Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic Δ9-tetrahydrocannabinol exposure in adolescent nonhuman primates: persistent abnormalities in economic demand and brain functional connectivity

Subjects

Abstract

Although chronic cannabis use during adolescence can alter brain function and impair complex behavioral processes, it is unclear whether such deficits persist into adulthood. Using a coordinated awake neuroimaging and behavioral approach in nonhuman primates, we addressed this issue by examining the impact of chronic adolescent exposure to Δ9-tetrahydrocannabinol (THC) on brain functional connectivity and motivational processes during early adulthood. Female and male squirrel monkeys (n = 23) were treated daily for 6 months during adolescence with vehicle or either a low (0.32 mg/kg) or high dose (3.2 mg/kg) of THC. Regional homogeneity and seed-to-whole-brain functional connectivity were analyzed prior to, during, and following discontinuation of chronic treatment to examine changes in regions implicated in reward processing. Subsequently, motivation and reward sensitivity in these subjects, now young adults, were evaluated in economic demand studies by determining the relationship between escalating response requirements and consumption of differing magnitudes of a palatable food reinforcer. Results show that adolescent THC exposure led to persistent alterations in mOFC, caudate, and ventral striatum whole-brain connectivity. Moreover, subjects treated with vehicle during adolescence displayed an orderly and expected inverse relationship between reward magnitude and demand elasticity, whereas THC-treated subjects exhibited dosage-dependent disorder in reward sensitivity and motivational deficits. Changes in neural circuitry (local connectivity in ventral striatum and whole brain connectivity in mOFC) and economic demand were correlated with indices of reward sensitivity in vehicle- but not THC-treated subjects. Taken together, these data indicate that chronic adolescent THC exposure produced long-lasting neurocognitive abnormalities in reward processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Twelve-month timeline of experimental events.
Fig. 2: Economic demand functions that describe the exponential relationship between price (response requirement) and consumption (number of rewards earned) as a function of percent sweetened condensed milk (reward magnitude).
Fig. 3: Economic demand parameter analysis.
Fig. 4: Seed-to-whole brain FC in regions of interest for vehicle, low dose THC (0.32 mg/kg), and high dose THC (3.2 mg/kg) groups at the three timepoints (drug-naïve, chronic, discontinuation).
Fig. 5: Relationship between behavioral and neuroimaging endpoints. Data points represent relations for individual subjects.

Similar content being viewed by others

References

  1. Bara A, Ferland JN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci. 2021;22:423–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brumback T, Castro N, Jacobus J, Tapert S. Effects of marijuana use on brain structure and function: neuroimaging findings from a neurodevelopmental perspective. Int Rev Neurobiol. 2016;129:33–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferland JN, Ellis RJ, Betts G, Silveira MM, de Firmino JB, Winstanley CA, et al. Long-term outcomes of adolescent THC exposure on translational cognitive measures in adulthood in an animal model and computational assessment of human data. JAMA Psychiatry. 2023;80:66–76.

    Article  PubMed  Google Scholar 

  4. Lichenstein SD, Manco N, Cope LM, Egbo L, Garrison KA, Hardee J, et al. Systematic review of structural and functional neuroimaging studies of cannabis use in adolescence and emerging adulthood: evidence from 90 studies and 9441 participants. Neuropsychopharmacology. 2022;47:1000–28.

    Article  PubMed  Google Scholar 

  5. Rubino T, Parolaro D. The impact of exposure to cannabinoids in adolescence: insights from animal models. Biol Psychiatry. 2016;79:578–85.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson W, Mathew R, Turkington T, Hawk T, Coleman RE, Provenzale J. Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis. 2000;19:1–22.

    Article  CAS  PubMed  Google Scholar 

  7. Camchong J, Lim KO, Kumra S. Adverse effects of cannabis on adolescent brain development: a longitudinal study. Cereb Cortex. 2017;27:1922–30.

    PubMed  Google Scholar 

  8. Cheng H, Skosnik PD, Pruce BJ, Brumbaugh MS, Vollmer JM, Fridberg DJ, et al. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users - a multi-voxel pattern analysis. J Psychopharmacol. 2014;28:1030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Houck JM, Bryan AD, Feldstein Ewing SW. Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abus. 2013;39:414–23.

    Article  Google Scholar 

  10. Lorenzetti V, Hoch E, Hall W. Adolescent cannabis use, cognition, brain health and educational outcomes: A review of the evidence. Eur Neuropsychopharmacol. 2020;36:169–80.

    Article  CAS  PubMed  Google Scholar 

  11. Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, et al. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One. 2013;8:e55821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gleason KA, Birnbaum SG, Shukla A, Ghose S. Susceptibility of the adolescent brain to cannabinoids: long-term hippocampal effects and relevance to schizophrenia. Transl Psychiatry. 2012;2:e199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobus J, Goldenberg D, Wierenga CE, Tolentino NJ, Liu TT, Tapert SF. Altered cerebral blood flow and neurocognitive correlates in adolescent cannabis users. Psychopharmacology. 2012;222:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Viganò D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19:763–72.

    Article  CAS  PubMed  Google Scholar 

  15. Gruber SA, Dahlgren MK, Sagar KA, Gönenc A, Lukas SE. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacol. 2013;231:1455–65.

    Article  Google Scholar 

  16. Rubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry. 2013;22:719–31.

    Article  PubMed  Google Scholar 

  17. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61.

    Article  CAS  PubMed  Google Scholar 

  18. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW. Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci. 2004;24:8223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the risks and consequences of adolescent cannabis exposure. J Am Acad Child Adolesc Psychiatry. 2017;56:214–25.

    Article  PubMed  Google Scholar 

  20. Lisdahl KM, Wright NE, Kirchner-Medina C, Maple KE, Shollenbarger S. Considering cannabis: the effects of regular cannabis use on neurocognition in adolescents and young adults. Curr Addict Rep. 2014;1:144–56.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Raphael D. Adolescence as a gateway to adult health outcomes. Maturitas. 2013;75:137–41.

    Article  PubMed  Google Scholar 

  22. McGlothlin WH, West LJ. The marihuana problem: an overview. Am J Psychiatry. 1968;125:126–34.

    Article  CAS  PubMed  Google Scholar 

  23. Pacheco-Colón I, Limia JM, Gonzalez R. Nonacute effects of cannabis use on motivation and reward sensitivity in humans: A systematic review. Psychol Addict Behav. 2018;32:497–507.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lac A, Luk JW. Testing the Amotivational Syndrome: Marijuana use longitudinally predicts lower self-efficacy even after controlling for demographics, personality, and alcohol and cigarette use. Prev Sci. 2018;19:117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martz ME, Trucco EM, Cope LM, Hardee JE, Jester JM, Zucker RA, et al. Association of marijuana use with blunted nucleus accumbens response to reward anticipation. JAMA Psychiatry. 2016;73:838–44.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paule MG, Allen RR, Bailey JR, Scallet AC, Ali SF, Brown RM, et al. Chronic marijuana smoke exposure in the rhesus monkey. II: Effects on progressive ratio and conditioned position responding. J Pharm Exp Ther. 1992;260:210–22.

    CAS  Google Scholar 

  27. Halbout B, Hutson C, Hua L, Inshishian V, Mahler SV, Ostlund SB. Long-term effects of THC exposure on reward learning and motivated behavior in adolescent and adult male rats. Psychopharmacol. 2023;240:1151–67.

    Article  CAS  Google Scholar 

  28. Kangas BD, Leonard MZ, Shukla VG, Alapafuja SO, Nikas SP, Makriyannis A, et al. Comparisons of D9-Tetrahydrocannabinol and anandamide on a battery of cognition-related behavior in nonhuman primates. J Pharm Exp Ther. 2016;357:125–33.

    Article  CAS  Google Scholar 

  29. Kruse LC, Cao JK, Viray K, Stella N, Clark JJ. Voluntary oral consumption of Δ9-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology. 2019;44:1406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orihuel J, Capellán R, Roura-Martínez D, Ucha M, Ambrosio E, Higuera-Matas A. Δ 9-tetrahydrocannabinol during adolescence reprograms the nucleus accumbens transcriptome, affecting reward processing, impulsivity, and specific aspects of cocaine addiction-like behavior in a sex-dependent manner. Int J Neuropsychopharmacol. 2021;24:920–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pushkin AN, Eugene AJ, Lallai V, Torres-Mendoza A, Fowler JP, Chen E, et al. Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLoS One. 201931;14:e0211346.

  32. Schoch H, Huerta MY, Ruiz CM, Farrell MR, Jung KM, Huang JJ, et al. Adolescent cannabinoid exposure effects on natural reward seeking and learning in rats. Psychopharmacology. 2018;235:121–34.

    Article  CAS  PubMed  Google Scholar 

  33. Branch MN, Dearing ME, Lee DM. Acute and chronic effects of delta 9- tetrahydrocannabinol on complex behavior of squirrel monkeys. Psychopharmacology. 1980;71:247–56.

    Article  CAS  PubMed  Google Scholar 

  34. Justinova Z, Mascia P, Wu HQ, Secci ME, Redhi GH, Panlilio LV, et al. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci. 2013;16:1652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Justinova Z, Tanda G, Redhi GH, Goldberg SR. Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology. 2003;169:135–40.

    Article  CAS  PubMed  Google Scholar 

  36. Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas SP, Subramanian KV, et al. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists. J Pharm Exp Ther. 2013;344:561–7.

    Article  CAS  Google Scholar 

  37. Leonard MZ, Alapafuja SO, Ji L, Shukla VG, Liu Y, Nikas SP, et al. Cannabinoid CB1 discrimination: effects of endocannabinoids and catabolic enzyme inhibitors. J Pharm Exp Ther. 2017;363:314–23.

    Article  CAS  Google Scholar 

  38. Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, et al. The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharm Exp Ther. 2007;321:370–80.

    Article  CAS  Google Scholar 

  39. Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000;3:1073–4.

    Article  CAS  PubMed  Google Scholar 

  40. Withey SL, Kangas BD, Charles S, Gumbert AB, Eisold JE, George SR, et al. Effects of daily Δ9-Tetrahydrocannabinol (THC) alone or combined with cannabidiol (CBD) on cognition-based behavior and activity in adolescent nonhuman primates. Drug Alcohol Depend. 2021;221:108629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brady AG. Research techniques for the squirrel monkey (Saimiri sp.). ILAR J. 2000;41:10–8.

    Article  CAS  PubMed  Google Scholar 

  42. National Research Council (US) Committee for the update of the guide for the care and use of laboratory animals. Guide for the Care and Use of Laboratory Animals. (8th ed.). 2011;National Academies Press (US).

  43. Kangas BD, Bergman J. A novel touch-sensitive apparatus for behavioral studies in unrestrained squirrel monkeys. J Neurosci Meth. 2012;209:331–6.

    Article  Google Scholar 

  44. Kangas BD, Bergman J. Touchscreen technology in the study of cognition-related behavior. Behav Pharm. 2017;28:623–9.

    Article  Google Scholar 

  45. Withey SL, Bergman J, Huestis MA, George SR, Madras BK. THC and CBD blood and brain concentrations following daily administration to adolescent primates. Drug Alcohol Depend. 2020;213:108129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD, Bergman J, et al. Resting-state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. eNeuro. 2024;11:ENEURO.0173-23.2024.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hursh SR, Silberberg A. Economic demand and essential value. Psychol Rev. 2008;115:186–98.

    Article  PubMed  Google Scholar 

  48. Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One. 2017;12:e0184661.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schilling K, Gao Y, Stepniewska I, Choe AS, Landman BA, Anderson AW. Reproducibility and variation of diffusion measures in the squirrel monkey brain, in vivo and ex vivo. Magn Reson Imaging. 2017;35:29–38.

    Article  PubMed  Google Scholar 

  50. Zuo XN, Xu T, Jiang L, Yang Z, Cao XY, He Y, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage. 2013;65:374–86.

    Article  PubMed  Google Scholar 

  51. Yuan R, Nechvatal JM, Buckmaster CL, Ayash S, Parker KJ, Schatzberg AF, et al. Long-term effects of intermittent early life stress on primate prefrontal-subcortical functional connectivity. Neuropsychopharmacology. 2021;46:1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee AG, Nechvatal JM, Shen B, Buckmaster CL, Levy MJ, Chin FT, et al. Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys. Neurobiol Stress. 2016;3:68–73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zuo XN, Xing XX. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev. 2014;45:100–18.

    Article  PubMed  Google Scholar 

  54. Kohut SJ, Cao L, Mintzopolous D, Jiang S, Nikas SP, Makriyannis A, et al. Effects of cannabinoid exposure on short-term memory and medial orbitofrontal cortex function and chemistry in adolescent female rhesus macaques. Front Neurosci. 2022;16:998351.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Strickland JC, Lacy RT. Behavioral economic demand as a unifying language for addiction science: promoting collaboration and integration of animal and human models. Exp Clin Psychopharmacol. 2020;28:404–16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Peters J, Büchel C. Neural representations of subjective reward value. Behav Brain Res. 2010;213:135–41.

    Article  CAS  PubMed  Google Scholar 

  57. Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, et al. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2019;195:132–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sehl H, Terrett G, Greenwood LM, Kowalczyk M, Thomson H, Poudel G, et al. Patterns of brain function associated with cannabis cue-reactivity in regular cannabis users: a systematic review of fMRI studies. Psychopharmacology. 2021;238:2709–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zimmermann K, Yao S, Heinz M, Zhou F, Dau W, Banger M, et al. Altered orbitofrontal activity and dorsal striatal connectivity during emotion processing in dependent marijuana users after 28 days of abstinence. Psychopharmacology. 2018;235:849–59.

    Article  CAS  PubMed  Google Scholar 

  60. Jenni NL, Rutledge G, Floresco SB. Distinct medial orbitofrontal-striatal circuits support dissociable component processes of risk/reward decision-making. J Neurosci. 2022;42:2743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gourley SL, Zimmermann KS, Allen AG, Taylor JR. The medial orbitofrontal cortex regulates sensitivity to outcome value. J Neurosci. 2016;36:4600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burton AC, Kashtelyan V, Bryden DW, Roesch MR. Increased firing to cues that predict low-value reward in the medial orbitofrontal cortex. Cereb Cortex. 2014;24:3310–21.

    Article  PubMed  Google Scholar 

  63. Chou S, Ranganath T, Fish KN, Lewis DA, Sweet RA. Cell type specific cannabinoid CB1 receptor distribution across the human and non-human primate cortex. Sci Rep. 2022;12:9605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwitzer T, Schwan R, Angioi-Duprez K, Ingster-Moati I, Lalanne L, Giersch A, et al. The cannabinoid system and visual processing: a review on experimental findings and clinical presumptions. Eur Neuropsychopharmacol. 2015;25:100–12.

    Article  CAS  PubMed  Google Scholar 

  65. Mato S, Del Olmo E, Pazos A. Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. Eur J Neurosci. 2003;17:1747–54.

    Article  PubMed  Google Scholar 

  66. Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SA, et al. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage. 2012;63:1701–11.

    Article  CAS  PubMed  Google Scholar 

  67. Winton-Brown TT, Allen P, Borgwardt BhattacharyyaS, Fusar-Poli SJ, Crippa P, McGuire JA. PK. Modulation of auditory and visual processing by delta-9-tetrahydrocannabinol (THC): A multimodal neuroimaging study. Neuropsychopharmacology. 2011;36:1340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain. 2006;129:1096–112.

    Article  CAS  PubMed  Google Scholar 

  69. Blest-Hopley G, Giampietro V, Bhattacharyya S. Regular cannabis use is associated with altered activation of central executive and default mode networks even after prolonged abstinence in adolescent users: results from a complementary meta-analysis. Neurosci Biobehav Rev. 2019;96:45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diekhof EK, Nerenberg L, Falkai P, Dechent P, Baudewig J, Gruber O. Impulsive personality and the ability to resist immediate reward: an fMRI study examining interindividual differences in the neural mechanisms underlying self-control. Hum Brain Mapp. 2012;33:2768–84.

    Article  PubMed  Google Scholar 

  71. Lopez-Gamundi P, Yao YW, Chong TT, Heekeren HR, Mas-Herrero E, Marco-Pallarés J. The neural basis of effort valuation: a meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev. 2021;131:1275–87.

    Article  PubMed  Google Scholar 

  72. Hur KH, Meisler SL, Yassin W, Frederick BB, Kohut SJ. Prefrontal-limbic circuitry is associated with reward sensitivity in nonhuman primates. Biol Psychiatry. 2024;96:473–85.

    Article  PubMed  Google Scholar 

  73. Silverman MH, Jedd K, Luciana M. Neural networks involved in adolescent reward processing: an activation likelihood estimation meta-analysis of functional neuroimaging studies. Neuroimage. 2015;122:427–39.

    Article  PubMed  Google Scholar 

  74. Galván A, McGlennen KM. Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. J Cogn Neurosci. 2013;25:284–96.

    Article  PubMed  Google Scholar 

  75. Deshpande HU, Kohut SJ. Age-related development in prefrontal-subcortical resting-state functional connectivity in nonhuman primates. 2023;bioRxiv. 2023;07:549741.

    Google Scholar 

  76. Albaugh MD, Ottino-Gonzalez J, Sidwell A, Lepage C, Juliano A, Owens MM, et al. Association of cannabis use during adolescence with neurodevelopment. JAMA Psychiatry. 2021;78:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by R01-DA047575 from the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

BDK, SLW, RDS, JB, and SJK designed the research, BDK, SLW, and SJK performed the research, BDK, HUD, and SJK analyzed the data, and BDK, HUD, SLW, RDS, JB, SJK wrote the paper.

Corresponding author

Correspondence to Brian D. Kangas.

Ethics declarations

Competing interests

Over the past 3 years, BDK has had sponsored research agreements with BlackThorn Therapeutics, Compass Pathways, Delix Therapeutics, Engrail Therapeutics, Neurocrine Biosciences, and Takeda Pharmaceuticals. No funding from these entities was used to support the current work. All other authors have no conflicts of interest or relevant disclosures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangas, B.D., Deshpande, H.U., Withey, S.L. et al. Chronic Δ9-tetrahydrocannabinol exposure in adolescent nonhuman primates: persistent abnormalities in economic demand and brain functional connectivity. Neuropsychopharmacol. 50, 576–585 (2025). https://doi.org/10.1038/s41386-024-02024-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-024-02024-9

This article is cited by

Search

Quick links