Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats

Abstract

Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The exposure to stressor disrupts temporal variation in the Pr of LHb neurons.
Fig. 2: Presynaptic potentiation of the LHb after CORT incubation is mediated by the MAPK pathway.
Fig. 3: Phosphorylation of synapsin I in the LHb is increased after stress exposure.
Fig. 4: Depression-like behaviors after exposure to a stressor are attenuated by a single MAPK inhibitor infusion selective to the LHb.

Similar content being viewed by others

Data availability

All data generated or analyzed in the study are included in the published article or its Supplementary Information files.

References

  1. Kucukibrahimoglu E, Saygin MZ, Caliskan M, Kaplan OK, Unsal C, Goren MZ. The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression. Eur J Clin Pharmacol. 2009;65:571–7.

    Article  PubMed  Google Scholar 

  2. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007;62:1310–6.

    Article  CAS  PubMed  Google Scholar 

  3. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci USA. 2009;106:14075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE. 2010;5:e8566.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Treccani G, Musazzi L, Perego C, Milanese M, Nava N, Bonifacino T, et al. Acute stress rapidly increases the readily releasable pool of glutamate vesicles in prefrontal and frontal cortex through non-genomic action of corticosterone. Mol Psychiatry. 2014;19:401.

    Article  CAS  PubMed  Google Scholar 

  7. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci. 2007;25:3109–14.

    Article  PubMed  Google Scholar 

  8. Treccani G, Musazzi L, Perego C, Milanese M, Nava N, Bonifacino T, et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry. 2014;19:433–43.

    Article  CAS  PubMed  Google Scholar 

  9. Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience. 1997;77:65–73.

    Article  CAS  PubMed  Google Scholar 

  10. Lecca S, Meye FJ, Mameli M. The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci. 2014;39:1170–8.

    Article  PubMed  Google Scholar 

  11. Yang Y, Wang H, Hu J, Hu H. Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol. 2018;48:90–96.

    Article  CAS  PubMed  Google Scholar 

  12. Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011;470:535–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui Y, Hu S, Hu H. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 2019;42:179–91.

    Article  CAS  PubMed  Google Scholar 

  14. Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–27.

    Article  CAS  PubMed  Google Scholar 

  15. Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F, et al. betaCaMKII in lateral habenula mediates core symptoms of depression. Science. 2013;341:1016–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu B, Cao Y, Wang J, Dong J. Excitatory transmission from ventral pallidum to lateral habenula mediates depression. World J Biol Psychiatry. 2020;21:627–33.

    Article  PubMed  Google Scholar 

  17. Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, et al. Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep. 2017;21:1757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron. 2022;110:1400–15.e6.

    Article  CAS  PubMed  Google Scholar 

  19. Shabel SJ, Proulx CD, Piriz J, Malinow R. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345:1494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park H, Cheon M, Kim S, Chung C. Temporal variations in presynaptic release probability in the lateral habenula. Sci Rep. 2017;7:40866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guilding C, Hughes AT, Piggins HD. Circadian oscillators in the epithalamus. Neuroscience. 2010;169:1630–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mendoza J. Circadian neurons in the lateral habenula: clocking motivated behaviors. Pharmacol Biochem Behav. 2017;162:55–61.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H, Rusak B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience. 2005;132:519–28.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Z, Xu H, Liu Y, Mu L, Xiao J, Zhao H. Diurnal expression of the Per2 gene and protein in the lateral habenular nucleus. Int J Mol Sci. 2015;16:16740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakhi K, Wegner S, Belle MD, Howarth M, Delagrange P, Brown TM, et al. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol. 2014;592:5025–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Rastogi A, Narain P, Xu Q, Sabanovic M, Alhammadi AD, et al. Blunted diurnal firing in lateral habenula projections to dorsal raphe nucleus and delayed photoentrainment in stress-susceptible mice. PLoS Biol. 2021;19:e3000709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brock JA, Thomazeau A, Watanabe A, Li SSY, Sjostrom PJ. A practical guide to using CV analysis for determining the locus of synaptic plasticity. Front Synaptic Neurosci. 2020;12:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Huijstee AN, Kessels HW. Variance analysis as a tool to predict the mechanism underlying synaptic plasticity. J Neurosci Methods. 2020;331:108526.

    Article  PubMed  Google Scholar 

  29. Malinow R, Tsien RW. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature. 1990;346:177–80.

    Article  CAS  PubMed  Google Scholar 

  30. Foa EB, Zinbarg R, Rothbaum BO. Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull. 1992;112:218–38.

    Article  CAS  PubMed  Google Scholar 

  31. Willner P. Animal models as simulations of depression. Trends Pharm Sci. 1991;12:131–6.

    Article  CAS  PubMed  Google Scholar 

  32. Seligman ME, Maier SF. Failure to escape traumatic shock. J Exp Psychol. 1967;74:1–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Chang J, Blackstone C. FAM21 directs SNX27-retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus. Nat Commun. 2016;7:10939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park H, Rhee J, Lee S, Chung C. Selectively impaired endocannabinoid-dependent long-term depression in the lateral habenula in an animal model of depression. Cell Rep. 2017;20:289–96.

    Article  CAS  PubMed  Google Scholar 

  35. Baez M, Siriczman I, Volosin M. Corticosterone is involved in foot shock-induced inactivity in rats. Physiol Behav. 1996;60:795–801.

    Article  CAS  PubMed  Google Scholar 

  36. Dominguez G, Henkous N, Prevot T, David V, Guillou JL, Belzung C, et al. Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice. Neurobiol Stress. 2019;10:100161.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ishikawa M, Hara C, Ohdo S, Ogawa N. Plasma corticosterone response of rats with sociopsychological stress in the communication box. Physiol Behav. 1992;52:475–80.

    Article  CAS  PubMed  Google Scholar 

  38. Groeneweg FL, Karst H, de Kloet ER, Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol. 2012;350:299–309.

    Article  CAS  PubMed  Google Scholar 

  39. Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M, et al. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS ONE. 2012;7:e34124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Langreck C, Wauson E, Nerland D, Lamb B, Folkerts T, Winter L, et al. Hippocampal mitogen-activated protein kinase phosphatase-1 regulates behavioral and systemic effects of chronic corticosterone administration. Biochem Pharmacol. 2021;190:114617.

    Article  CAS  PubMed  Google Scholar 

  41. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013;132:1033–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Revest JM, Di Blasi F, Kitchener P, Rouge-Pont F, Desmedt A, Turiault M, et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat Neurosci. 2005;8:664–72.

    Article  CAS  PubMed  Google Scholar 

  43. Revest JM, Kaouane N, Mondin M, Le Roux A, Rouge-Pont F, Vallee M, et al. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry. 2010;15:1125.

    Article  PubMed  Google Scholar 

  44. Sarabdjitsingh RA, Pasricha N, Smeets JA, Kerkhofs A, Mikasova L, Karst H, et al. Hippocampal fast glutamatergic transmission is transiently regulated by corticosterone pulsatility. PLoS ONE. 2016;11:e0145858.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Refojo D, Echenique C, Muller MB, Reul JM, Deussing JM, Wurst W, et al. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA. 2005;102:6183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bloom O, Evergren E, Tomilin N, Kjaerulff O, Low P, Brodin L, et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol. 2003;161:737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamagata Y. New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. J Pharmacol Sci. 2003;93:22–9.

    Article  CAS  PubMed  Google Scholar 

  48. Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC Jr, Greengard P, Czernik AJ. Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci. 2001;21:7944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron. 2003;38:69–78.

    Article  CAS  PubMed  Google Scholar 

  50. Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell. 2017;170:284–97.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchis-Olle M, Fuentes S, Ubeda-Contreras J, Lalanza JF, Ramos-Prats A, Armario A, et al. Controllability affects endocrine response of adolescent male rats to stress as well as impulsivity and behavioral flexibility during adulthood. Sci Rep. 2019;9:3180.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol. 2008;581:113–20.

    Article  CAS  PubMed  Google Scholar 

  53. Prager EM, Johnson LR. Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal. 2009;2:re5.

    Article  PubMed  Google Scholar 

  54. Shaqura M, Li X, Al-Khrasani M, Shakibaei M, Tafelski S, Furst S, et al. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology. 2016;111:1–13.

    Article  CAS  PubMed  Google Scholar 

  55. Wang CC, Wang SJ. Modulation of presynaptic glucocorticoid receptors on glutamate release from rat hippocampal nerve terminals. Synapse. 2009;63:745–51.

    Article  CAS  PubMed  Google Scholar 

  56. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015;2:52587.

  57. Abel EL. Physiological correlates of the forced swim test in rats. Physiol Behav. 1993;54:309–17.

    Article  CAS  PubMed  Google Scholar 

  58. Fitzgerald EM. Regulation of voltage-dependent calcium channels in rat sensory neurones involves a Ras-mitogen-activated protein kinase pathway. J Physiol. 2000;527:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dwivedi Y, Rizavi HS, Conley RR, Pandey GN. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry. 2006;11:86–98.

    Article  CAS  PubMed  Google Scholar 

  60. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem. 2001;77:916–28.

    Article  CAS  PubMed  Google Scholar 

  61. Lemos JC, Roth CA, Messinger DI, Gill HK, Phillips PE, Chavkin C. Repeated stress dysregulates kappa-opioid receptor signaling in the dorsal raphe through a p38alpha MAPK-dependent mechanism. J Neurosci. 2012;32:12325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, et al. Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron. 2011;71:498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Svenningsen K, Veno MT, Henningsen K, Mallien AS, Jensen L, Christensen T, et al. MicroRNA profiling in the medial and lateral habenula of rats exposed to the learned helplessness paradigm: candidate biomarkers for susceptibility and resilience to inescapable shock. PLoS ONE. 2016;11:e0160318.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen P, Xu W, Luo Y, Zhang Y, He Y, Yang S, et al. MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK. Onco Targets Ther. 2017;10:1423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Taejoon Kim for performing the western blot experiments. This research was supported by the National Research Foundation of Korea (NRF-NRF-2020R1A2C2005868 to C.C.; NRF-2022R1C1C2008960 to H.P.).

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived this work and designed the experiments. H.P., H.R., S.Z., and S.K. performed experiments and acquired the data. H.P., H.R., and C.C. analyzed and interpreted the data. H.P. and C.C. prepared figures and wrote the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to ChiHye Chung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Ryu, H., Zhang, S. et al. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacol. 50, 540–547 (2025). https://doi.org/10.1038/s41386-024-02025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-024-02025-8

Search

Quick links