Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity

Abstract

The pharmacologically active (R,S)-ketamine (ketamine) metabolite (2R,6R)-hydroxynorketamine (HNK) maintains ketamine’s preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that enhanced N-methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We used this model to reveal novel mechanisms engaged in HNK’s temporally-sensitive antidepressant-relevant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK’s rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and our incubation model may aid in revealing novel pharmacological targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (2R,6R)-HNK rapidly potentiates synaptic efficacy and persistently primes synaptic metaplasticity.
Fig. 2: Hippocampal slice incubation recapitulates the rapid and sustained synaptic actions of bath-applied and systemically administered (2R,6R)-HNK.
Fig. 3: Rapid potentiation of synaptic efficacy by (2R,6R)-HNK occurs independently of NMDAR activation, but persistent synaptic priming is NMDAR activation-dependent.
Fig. 4: Rapid potentiation of synaptic efficacy by (2R,6R)-HNK requires the activity of adenylyl cyclase isoform 1, but not isoform 5.
Fig. 5: (2R,6R)-HNK requires protein kinase A activity-dependent signaling to rapidly potentiate synaptic efficacy, and this potentiation facilitates persistent synaptic plasticity priming.

Similar content being viewed by others

Data availability

The datasets produced during and/or analyzed for the present manuscript will be made available from the corresponding author upon reasonable request.

References

  1. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  2. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74:250–56.

    Article  CAS  PubMed  Google Scholar 

  3. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020;25:1592–603.

    Article  CAS  PubMed  Google Scholar 

  4. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharm Rev. 2018;70:621–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim J-W, Suzuki K, Kavalali ET, Monteggia LM. Bridging rapid and sustained antidepressant effects of ketamine. Trends Mol Med. 2023;29:364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry. 2024:29:1114–27.

  7. Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, et al. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci USA. 2023;120:e2305772120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GM, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology. 2018;43:2154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11C] ABP688 and PET imaging study in depression. Mol Psychiatry. 2018;23:824–32.

    Article  CAS  PubMed  Google Scholar 

  10. Chowdhury GM, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry. 2017;22:120–26.

    Article  CAS  PubMed  Google Scholar 

  11. Lorrain D, Baccei C, Bristow L, Anderson J, Varney M. Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience. 2003;117:697–706.

    Article  CAS  PubMed  Google Scholar 

  12. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duman RS. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci. 2014;16:11–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kavalali ET, Monteggia LM. Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacology. 2023;48:54–60.

  16. Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, et al. Brain region–specific action of ketamine as a rapid antidepressant. Science. 2024;385:eado7010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

  19. Gould TD, Zarate CA Jr., Thompson SM. Molecular Pharmacology and Neurobiology of Rapid-Acting Antidepressants. Annu Rev Pharm Toxicol. 2019;59:213–36.

    Article  CAS  Google Scholar 

  20. Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, et al. Hydroxynorketamines: pharmacology and potential therapeutic applications. Pharm Rev. 2021;73:763–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, et al. A Phase 1 Assessment of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of (2 R, 6 R)‐Hydroxynorketamine in Healthy Volunteers. Clin Pharmacol Ther. 2024;116:1314–24.

  23. Zanos P, Highland JN, Stewart BW, Georgiou P, Jenne CE, Lovett J, et al. (2R, 6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions. Proc Natl Acad Sci USA. 2019;116:6441–50.

  24. Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, et al. Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Disposition. 2009;37:1528–38.

    Article  CAS  Google Scholar 

  25. Brown KA, Zanos P, Powels CF, Fix CJ, Michaelides M, Pereira EF, et al. Ketamine preservative benzethonium chloride potentiates hippocampal synaptic transmission and binds neurotransmitter receptors and transporters. Neuropharmacology. 2023;225:109403.

  26. Riggs LM, Aracava Y, Zanos P, Fischell J, Albuquerque EX, Pereira EFR, et al. (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology. 2020;45:426–36.

  27. Riggs LM, Thompson SM, Gould TD. (2R, 6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology. 2022:109153.

  28. Georgiou P, Zanos P, Mou T-CM, An X, Gerhard DM, Dryanovski DI, et al. Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci. 2022;25:1191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown KA, Carpenter JM, Preston CJ, Ludwig HD, Clay KB, Harn DA, et al. Lacto-N-fucopentaose-III ameliorates acute and persisting hippocampal synaptic plasticity and transmission deficits in a Gulf War Illness mouse model. Life Sci. 2021;279:119707.

    Article  CAS  PubMed  Google Scholar 

  30. Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, et al. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J Neurosci. 2023;43:1038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology. 2023;48:90–103.

  32. Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2 R, 6 R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA. 2019;116:5160–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Highland JN, Morris PJ, Konrath KM, Riggs LM, Hagen NR, Zanos P, et al. Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2, 6)-and (5 R)-Methyl-(2 R, 6 R)-hydroxynorketamines. ACS Chem Neurosci. 2022;13:510–23.

    Article  CAS  PubMed  Google Scholar 

  34. Zanos P, Highland JN, Liu X, Troppoli TA, Georgiou P, Lovett J, et al. (R)‐Ketamine exerts antidepressant actions partly via conversion to (2R, 6R)‐hydroxynorketamine, while causing adverse effects at sub‐anaesthetic doses. Br J Pharmacol. 2019;176:2573–92.

  35. Highland JN, Morris PJ, Zanos P, Lovett J, Ghosh S, Wang AQ, et al. Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R, 6R)-hydroxynorketamine. J Psychopharmacol. 2019;33:12–24.

    Article  CAS  PubMed  Google Scholar 

  36. Riggs LM, Pereira EF, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for (2R, 6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol. 2024;131:64–74.

    Article  CAS  PubMed  Google Scholar 

  37. Trudeau L-E, Emery DG, Haydon PG. Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron. 1996;17:789–97.

    Article  CAS  PubMed  Google Scholar 

  38. Kaneko M, Takahashi T. Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci. 2004;24:5202–08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, et al. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev. 2022;102:815–57.

    Article  CAS  PubMed  Google Scholar 

  40. Conti AC, Maas JrJW, Muglia LM, Dave BA, Vogt SK, Tran TT, et al. Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain. Neuroscience. 2007;146:713–29.

    Article  CAS  PubMed  Google Scholar 

  41. Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS. 2022;19:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, et al. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017;10:eaah5381.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite,(2R, 6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:1–16.

    Article  Google Scholar 

  44. Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000;48:732–9.

    Article  CAS  PubMed  Google Scholar 

  45. Parekh PK, Johnson SB, Liston C. Synaptic Mechanisms Regulating Mood State Transitions in Depression. Annu Rev Neurosci. 2022;45:581–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim JW, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res. 2020;380:112378.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki K, Kim J-W, Nosyreva E, Kavalali ET, Monteggia LM. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep. 2021;37:109918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Izumi Y, Zorumski CF. Metaplastic effects of subanesthetic ketamine on CA1 hippocampal function. Neuropharmacology. 2014;86:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graef JD, Newberry K, Newton A, Pieschl R, Shields E, Luan FN, et al. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res. 2015;1609:31–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ribeiro PO, Tomé AR, Silva HB, Cunha RA, Antunes LM. Clinically relevant concentrations of ketamine mainly affect long-term potentiation rather than basal excitatory synaptic transmission and do not change paired-pulse facilitation in mouse hippocampal slices. Brain Res. 2014;1560:10–17.

    Article  CAS  PubMed  Google Scholar 

  51. Chen BK, Luna VM, LaGamma CT, Xu X, Deng SX, Suckow RF, et al. Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology. 2020;45:1545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res. 2019;376:112153.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maxwell CR, Ehrlichman RS, Liang Y, Trief D, Kanes SJ, Karp J, et al. Ketamine produces lasting disruptions in encoding of sensory stimuli. J Pharm Exp Ther. 2006;316:315–24.

    Article  CAS  Google Scholar 

  54. Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C, et al. Ketamine as a Prophylactic Against Stress-Induced Depressive-like Behavior. Biol Psychiatry. 2016;79:776–86.

    Article  CAS  PubMed  Google Scholar 

  55. Wang H, Pineda VV, Chan GC, Wong ST, Muglia LJ, Storm DR. Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation. J Neurosci. 2003;23:9710–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang M, Wang H. Ca2+-stimulated ADCY1 and ADCY8 regulate distinct aspects of synaptic and cognitive flexibility. Front Cell Neurosci. 2023;17:1215255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang M, Wang H. Mice overexpressing type 1 adenylyl cyclase show enhanced spatial memory flexibility in the absence of intact synaptic long-term depression. Learn Mem. 2013;20:352–57.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM. NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry. 2019;24:1833–43.

    Article  CAS  PubMed  Google Scholar 

  59. Chen J, Ding Q, An L, Wang H. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front Pharm. 2022;13:949384.

    Article  CAS  Google Scholar 

  60. Kang H, Park P, Han M, Tidball P, Georgiou J, Bortolotto ZA, et al. (2 S, 6 S)-and (2 R, 6 R)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice. Brain and Neuroscience Advances. 2020;4:2398212820957847.

  61. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309:261–63.

    Article  CAS  PubMed  Google Scholar 

  62. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4:a005710.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R, S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharm. 2013;698:228–34.

    Article  CAS  Google Scholar 

  64. Morris PJ, Moaddel R, Zanos P, Moore CE, Gould T, Zarate JrCA, et al. Synthesis and N-methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites. Org Lett. 2017;19:4572–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:E1–3.

    Article  CAS  PubMed  Google Scholar 

  66. Barnes JR, Mukherjee B, Rogers BC, Nafar F, Gosse M, Parsons MP. The relationship between glutamate dynamics and activity-dependent synaptic plasticity. J Neurosci. 2020;40:2793–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fukumoto K, Fogaça MV, Liu R-J, Duman C, Kato T, Li X-Y, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 R, 6 R)-hydroxynorketamine. Proc Natl Acad Sci USA. 2019;116:297–302.

    Article  CAS  PubMed  Google Scholar 

  68. Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci. 2012;13:798–810.

    Article  CAS  PubMed  Google Scholar 

  69. Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc Natl Acad Sci. 2001;98:10924–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci. 2012;6:85.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–30.

    Article  CAS  PubMed  Google Scholar 

  72. Huang Y-Y, Colino A, Selig DK, Malenka RC. The influence of prior synaptic activity on the induction of long-term potentiation. Science. 1992;255:730–33.

    Article  CAS  PubMed  Google Scholar 

  73. Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38:729–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang Y, Ju W, Zhang H, Sun L. Effect of ketamine on LTP and NMDAR EPSC in hippocampus of the chronic social defeat stress mice model of depression. Front Behav Neurosci. 2018;12:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Widman AJ, Stewart AE, Erb EM, Gardner E, McMahon LL. Intravascular ketamine increases theta-burst but not high frequency tetanus induced LTP at CA3-CA1 synapses within three hours and devoid of an increase in spine density. Front Synaptic Neurosci. 2018;10:8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kim J-W, Autry AE, Na ES, Adachi M, Björkholm C, Kavalali ET, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24:1100–09.

Download references

Acknowledgements

We thank Patrick J. Morris and Craig J. Thomas (Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD) for synthesizing and providing HNK.

Funding

Research was supported by NIH grant MH107615 and U.S. Department of Veterans Affairs Merit Awards 1I01BX006018 to TDG.

Author information

Authors and Affiliations

Authors

Contributions

KAB and TDG conceptualized the experiments conducted in the study. KAB and MIA completed the experiments and analyzed the data. KAB wrote the manuscript. All authors critically reviewed the manuscript and approved its final form.

Corresponding author

Correspondence to Todd D. Gould.

Ethics declarations

Competing interests

TDG is listed as co-author in patents and patent applications related to the pharmacology and use of (2R,6R)-HNK in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. TDG has assigned his patent rights to the University of Maryland, Baltimore, but will share a percentage of any royalties that may be received by the University of Maryland, Baltimore. The contents of this manuscript do not represent the views of the U.S. Department of Veterans Affairs or the United States Government. TDG has served as a consultant for Boehringer Ingelheim during the preceding 3 years. All other authors report no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.A., Ajibola, M.I. & Gould, T.D. Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity. Neuropsychopharmacol. 50, 928–940 (2025). https://doi.org/10.1038/s41386-025-02085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02085-4

Search

Quick links