Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptidomimetic inhibitors targeting TrkB/PSD-95 signaling improves cognition and seizure outcomes in an Angelman Syndrome mouse model

Abstract

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder with profoundly debilitating symptoms with no FDA-approved cure or therapeutic. Brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin receptor kinase B (TrkB), have a well-established role as regulators of synaptic plasticity, dendritic outgrowth and spine formation. Previously, we reported that the association of postsynaptic density protein 95 (PSD-95) with TrkB is critical for intact BDNF signaling in the AS mouse model, as illustrated by attenuated PLCγ and PI3K signaling and intact MAPK pathway signaling. These data suggest that drugs tailored to enhance the TrkB-PSD-95 interaction may provide a novel approach for the treatment of AS and a variety of neurodevelopmental disorders (NDDs). To evaluate this critical interaction, we synthesized a class of high-affinity PSD-95 ligands that bind specifically to the PDZ3 domain of PSD-95, denoted as Syn3 peptidomimetic ligands. We evaluated Syn3 and its analog D-Syn3 (engineered using dextrorotary (D)-amino acids) in vivo using the Ube3a exon 2 deletion mouse model of AS. Following systemic administration of Syn3 and D-Syn3, we demonstrate improvement in the seizure domain of AS. Learning and memory using the novel object recognition assay also illustrated improved cognition following Syn3 and D-Syn3, along with restored long-term potentiation. A pharmacokinetic analysis of D-Syn3 demonstrates that it crosses the blood-brain barrier (BBB), and the brain influx rate is in the range of CNS therapeutics. Finally, D-Syn3 treated mice showed a partial rescue in motor learning. Neither Syn3 nor D-Syn3 improved gross exploratory locomotion deficits, nor gait impairments that have been well documented in the AS rodent models. These findings highlight the need for further investigation of this compound class as a potential therapeutic for AS and other genetic NDDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting BDNF signaling.
Fig. 2: Syn3 and D-Syn3 restore synaptic plasticity in hippocampal slices of compound-injected AS mice.
Fig. 3: AS mice demonstrate increased seizure susceptibility across standard Racine scoring stages.
Fig. 4: Syn3 and D-Syn3 administered in WT mice demonstrated reduced seizure susceptibility in the latency to generalized clonic-tonic seizure stage, from the Racine Score.
Fig. 5: Subjects were evaluated for learning and memory abilities using the novel object recognition test.
Fig. 6: Accelerating rotarod was used to evaluate motor coordination and motor learning.

Similar content being viewed by others

References

  1. Beaudet AL. Angelman syndrome: Drugs to awaken a paternal gene. Nature. 2011;481:150–2.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Buiting K, Williams C, Horsthemke B. Angelman syndrome - insights into a rare neurogenetic disorder. Nat Rev Neurol. 2016;12:584–93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Williams CA. Neurological aspects of the Angelman syndrome. Brain Dev. 2005;27:88–94.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Williams CA. The behavioral phenotype of the Angelman syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:432–7.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res. 2022;15:821–33.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Born HA, Dao AT, Levine AT, Lee WL, Mehta NM, Mehra S, et al. Strain-dependence of the Angelman Syndrome phenotypes in Ube3a maternal deficiency mice. Sci Rep. 2017;7:8451.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Adhikari A, Copping NA, Beegle J, Cameron DL, Deng P, O’Geen H, et al. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum Mol Genet. 2021;30:1067–83.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Copping NA, Silverman JL. Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome. Mol Autism. 2021;12:9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism. 2021;12:59.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47:210–5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17:111–8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Khatri N, Gilbert JP, Huo Y, Sharaflari R, Nee M, Qiao H, et al. The Autism Protein Ube3A/E6AP Remodels Neuronal Dendritic Arborization via Caspase-Dependent Microtubule Destabilization. J Neurosci. 2018;38:363–78.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Kim H, Kunz PA, Mooney R, Philpot BD, Smith SL. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. J Neurosci. 2016;36:4888–94.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Sun J, Liu Y, Tran J, O’Neal P, Baudry M, Bi X. mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci. 2016;73:4303–14.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Chao MV. Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J Neurosci Res. 2000;59:353–5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Lauterborn JC, Pineda E, Chen LY, Ramirez EA, Lynch G, Gall CM. Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience. 2009;159:283–95.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Leal G, Afonso PM, Salazar IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015;1621:82–101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Li G, Qiu S. Neurodevelopmental Underpinnings of Angelman Syndrome. J Bioanal Biomed. 2014;6:052056.

    PubMedĀ  Google ScholarĀ 

  21. Lynch G, Rex CS, Chen LY, Gall CM. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol. 2008;585:2–13.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Monteggia LM. Toward neurotrophin-based therapeutics. Am J Psychiatry. 2011;168:114–6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361:1545–64.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270:593–8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, et al. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol. 2013;11:e1001478.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Lau KA, Yang X, Rioult-Pedotti MS, Tang S, Appleman M, Zhang J, et al. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol. 2023;230:102513.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Yang X, Huang YA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res. 2025;20:715–24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Piserchio A, Salinas GD, Li T, Marshall J, Spaller MR, Mierke DF. Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem Biol. 2004;11:469–73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Naik MT, Naik N, Hu T, Wang SH, Marshall J. Structure-based design of peptidomimetic inhibitors of PSD-95 with improved affinity for the PDZ3 domain. FEBS Lett. 2024;598:233–41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell. 2016;166:1163–75.e12.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Shi X, Zhou XZ, Chen G, Luo WF, Zhou C, He TJ, et al. Targeting the postsynaptic scaffolding protein PSD-95 enhances BDNF signaling to mitigate depression-like behaviors in mice. Sci Signal. 2024;17:eadn4556.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Li KR, Huan MJ, Yao J, Li JJ, Cao Y, Wang S, et al. Syn3, a newly developed cyclic peptide and BDNF signaling enhancer, ameliorates retinal ganglion cell degeneration in diabetic retinopathy. Protein Cell. 2024;14:pwae028.

    Google ScholarĀ 

  34. Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol. 2020;180:114187.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell. 2011;9:517–25.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Fenton TA, Petkova SP, Adhikari A, Silverman JL. Acute administration of lovastatin improved several metrics of gait in a mouse model of Angelman Syndrome. J Neurodev Disord. 2023:in press.

  38. Silverman JL, Babineau BA, Oliver CF, Karras MN, Crawley JN. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism. Neuropharmacology. 2013;68:210–22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci. 2016;28:1–52.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4:131ra51.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, et al. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet. 2017;26:3995–4010.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Silverman JL, Crawley JN. The promising trajectory of autism therapeutics discovery. Drug Discov Today. 2014;19:838–44.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Silverman JL, Nithianantharajah J, Der-Avakian A, Young JW, Sukoff Rizzo SJ. Lost in translation: At the crossroads of face validity and translational utility of behavioral assays in animal models for the development of therapeutics. Neurosci Biobehav Rev. 2020;116:452–53.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Sukoff Rizzo SJ. The essential role of animal models in the advancement of our understanding of human behaviors: A Commentary on the Special issue on the 30th Anniversary of the International Behavioral Neuroscience Society (IBNS). Neurosci Biobehav Rev. 2023;149:105182.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  45. Sukoff Rizzo SJ, Anderson LC, Green TL, McGarr T, Wells G, Winter SS. Assessing Healthspan and Lifespan Measures in Aging Mice: Optimization of Testing Protocols, Replicability, and Rater Reliability. Curr Protoc Mouse Biol. 2018;8:e45.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  46. Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, et al. Bridging the rodent to human translational gap: Marmosets as model systems for the study of Alzheimer’s disease. Alzheimers Dement. 2023;9:e12417.

  47. Sukoff Rizzo SJ, Masters A, Onos KD, Quinney S, Sasner M, Oblak A, et al. Improving preclinical to clinical translation in Alzheimer’s disease research. Alzheimers Dement. 2020;6:e12038.

  48. Sukoff Rizzo SJ, McTighe S, McKinzie DL. Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies. Handb Exp Pharmacol. 2020;257:147–62.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Sukoff Rizzo SJ, Silverman JL. Methodological Considerations for Optimizing and Validating Behavioral Assays. Curr Protoc Mouse Biol. 2016;6:364–79.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  50. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci. 2017;20:1062–73.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Haigh JL, Adhikari A, Copping NA, Stradleigh T, Wade AA, Catta-Preta R, et al. Deletion of a non-canonical regulatory sequence causes loss of Scn1a expression and epileptic phenotypes in mice. Genome Med. 2021;13:69.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Fenton TA, Haouchine OY, Hallam EB, Smith EM, Jackson KC, Rahbarian D, et al. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-related intellectual disability. Transl. Psychiatry. 2024;14:405.

  53. Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32:6525–41.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Adhikari A, Copping NA, Onaga B, Pride MC, Coulson RL, Yang M, et al. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol Learn Mem. 2019;165:106874.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, et al. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism. 2017;8:26.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S, et al. GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacology. 2015;40:2228–39.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Weeber EJ, Jiang YH, Elgersma Y, Varga AW, Carrasquillo Y, Brown SE, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23:2634–44.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci. 2013;33:12887–97.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Van Erum J, Valkenburg F, Van Dam D, De Deyn PP. Pentylenetetrazole-induced Seizure Susceptibility in the Tau58/4 Transgenic Mouse Model of Tauopathy. Neuroscience. 2020;425:112–22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  60. Van Erum J, Van Dam D, De Deyn PP. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019;95:51–5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Copping NA, Adhikari A, Petkova SP, Silverman JL. Genetic backgrounds have unique seizure response profiles and behavioral outcomes following convulsant administration. Epilepsy Behav. 2019;101:106547.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai J, Copping NA, et al. Touchscreen cognitive deficits, hyperexcitability and hyperactivity in males and females using two models of Cdkl5 deficiency. Hum Mol Genet. 2022;31:3032–50.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Born HA, Martinez LA, Levine AT, Harris SE, Mehra S, Lee WL, et al. Early Developmental EEG and Seizure Phenotypes in a Full Gene Deletion of Ubiquitin Protein Ligase E3A Rat Model of Angelman Syndrome. eNeuro. 2021;8:1–16.

  64. Chung L, Bey AL, Towers AJ, Cao X, Kim IH, Jiang YH. Lovastatin suppresses hyperexcitability and seizure in Angelman syndrome model. Neurobiol Dis. 2018;110:12–9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Ciarlone SL, Grieco JC, D’Agostino DP, Weeber EJ. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model. Neurobiol Dis. 2016;96:38–46.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Ciarlone SL, Wang X, Rogawski MA, Weeber EJ. Effects of the synthetic neurosteroid ganaxolone on seizure activity and behavioral deficits in an Angelman syndrome mouse model. Neuropharmacology. 2017;116:142–50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Gu B, Carstens KE, Judson MC, Dalton KA, Rougie M, Clark EP, et al. Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice. J Clin Invest. 2019;129:163–68.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. Gu B, Zhu M, Glass MR, Rougie M, Nikolova VD, Moy SS, et al. Cannabidiol attenuates seizures and EEG abnormalities in Angelman syndrome model mice. J Clin Invest. 2019;129:5462–67.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Kumar V, Joshi T, Vatsa N, Singh BK, Jana NR. Simvastatin Restores HDAC1/2 Activity and Improves Behavioral Deficits in Angelman Syndrome Model Mouse. Front Mol Neurosci. 2019;12:289.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Schultz MN, Crawley JN. Evaluation of a TrkB agonist on spatial and motor learning in the Ube3a mouse model of Angelman syndrome. Learn Mem. 2020;27:346–54.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Bruinsma CF, Schonewille M, Gao Z, Aronica EM, Judson MC, Philpot BD, et al. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. J Clin Invest. 2015;125:4305–15.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of [alpha]CaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10:280–82.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  73. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharm Sci. 2021;42:929–42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–313.e19.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Egawa K, Nakakubo S, Kimura S, Goto T, Manabe A, Shiraishi H. Flurothyl-induced seizure paradigm revealed higher seizure susceptibility in middle-aged Angelman syndrome mouse model. Brain Dev. 2021;43:515–20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Cruz E, Descalzi G, Steinmetz A, Scharfman HE, Katzman A, Alberini CM. CIM6P/IGF-2 Receptor Ligands Reverse Deficits in Angelman Syndrome Model Mice. Autism Res. 2021;14:29–45.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  78. Leclercq K, Kaminski RM. Genetic background of mice strongly influences treatment resistance in the 6 Hz seizure model. Epilepsia. 2015;56:310–8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Matson LM, McCarren HS, Cadieux CL, Cerasoli DM, McDonough JH. The role of genetic background in susceptibility to chemical warfare nerve agents across rodent and non-human primate models. Toxicology. 2018;393:51–61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Rossetti F, Rodrigues MC, Marroni SS, Fernandes A, Foresti ML, Romcy-Pereira RN, et al. Behavioral and EEG effects of GABAergic manipulation of the nigro-tectal pathway in the Wistar audiogenic rat (WAR) strain II: an EEG wavelet analysis and retrograde neuronal tracer approach. Epilepsy Behav. 2012;24:391–8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  81. Schulz JB, Hausmann L. Synaptopathies: synaptic dysfunction in neurological disorders - A review written by students for students, and a story of success for ISN schools. J Neurochem. 2016;138:783–4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, et al. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem. 2016;138:785–805.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science. 2000;290:533–6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank the Angelman Syndrome community and the UC Davis MIND Institute for supporting this research. We also thank Dr. Nathaniel Hodgson (IDDRC Animal Behavior and Physiology Core) for performing microdialysis and Rory (Dallon) Martin for exceptional husbandry and attention to the mouse colonies of the Silverman Laboratory and the IDDRC mouse behavioral core at the MIND Institute at UC Davis School of Medicine.

Funding

This work was supported by the National Institutes of Health [R01NS097808 (JLS), R01NS094440 (JM), R21MH104252 (JM), the Harrington Discovery Institute (JM), theĀ MIND Institute’s Intellectual and Developmental Disabilities Resource Center (IDDRC), Grant/Award P50 HD103526 (PI, Abbeduto)Ā and by generous funding from the Foundation for Angelman Syndrome Therapeutics (JM and XY)]. We also thank the IDDRC Animal Behavior and Physiology Core, funded by NIH/NICHD P50 HD105351.

Author information

Authors and Affiliations

Authors

Contributions

JLS and JM designed the study. EZH and ERM generated the mice through paternal and maternal specific breeding lines and performed genotyping to identify mice for groups. EZH, KT, and AYY performed the behavioral experiments and subsequent analyses. XY and YAH conducted the biochemistry and signaling studies in the iPSC cells. MSP conducted the LTP analysis. MN completed the structural biology analysis. KH, MAE and WAB conducted the pharmacokinetic studies. JM and JLS supervised the study and interpretations of data. EZH, JM, and JLS drafted the initial manuscript. All authors included valuable comments and edits to the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jill L. Silverman or John Marshall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huie, E.Z., Yang, X., Rioult-Pedotti, M.S. et al. Peptidomimetic inhibitors targeting TrkB/PSD-95 signaling improves cognition and seizure outcomes in an Angelman Syndrome mouse model. Neuropsychopharmacol. 50, 772–782 (2025). https://doi.org/10.1038/s41386-024-02020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-024-02020-z

Search

Quick links