Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aversion-induced dopamine reductions predict drug-taking and escape behaviors

Abstract

Dopamine release in the nucleus accumbens core (NAcC) has long been associated with the promotion of motivated behavior. However, inhibited dopamine signaling can increase behavior in certain settings, such as during drug self-administration. While aversive environmental stimuli can reduce dopamine, it is unclear whether such stimuli reliably engage this mechanism in different contexts. Here we compared the physiological and behavioral responses to the same aversive stimulus in different designs to determine if there is uniformity in the manner that aversive stimuli are encoded and promote behavior. NAcC dopamine was measured using fiber photometry in male and female rats during cocaine self-administration sessions in which an acutely aversive 90 dB white noise was intermittently presented. In a separate group of rats, aversion-induced changes in dopamine were measured during an escape design in which operant responses terminated aversive white noise. Aversive white noise significantly reduced NAcC dopamine and increased cocaine self-administration in both male and female rats. The same relationship was observed in the escape design, in which white noise reduced dopamine and promoted the performance of escape behavior. In both designs, the magnitude of the dopamine reduction predicted behavioral performance. While prior research demonstrated that pharmacologically reduced dopamine signaling can promote intake, this report demonstrates that this physiological mechanism is naturally engaged by aversive environmental stimuli and is generalizable to non-drug contexts. These findings illustrate a common physiological signature in response to aversion that may promote both adaptive and maladaptive behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Presentation of intense white noise promoted cocaine intake.
Fig. 2: Intense white noise reduced dopamine and promoted drug-taking behavior.
Fig. 3: Intense, but not mild, white noise maintained negatively reinforced behavior.
Fig. 4: Operant responses for positive and negative reinforcement increased dopamine concentration.
Fig. 5: Onset of intense, but not mild, white noise reduced NAc dopamine on the first day of exposure and predicted subsequent escape behavior.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sinha R, Catapano D, O’Malley S. Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology (Berl). 1999;142:343–51.

    Article  PubMed  CAS  Google Scholar 

  2. Robbins SJ, Ehrman RN, Childress AR, Cornish JW, O’Brien CP. Mood state and recent cocaine use are not associated with levels of cocaine cue reactivity. Drug Alcohol Depend. 2000;59:33–42.

    Article  PubMed  CAS  Google Scholar 

  3. Sinha R, Talih M, Malison R, Cooney N, Anderson GM, Kreek MJ. Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology (Berl). 2003;170:62–72.

    Article  PubMed  CAS  Google Scholar 

  4. Fox HC, Hong K-IA, Siedlarz K, Sinha R. Enhanced sensitivity to stress and drug/alcohol craving in abstinent cocaine-dependent individuals compared to social drinkers. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2008;33:796–805.

    Article  CAS  Google Scholar 

  5. Koob GF, Caine SB, Parsons L, Markou A, Weiss F. Opponent process model and psychostimulant addiction. Pharmacol Biochem Behav. 1997;57:513–21.

    Article  PubMed  CAS  Google Scholar 

  6. Baker TB, Piper ME, McCarthy DE, Majeskie MR, Fiore MC. Addiction motivation reformulated: an affective processing model of negative reinforcement. Psychol Rev. 2004;111:33–51.

    Article  PubMed  Google Scholar 

  7. Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319.

    Article  PubMed  Google Scholar 

  8. Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69–97.

    Article  PubMed  CAS  Google Scholar 

  9. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  PubMed  CAS  Google Scholar 

  10. Blacktop JM, Seubert C, Baker DA, Ferda N, Lee G, Graf EN, et al. Augmented cocaine seeking in response to stress or CRF delivered into the ventral tegmental area following long-access self-administration is mediated by CRF receptor type 1 but not CRF receptor type 2. J Neurosci Off J Soc Neurosci. 2011;31:11396–403.

    Article  CAS  Google Scholar 

  11. Twining RC, Wheeler DS, Ebben AL, Jacobsen AJ, Robble MA, Mantsch JR, et al. Aversive stimuli drive drug seeking in a state of low dopamine tone. Biol Psychiatry. 2015;77:895–902.

    Article  PubMed  CAS  Google Scholar 

  12. de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, Kim CK, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron. 2019;101:133–151.e7.

    Article  PubMed  Google Scholar 

  13. Goedhoop JN, van den Boom BJ, Robke R, Veen F, Fellinger L, van Elzelingen W, et al. Nucleus accumbens dopamine tracks aversive stimulus duration and prediction but not value or prediction error. eLife. 2022;11:e82711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Oleson EB, Gentry RN, Chioma VC, Cheer JF. Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci. 2012;32:14804–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. van Elzelingen W, Goedhoop J, Warnaar P, Denys D, Arbab T, Willuhn I. A unidirectional but not uniform striatal landscape of dopamine signaling for motivational stimuli. Proc Natl Acad Sci. 2022;119:e2117270119.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wheeler DS, Robble MA, Hebron EM, Dupont MJ, Ebben AL, Wheeler RA. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking. J Neurosci. 2015;35:7215–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. De Wit H, Wise RA. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol Rev Can Psychol. 1977;31:195–203.

    Article  Google Scholar 

  18. Yokel RA, Wise RA. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science. 1975;187:547–9.

    Article  PubMed  CAS  Google Scholar 

  19. Yokel RA, Wise RA. Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology (Berl). 1976;48:311–8.

    Article  PubMed  CAS  Google Scholar 

  20. Suto N, Wise RA. Satiating effects of cocaine are controlled by dopamine actions in the nucleus accumbens core. J Neurosci. 2011;31:17917–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Suto N, Ecke LE, Wise RA. Control of within-binge cocaine-seeking by dopamine and glutamate in the core of nucleus accumbens. Psychopharmacology (Berl). 2009;205:431–9.

    Article  PubMed  CAS  Google Scholar 

  22. Harrison JM, Tracy WH. Use of auditory stimuli to maintain lever-pressing behavior. Science. 1955;121:373–4.

    Article  PubMed  CAS  Google Scholar 

  23. Barnes GW, Kish GB. Reinforcing properties of the termination of intense auditory stimulation. J Comp Physiol Psychol. 1957;50:40–43.

    Article  PubMed  CAS  Google Scholar 

  24. Wheeler RA, Twining RC, Jones JL, Slater JM, Grigson PS, Carelli RM. Behavioral and electrophysiological indices of negative affect predict cocaine self-administration. Neuron. 2008;57:774–85.

    Article  PubMed  CAS  Google Scholar 

  25. Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sinha R, Fuse T, Aubin LR, O’Malley SS. Psychological stress, drug-related cues and cocaine craving. Psychopharmacology (Berl). 2000;152:140–8.

    Article  PubMed  CAS  Google Scholar 

  28. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry. 2006;63:324–31.

    Article  PubMed  Google Scholar 

  29. Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem. 2021;157:1697–713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, et al. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology. 2023;48:1–12.

  31. Vranjkovic O, Gasser PJ, Gerndt CH, Baker DA, Mantsch JR. Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. J Neurosci Off J Soc Neurosci. 2014;34:12504–14.

    Article  Google Scholar 

  32. Mantsch JR, Katz ES. Elevation of glucocorticoids is necessary but not sufficient for the escalation of cocaine self-administration by chronic electric footshock stress in rats. Neuropsychopharmacology. 2007;32:367–76.

    Article  PubMed  CAS  Google Scholar 

  33. Bachtell RK, Whisler K, Karanian D, Self DW. Effects of intranucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl). 2005;183:41–53.

    Article  PubMed  CAS  Google Scholar 

  34. Britton DR, Curzon P, Mackenzie RG, Kebabian JW, Williams JEG, Kerkman D. Evidence for involvement of both D1 and D2 receptors in maintaining cocaine self-administration. Pharmacol Biochem Behav. 1991;39:911–5.

    Article  PubMed  CAS  Google Scholar 

  35. Mahler SV, Brodnik ZD, Cox BM, Buchta WC, Bentzley BS, Quintanilla J, et al. Chemogenetic manipulations of ventral tegmental area dopamine neurons reveal multifaceted roles in cocaine abuse. J Neurosci. 2019;39:503–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Burgeno LM, Farero RD, Murray NL, Panayi MC, Steger JS, Soden ME, et al. Cocaine seeking and taking are oppositely regulated by dopamine. bioRxiv. 2023;04.09.536189; https://doi.org/10.1101/2023.04.09.536189.

  37. Willuhn I, Burgeno LM, Groblewski PA, Phillips PEM. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat Neurosci. 2014;17:704–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kutlu MG, Zachry JE, Melugin PR, Cajigas SA, Chevee MF, Kelly SJ, et al. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr Biol CB. 2021;31:4748–4761.e8.

    Article  PubMed  CAS  Google Scholar 

  39. Salinas-Hernández XI, Zafiri D, Sigurdsson T, Duvarci S. Functional architecture of dopamine neurons driving fear extinction learning. Neuron. 2023;111:3854–3870.e5.

    Article  PubMed  Google Scholar 

  40. Stelly CE, Haug GC, Fonzi KM, Garcia MA, Tritley SC, Magnon AP, et al. Pattern of dopamine signaling during aversive events predicts active avoidance learning. Proc Natl Acad Sci. 2019;116:13641–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mohebi A, Pettibone JR, Hamid AA, Wong J-MT, Vinson LT, Patriarchi T, et al. Dissociable dopamine dynamics for learning and motivation. Nature. 2019;570:65–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hart AS, Rutledge RB, Glimcher PW, Phillips PEM. Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J Neurosci. 2014;34:698–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wenzel JM, Oleson EB, Gove WN, Cole AB, Gyawali U, Dantrassy HM, et al. Phasic dopamine signals in the nucleus accumbens that cause active avoidance require endocannabinoid mobilization in the midbrain. Curr Biol. 2018;28:1392–1404.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cui W, Aida T, Ito H, Kobayashi K, Wada Y, Kato S, et al. Dopaminergic signaling in the nucleus accumbens modulates stress-coping strategies during inescapable stress. J Neurosci Off J Soc Neurosci. 2020;40:7241–54.

    Article  CAS  Google Scholar 

  45. Danjo T, Yoshimi K, Funabiki K, Yawata S, Nakanishi S. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc Natl Acad Sci USA. 2014;111:6455–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci Off J Soc Neurosci. 2010;30:14273–83.

    Article  CAS  Google Scholar 

  47. Lin Y-H, Yamahashi Y, Kuroda K, Faruk MO, Zhang X, Yamada K, et al. Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochem Int. 2021;143:104935.

    Article  PubMed  CAS  Google Scholar 

  48. Robble MA, Bozsik ME, Wheeler DS, Wheeler RA. Learned avoidance requires VTA KOR-mediated reductions in dopamine. Neuropharmacology. 2020;167:107996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zachry JE, Kutlu MG, Yoon HJ, Leonard MZ, Chevée M, Patel DD, et al. D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron. 2023;112:835–49.

  50. Diao Z, Yao L, Cheng Q, Wu M, Di Y, Qian Z, et al. Involvement of midbrain dopamine neuron activity in negative reinforcement learning in mice. Mol Neurobiol. 2021;58:5667–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vaibhav Konanur, Matthew Gelin, Peter Lamberton, Kara Zimolzak and Mitch Roitman for technical assistance.

Funding

This work was supported by the Charles E. Kubly Mental Health Research Center and the National Institutes of Health (DA048280 to RAW, MCH, and JRM).

Author information

Authors and Affiliations

Authors

Contributions

EMG, DSW, JRM, MCH, and RAW designed the experiments. EMG, BEC, EG, LV, and DSW performed the surgeries, conducted the experiments, and analyzed the data. EMG, DSW, and RAW wrote the manuscript. BEC, JRM, MCH, LV, NP and DSW provided critical feedback on the manuscript.

Corresponding author

Correspondence to Robert A. Wheeler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafelman, E.M., Côté, B.E., Vlach, L. et al. Aversion-induced dopamine reductions predict drug-taking and escape behaviors. Neuropsychopharmacol. 50, 1376–1384 (2025). https://doi.org/10.1038/s41386-025-02101-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02101-7

Search

Quick links