:1749–57. https://doi.org/10.1016/j.pain.2013.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sittl R, Lampert A, Huth T, Schuy ET, Link AS, Fleckenstein J, et al. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc Natl Acad Sci USA. 2012;109:6704–9. https://doi.org/10.1073/pnas.1118058109.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Laedermann CJ, Cachemaille M, Kirschmann G, Pertin M, Gosselin RD, Chang I, et al. Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J Clin Investig. 2013;123:3002–13. https://doi.org/10.1172/JCI68996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goodchild SJ, Shuart NG, Williams AD, Ye W, Parrish RR, Soriano M, et al. Molecular pharmacology of selective NaV1.6 and dual NaV1.6/NaV1.2 channel inhibitors that suppress excitatory neuronal activity ex vivo. ACS Chem Neurosci. 2024;15:1169–84. https://doi.org/10.1021/acschemneuro.3c00757.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson JP, Focken T, Khakh K, Tari PK, Dube C, Goodchild SJ, et al. NBI-921352, a first-in-class, NaV1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. eLife. 2022;11:e72468. https://doi.org/10.7554/eLife.72468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, Grant No. 82201376 and the Natural Science Foundation of Guangdong Province, Grant No. 2021A1515011129.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WG, ZS, and SC; data acquisition and analysis: animal model, XC and QX; behavior test, WG and TL; electrophysiological recording, WG, HY, and YW; molecular docking, DZ; manuscript drafting, YP, ZS, and SC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhiming Shan or Song Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Yang, H., Wang, Y. et al. Small-molecule natural product sophoricoside reduces peripheral neuropathic pain via directly blocking of NaV1.6 in dorsal root ganglion nociceptive neurons. Neuropsychopharmacol. 50, 662–672 (2025). https://doi.org/10.1038/s41386-024-01998-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-024-01998-w

Search

Quick links